首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of slurry application method and weather conditions after application on ammonia volatilisation are well documented, however, the effect on slurry N recovery in herbage is less evident due to large variability of results. The objective of this field experiment was to determine the recovery of cattle slurry NH4-N in herbage and soil in the year of application as affected by application method (trailing shoe versus broadcast) and season of application (spring versus summer), using 15N as a tracer. In 2007 and 2008, 15N enriched slurry was applied on grassland plots. N recovery in herbage and soil during the year of application was determined. Both spring and trailing shoe application resulted in significantly higher herbage DM yields, N uptake and an increased recovery of 15NH4-N in herbage. Additionally, the recovery of slurry 15NH4-N in the soil at the end of the growing season was increased. Spring and trailing shoe application reduced the losses of slurry 15NH4-N by on average 14 and 18 percentage points, respectively, which corresponded closely to ammonia volatilisation as predicted by the ALFAM model. It was concluded that slurry N recovery in temperate pasture systems can be increased by adjusting the slurry application method or timing.  相似文献   

2.
Peter Sørensen 《Plant and Soil》2004,267(1-2):285-296
About 50–60% of dairy cattle slurry nitrogen is ammonium N. Part of the ammonium N in cattle slurry is immobilised due to microbial decomposition of organic matter in the slurry after application to soil. The immobilisation and the remineralisation influence the fertiliser value of slurry N and the amount of organic N that is retained in soil. The immobilisation and the remineralisation of 15 N-labelled dairy cattle slurry NH4-N were studied through three growing seasons after spring application under temperate conditions. Effects of slurry distribution (mixing, layer incorporation, injection, surface-banding) and extra litter straw in the slurry on the plant utilisation of labelled NH4-N from slurry were studied and compared to the utilisation of 15N-labelled mineral fertiliser. The initial immobilisation of slurry N was influenced by the slurry distribution in soil. More N was immobilised when the slurry was mixed with soil. Surface-banding of slurry resulted in significant volatilisation losses and less residual 15N in soil. Much more N was immobilised after slurry incorporation than after mineral fertiliser application. After 2.5 years the recovery of labelled N in soil (0–25 cm) was 46% for slurry mixed with soil, 42% for injected slurry, 22% for surface-banded slurry and 24% for mineral fertiliser N. The total N uptake in a ryegrass cover crop was 5–10 kg N/ha higher in the autumn after spring-application of cattle slurry (100–120 kg NH4-N/ha) compared to the mineral fertiliser N reference, but the immobilised slurry N (labelled N) only contributed little to the extra N uptake in the autumn. Even in the second autumn after slurry application there was an extra N uptake in the cover crop (0–10 kg N/ha). The residual effect of the cattle slurry on spring barley N uptake was insignificant in the year after slurry application (equivalent to 3% of total slurry N). Eighteen months after application, 13% of the residual 15N in soil was found in microbial biomass whether it derived from slurry or mineral fertiliser, but the remineralisation rate (% crop removal of residual 15N) was higher for fertiliser- than for slurry-derived N, except after surface-banding. Extra litter straw in the slurry had a negligible influence on the residual N effects in the year after application. It is concluded that a significant part of the organic N retained in soil after cattle slurry application is derived from immobilised ammonium N, but already a few months after application immobilised N is stabilised and only slowly released. The immobilised N has negligible influence on the residual N effect of cattle slurry in the first years after slurry application, and mainly contributes to the long-term accumulation of organic N in soil together with part of the organic slurry N. Under humid temperate conditions the residual N effects of the manure can only be optimally utilised when soil is also covered by plants in the autumn, because a significant part of the residual N is released in the autumn, and there is a higher risk of N leaching losses on soils that receive cattle slurry regularly compared to soils receiving only mineral N fertilisers.  相似文献   

3.
The effect of incorporating cattle slurry in soil, either by mixing or by simulated injection into a hollow in soil, on the ryegrass uptake of total N and 15NH4 +-N was determined in three soils of different texture. The N accumulation in Italian ryegrass (Lolium multiflorum L.) from slurry N and from an equivalent amount of NH4 +-N in (15NH4) SO4 (control) was measured during 6 months of growth in pots. After this period the total recovery of labelled N in the top soil plus herbage was similar in the slurry and the control treatments. This indicated that gaseous losses from slurry NH4 +-N were insignificant. Consequently, the availability of slurry N to plants was mainly influenced by the mineralization-immobilization processes. The apparent utilization of slurry NH4 +-N mixed into soil was 7%, 14% and 24% lower than the utilization of (NH4)2SO4-N in a sand soil, a sandy loam soil and a loam soil, respectively. Thus, the net immobilization of N due to slurry application increased with increasing soil clay content, whereas the recovery in plants of 15N-labelled NH4 +-N from slurry was similar on the three soils. A parallel incubation experiment showed that the immobilization of slurry N occurred within the first week after slurry application. The incorporation of slurry N by simulated injection increased the plant uptake of both total and labelled N compared to mixing the slurry into the soil. The apparent utilization of injected slurry NH4 +-N was 7% higher, 8% lower and 4% higher than the utilization of (NH4)2SO4-N in the sand, the sandy loam and the loam soil, respectively. It is concluded that the spatial distribution of slurry in soil influenced the net mineralization of N to the same degree as did the soil type.  相似文献   

4.
The fate of sheep urine-N applied to an upland grass sward at four dates representing widely differing environmental conditions, was followed in soil (0–20 cm) and in herbage. Urine was poured onto 1-m2 plots to simulate a single urination in August 1984 (warm and dry), May (cool), July and August 1985 (cool and wet) at rates equivalent to 40–52 g N m−2. The transformation of urine-N (61–69% urea-N) in soil over a 6–7 week period followed the same general pattern when applied at different times during the season; rapid hydrolysis of urea, the appearance of large amounts of urine-N as ammonium in soil extracts, and the appearance of nitrate about 14 days after application. The magnitude of “apparent” nitrification however differed markedly with environmental conditions, being greatest in May 1985 when a maximum of 76% of the inorganic soil N was in the form of nitrate. At all other application dates nitrate levels were relatively low. With the August 1984 application soil inorganic N returned to control levels (given water only) after 31 days but considerable amounts remained in soil for 60–90 days with the other applications. Weekly cuts to 3-cm indicated that increases in herbage dry matter and N yields in response to urine application were greatest in absolute terms after the May 1985 application and continued for at least 70 days with all applications. Relative to control plots the May application resulted in a 3-fold increase in herbage DM compared with corresponding values of 6-, 5-, and 7-fold increases with the August 1984, July and August 1985 applications. Recovery of urine-N in herbage was poor averaging only 17% of that applied at different dates, while recovery in soil extracts was incomplete. The exact routes of loss (volatilisation, leaching, denitrification or immobilisation) were not quantified but it is evident that substantial amounts of urine-N can be lost from the soil-plant system under upland conditions.  相似文献   

5.
Three field experiments were carried out to compare cattle and sheep urine patches in relation to (i) initial wetting pattern and volume of soil affected, (ii) soil solution ionic composition and (iii) the fate of15N-labelled urine in the soil over the winter period. The distribution of Br (used as a urine tracer) across the soil surface and down the profile was irregular in all the patches. The pasture area covered by Br in the sheep patches was 0.04–0.06 m2 and Br was detected to a depth of 150 mm. Cattle patches were significantly larger covering a surface area of 0.38–0.42 m2 and penetrating to a depth of 400 mm. The rapid downward movement of urine occurred through macropore flow but even so, over half of the applied Br was detected in the 0–50 mm soil layer in both sheep and cattle patches. Due to the larger volume of urine added to the cattle patches (2000 mL for cattle and 200 mL for sheep) the effective application rate was about 5 L m–2 compared with 4 L m–2 for sheep. Concentrations of extractable mineral N and ionic concentrations in soil solution were higher in cattle than sheep patches particularly near the soil surface. In both sheep and cattle patches, urea was rapidly hydrolysed to NH 4 + and nitrification occurred between 14 and 29 days after urine application. Initially the major anions and cations in the soil solution were HCO 3 , SO 4 = , Cl, NH 4 + , Mg++, K+ and Na+, which were derived from the urine application. Ionic concentrations in the soil solution decreased appreciably over time due to plant uptake and possibly some leaching. As nitrification proceeded, NO 3 became the dominant anion in soil solution and the major accompanying cation was Ca++. The fate of15N-labelled urine-urea was followed during a 5 month period beginning in late autumn. Greater leaching losses of NO 3 occurred below cattle patches (equivalent to 60 kg N ha–1 below 300 mm and 37 kg N ha–1 below 600 mm) compared with sheep patches (10 kg N ha–1 below 300 mm and 1 kg N ha below 600 mm). While 6% of the applied15N was leached the amount of N leached was equivalent to 11% of the applied urine-N in cattle patches. This suggests that there was significant immobilsation-mineralisation turnover in urine patch soil with the release of mineral N from native soil organic matter. In both sheep and cattle patches 60% of the15N was accounted for in plant uptake, remaining in the soil and leaching. About 40% of the applied N was therefore lost through gaseous emission.  相似文献   

6.
Increased atmospheric CO2 was shown to affect a variety of physiological processes in plants, including photosynthesis and growth with repercussions on crop yield and nutritive value. Perennial alfalfa (Medicago sativa L.) is a sustainable crop with a deep root system, living in symbiosis with rhizobium for nitrogen (N) fixation. The objective of the project was to determine the combined effects of elevated CO2 and rhizobial strains on photosynthesis, growth, N fixation, and nutritive value of alfalfa, and on soil microflora. Alfalfa inoculated with two different strains of rhizobia (Sinorhizobium meliloti strains A2 and NRG34) was grown 2 months at day/night temperatures of 22/17°C under either 400 (near ambient) or 800 (elevated) μmol mol−1 of CO2. The photosynthetic response of alfalfa to elevated CO2 differed according to the rhizobial strain. At the end of the experiment, elevated CO2 stimulated photosynthetic rates by 50% in plants associated with A2 but there was no significant increase in plants nodulated with NRG34. Nitrogenase activity (+38%) and shoot growth (+60%) were stimulated under 800 μmol mol−1 of CO2 for alfalfa inoculated with both strains. Root dry weight was significantly higher at 800 μmol mol−1 of CO2 only with strain A2. Fibre concentration decreased in response to elevated atmospheric CO2 in alfalfa inoculated with strain A2 resulting in plant material with greater nutritive value when inoculated with A2 compared to NRG34. In the soil, elevated CO2 increased the proportion of fungi in the microbial community while decreasing Gram bacteria. For alfalfa inoculated with rhizobial strain A2, photosynthetic rates, nitrogenase activity, and growth were all stimulated by increased atmospheric CO2 compared to less consistently positive responses to elevated CO2 when inoculated with NRG34. Our results show that it is possible to identify rhizobial strains to improve plant performance under predicted future CO2 concentrations with no negative effect on nutritive value. The Canadian Government’s right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

7.
Injection of cattle slurry into a grassland soil decreases NH3 volatilisation and increases N utilisation by the sward, but may also increase denitrification losses. Denitrification rates were measured using a soil core incubation technique involving acetylene inhibition, following injection of cattle slurry (67 t ha–1) into a grassland soil. The slurry was injected, either with or without a nitrification inhibitor (DCD), on 8 December 1989. Two-weekly measurements were carried out up to 18 weeks after injection. Compared to the control plot, denitrification rates were significantly higher after slurry injection. Addition of DCD to the slurry almost eliminated this effect. Estimated N-losses during 18 weeks after injection were 0.9 (control), 4.1 (+DCD), and 13.7 (-DCD) kg N ha–1. Denitrification losses were 7% of the injected NH4-N and decreased to 2% of the injected NH4-N when DCD was added. Denitrification could account for about 19% of the difference in apparent recovery of N from slurry injected with and without DCD. The results suggested that considerable amounts of NO3 were lost due to leaching.  相似文献   

8.
The fate of15N-ammonium sulphate fertilizer that was applied to four lysimeters in the 1990/91 summer was studied over three consecutive growing seasons during which either maize or wheat was grown. Aboveground portions of15N-labelled maize plants from the first harvest were applied to four other lysimeters at 5 t ha–1. Two lysimeters in each of the sets of four were assigned a low and a high moisture treatment using irrigation. In both moisture treatments, plant recovery of fertilizer-15N in the first season was 27% and a further 2% was recovered by plants during the next two seasons. During the second and third seasons, total recovery of15N by aboveground plant portions from lysimeters that received15N-labelled maize material was equivalent to 2.5% of applied fertilizer-15N. This corresponded to ca. 18% recovery of the15N added in maize material. Leaching of fertilizer-N over the three growing seasons did not exceed 0.3% in total. During the first season, a maximum of 0.25 kg N ha–1, equivalent to 0.25% of the applied fertilizer-N, was leached in the high moisture treatment. This represented 1.8% of the nitrate load in leachates. Less than 0.002% of the applied fertilizer-N was leached in the low moisture treatment during the first season.  相似文献   

9.
In an alley cropping system, prunings from the hedgerow legume are expected to supply nitrogen (N) to the associated cereal. However, this may not be sufficient to achieve maximum crop yield. Three field experiments with alley-cropped maize were conducted in a semi-arid environment in northern Australia to determine: (1) the effect of N fertilizer on maize growth in the presence of fresh leucaena prunings; (2) the effect of incorporation of leucaena and maize residues on maize yield and the fate of plant residue15N in the alley cropping system; and (3) the15N recovery by maize from15N-labelled leucaena, maize residues and ammonium sulphate fertilizer.Leucaena residues increased maize crop yield and N uptake although they did not entirely satisfy the N requirement of the alley crop. Additional N fertilizer further increased the maize yield and N uptake in the presence of leucaena residues. Placement of leucaena residues had little effect on the availability of N to maize plants over a 2 month period. The incorporation of leucaena residues in the soil did not increase the recovery of leucaena15N by maize compared with placement of the residues on the soil surface. After 2 months, similar proportions of the residue15N were recovered by maize from mulched leucaena (6.3%), incorporated leucaena (6.1%) and incorporated maize (7.6%). By the end of one cropping season (3 months after application) about 9% of the added15N was taken up by maize from either15N-labelled leucaena as mulch or15N-labelled maize residues applied together with unlabelled fresh leucaena prunings as mulch. The recovery of the added15N was much higher (42.7%) from the15N-labelled ammonium sulphate fertilizer at 40 kg N ha-1 in the presence of unlabelled leucaena prunings. Most of the added15N recovered in the 200 cm soil profile was distributed in the top 25 cm soil with little leached below that. About 27–41% of the leucaena15N was apparently lost, largely through denitrification from the soil and plant system, in one cropping season. This compared with 35% of the fertilizer15N lost when the N fertilizer was applied in the presence of prunings. ei]H Lambers  相似文献   

10.
The decomposition and the fate of 15N- labelled beech litter was monitored in a beech forest (Vosges mountains, France) over 3 years. Circular plots around beech trees were isolated from neighbouring tree roots by soil trenching. After removal of the litter layer, 15N-labelled litter was distributed on the soil. Samples [labelled litter, soil (0–15 cm depths], fine roots, mycorrhizal root tips, leaves) were collected during the subsequent vegetation periods and analysed for total N and 15N concentration. Mass loss of the 15N-labelled litter was estimated using mass loss data from a litterbag experiment set up at the field site. An initial and rapid release of soluble N from the decomposing litter was balanced by the incorporation of exogenous N into the litter. Fungal N accounted for approximately 35% of the N incorporation. Over 2 years, litter N was continuously released and rates of N and mass loss were equivalent, while litter N was preferentially lost during the 3rd year. Released 15N accumulated essentially at the soil surface. 15N from the decomposing litter was rapidly (i.e. in 6 months) detected in roots and beech leaves and its level increased regularly and linearly over the course of the labelling experiment. After 3 years, about 2% of the original litter N had accumulated in the trees. 15N budgets indicated that soluble N was the main source for soil microbial biomass. Nitrogen accumulated in storage compounds was the main source of leaf N, while soil organic N was the main source of mycorrhizal N. Use of 15N-labelled beech litter as decomposing substrate allowed assessment of the fate of litter N in the soil and tree N pools in a beech forest on different time scales. Received: 3 May 1999 / Accepted: 3 January 2000  相似文献   

11.
Ryegrass was grown, in pots under controlled-environment conditions, on soil mixed with each of ten slurries, eight from dairy farms and two from pig farms. In addition, ryegrass was grown under the same conditions but with the water-insoluble material separated from each slurry. Incorporation of the whole slurries increased the yield of herbage, the concentration of N in the herbage and N uptake, compared with plants grown on soil alone, the effects being greatest at the first of six successive harvests. In contrast, incorporation of the water-insoluble material of the cattle slurries decreased herbage yield and N uptake, particularly at the first harvest, but the water-insoluble material of the pig slurries produced some increase in herbage yield and N uptake.The results indicate that the water-insoluble material of the cattle slurries immobilized N that would otherwise have been available from the water-soluble fraction of the whole slurries and/or from the soil. The recovery by the ryegrass of the water-soluble N from the whole slurries was closely correlated with the concentration of N in the water-insoluble material (r=0.863***) and negatively correlated with the CN ratio (r=0.892***). Correlations between the recovery of the water-soluble N and the concentrations of N in five particle size fractions of the water-insoluble material indicated that the fraction of smallest particle size (<0.2 mm) had the greatest effect.  相似文献   

12.
The fate of nitrogen from 15N-labelled sheep urine and urea applied to two soils was studied under field conditions. Labelled and stored urine equivalent to 204 kg N ha–1 was either incorporated in soil or applied to the soil surface prior to sowing of Italian ryegrass (Lolium multiflorum L.), or it was applied to ryegrass one month after sowing. In a sandy loam soil, 62% of the incorporated urine N and 78% of the incorporated urea N was recovered in three cuts of herbage after 5 months. In a sandy soil, 51–53% of the labelled N was recovered in the herbage and the distribution of labelled N in plant and soil was not significantly different for incorporated urine and urea. Almost all the supplied labelled N was accounted for in soil and herbage in the sandy loam soil, whereas 33–34% of the labelled N was unaccounted for in the sandy soil. When the stored urine was applied to the soil surface, 20–24% less labelled N was recovered in herbage plus soil compared to the treatments where urine or urea were incorporated, irrespective of soil type. After a simulated urination on grass, 69% of the labelled urine N was recovered in herbage and 15% of the labelled N was unaccounted for. The labelled N unaccounted for was probably mainly lost by ammonia volatilization.Significantly more urine- than urea-derived N (36 and 19%, respectively) was immobilized in the sandy loam soil, whereas the immobilization of N from urea and urine was similar in the sandy soil (13–16%). The distribution of urine N, whether incorporated or applied to the soil surface prior to sowing, did not influence the immobilization of labelled urine N in soil. The immobilization of urine-derived N was also similar whether the urine was applied alone or in an animal slurry consisting of labelled urine and unlabelled faecal N. When urine was applied to growing ryegrass at the sandy loam soil, the immobilization of urine-derived N was significantly reduced compared to application prior to sowing. The results indicated that the net mineralization of urine N was similar to that of urea in the sandy soil, but only about 75% of the urine N was net mineralized in the sandy loam soil, when urine was applied prior to sowing. Thus, the fertilizer effect of urine N may be significantly lower than that of urea N on fine-textured soils, even when gaseous losses of urine N are negligible.  相似文献   

13.

Background and aims

We carried out field experiments to investigate if an agricultural grassland mixture comprising shallow- (perennial ryegrass: Lolium perenne L.; white clover: Trifolium repens L.) and deep- (chicory: Cichorium intybus L.; Lucerne: Medicago sativa L.) rooting grassland species has greater herbage yields than a shallow-rooting two-species mixture and pure stands, if deep-rooting grassland species are superior in accessing soil 15N from 1.2 m soil depth compared with shallow-rooting plant species and vice versa, if a mixture of deep- and shallow-rooting plant species has access to greater amounts of soil 15N compared with a shallow-rooting binary mixture, and if leguminous plants affect herbage yield and soil 15N-access.

Methods

15N-enriched ammonium-sulphate was placed at three different soil depths (0.4, 0.8 and 1.2 m) to determine the depth dependent soil 15N-access of pure stands, two-species and four-species grassland communities.

Results

Herbage yield and soil 15N-access of the mixture including deep- and shallow-rooting grassland species were generally greater than the pure stands and the two-species mixture, except for herbage yield in pure stand lucerne. This positive plant diversity effect could not be explained by complementary soil 15N-access of the different plant species from 0.4, 0.8 and 1.2 m soil depths, even though deep-rooting chicory acquired relatively large amounts of deep soil 15N and shallow-rooting perennial ryegrass when grown in a mixture relatively large amounts of shallow soil 15N. Legumes fixed large amounts of N2, added and spared N for non-leguminous plants, which especially stimulated the growth of perennial ryegrass.

Conclusions

Our study showed that increased plant diversity in agricultural grasslands can have positive effects on the environment (improved N use may lead to reduced N leaching) and agricultural production (increased herbage yield). A complementary effect between legumes and non-leguminous plants and increasing plant diversity had a greater positive impact on herbage yield compared with complementary vertical soil 15N-access.  相似文献   

14.
The effects of cutting frequency and cutting height on broad‐leaved dock (Rumex obtusifolius) in Lolium perenne‐based agricultural grassland at two levels of fertiliser input were investigated at North Wyke, Devon, UK. Two micro‐plot field experiments, containing immature dock plants at uniform densities, with a factorial design, were used to compare: (a) ‘organic’ and ‘low‐input’ fertilisation, i.e. cattle slurry only vs slurry plus mineral fertiliser (NPK at 100‐0‐64 kg ha?1 yr?1), (b) cutting heights of 5–6 cm vs 10–12 cm, and (c) four harvesting frequencies representative of different grassland management practices (regular 4‐weekly cutting, a ‘hay‐stage’ cutting, and two treatments with ‘silage‐stage’ cutting). Expt 1 was established in 1995 with 13 dock plants m?2 (from excised dock‐root sections) and Expt 2 established in 1996 with 25 plants m?2 (as seed‐grown plug plants). Treatments were assessed over the 2 subsequent years to determine treatment effects on total herbage dry matter (DM) yield and dock DM yield, and on in‐situ measures of dock ramets. In both experiments, total DM yield was increased by 1.0–2.01 ha?1 yr?1 for treatments receiving NK fertiliser; the proportion of dock was also higher than from slurry‐only treatments. In Expt 1, the dock ramet density, mean dock ramet height, mean leaf length and numbers of dock leaves per m2 were also greater on NK fertilised treatments in autumn of yr 1. Height of cut had no consistent effect on dock yield, but dock ramet density and leaf density in autumn were greater on the 5–6 cm than the 10–12 cm cutting treatment, Expt 2 only. In yr 2 of both experiments cutting at 4‐weekly intervals resulted in less dock in the herbage than hay‐stage cutting and, particularly in Expt 1, there were associated differences in leaf density and ramet height in autumn; silage‐stage treatments were intermediate. Results are discussed in relation to requirements for management options where there is a need to avoid or reduce herbicides.  相似文献   

15.
Estavillo  J.M.  Rodrí  M.  Lacuesta  M.  González-Murua  C. 《Plant and Soil》1997,188(1):49-58
It is essential to establish more accurate N balances for different soil-plant systems in order to improve N use efficiency. In this study the N balance was studied in a poorly drained clayey loam soil under natural grassland supplied with either calcium ammonium nitrate or cattle slurry at two application rates. The aim was to determine the efficiency of the N applied and the factors which affect this efficiency. Mineralization-immobilization of N was calculated by balance between the quantified inputs and outputs of N. As N inputs increased, output via herbage yield was accompanied by an increase in apparent immobilization of N in the soil and by larger losses of N by denitrification. The difference between cattle slurry and N fertilizer was that the slurry behaved as a slow release fertilizer, its supply of mineral N being greater in the periods of time when fertilizer was applied a long time ago. Denitrification losses (up to 17% of the N applied) are suggested to be the main factor to mitigate in order to increase N use efficiency. A decrease in net mineralization (up to 136 kg N ha-1 year-1) was observed which was related to the mineral N application rate. There was evidence to suggest that this decrease was due both to the immobilization of the N applied and to a decrease in the rate of gross mineralization when mineral N was applied. Microbial biomass determinations could not explain the changes in the mineralization-immobilization equilibrium of N because of the great coefficients of variation for this determination (mean value of 18%). Nevertheless, it contributed to verify and explain some of the changes observed in this equilibrium.  相似文献   

16.
The fate of 15N-labelled ammonium fertilizer applied once to six-year-old field-grown kiwifruit (Actinidia deliciosa Hayward) vines was measured over three years. The three main treatments were nitrogen (N) applied singularly at 100 or 200 kg N ha–1 in early spring (two weeks before bud burst) or split with 100 kg N ha–1 (unlabelled) in early spring and 100 kg N ha–1 (15N-labelled) ten weeks later. All N treatments were applied to vines with a history of either 50 or 200 kg N ha–1 yr–1. For three years after 15n application, components of the vines and soil (0–600 mm depth) were sampled at harvest in late autumn and the N and 15N contents determined.By the first harvest, all plant uptake of 15N had occurred and this represented 48–53% of the 15N applied. There was no significant effect of current N fertilizer treatment or of N history on 15N recovery by vines. Removal of 15N in harvested fruit was small at 5–6% in the first year and 8% over 3 years. After 2–3 years, most plant 15N occurred in the roots and this component declined only slowly over time. In contrast, there was a large temporal decline in 15N in above-ground plant components due to the annual removal in leaf fall and pruning. An associated experiment showed that when 15N-labelled prunings and leaves were mulched and returned to the soil, only about 9% was recovered by plants within 2 years. Almost all remaining mulched material had been immobilised into the soil organic N.In all treatments, about 20% of the added 15N remained in soil at the first harvest. This was almost entirely in organic fractions (<0.4% in inorganic N) and mostly in the surface 150-mm layer. The 15N content in soil changed little over time (from 20 to 17% between the first and third harvests respectively) and indicated that most of the N had been immobilised into stable humus forms.  相似文献   

17.
Three experiments were conducted using a system of small wind tunnels to measure ammonia (NH3) volatilization from cattle slurry after surface application to land. In each experiment slurry was applied at a rate equivalent to 80 m3 ha-1, providing the equivalent of approximately 100 kg NH4 +-N ha-1. The first experiment compared NH3 volatilization from the liquid fraction obtained by mechanical separation of slurry with that from unseparated slurry. The total NH3 loss over six days from unseparated and separated slurry were very similar, being 38 and 35% respectively of the NH4 +-N applied. For the first five hours, the rate of NH3 loss was higher from the unseparated slurry, thereafter it was consistently lower. In the second experiment, slurry was ponded in a tray to examine whether impeded infiltration or changes in the NH4 + concentration or overall pH of the slurry influenced the rapid decline in rate soon after application that is characteristic of NH3 volatilization from animal slurries applied to land. It appeared, however, that other factors such as resistance to diffusion within the slurry and/or at the slurry surface were mostly responsible for the rapid decline in rate. In the third experiment, in which NH3 volatilization was measured from slurry applied to grassland or bare soil, the total loss from slurry applied to grassland was approximately 1.5 times that from slurry applied to bare soil.  相似文献   

18.
A new analytical HPLC-fluorescence method was developed for the quantitative determination of eprinomectin (EPM) in soil and cattle faeces. EPM was extracted with acetone and acetonitrile from soil and cattle faeces, respectively. Solid phase extraction and derivatization reaction with N-methylimidazole in the presence of trifluoroacetic anhydride and acetic acid were applied. The limit of quantitation was 1 ng g−1 air dried soil and 2.5 ng g−1 moist cattle faeces. Overall recovery (RSD) was 89% (8) in soil and 85% (10) in cattle faeces and its good reproducibility (RSD < 15%) allows the application of the method in advanced ecotoxicological studies, required for the environmental fate assessment of EPM.  相似文献   

19.

Aims

Our aims were to characterize the fate of leaf-litter-derived nitrogen in the plant-soil-microbe system of a temperate beech forest of Southern Germany and to identify its importance for N nutrition of beech seedlings.

Methods

15N-labelled leaf litter was traced in situ into abiotic and biotic N pools in mineral soil as well as into beech seedlings and mycorrhizal root tips over three growing seasons.

Results

There was a rapid transfer of 15N into the mineral soil already 21 days after tracer application with soil microbial biomass initially representing the dominant litter-N sink. However, 15N recovery in non-extractable soil N pools strongly increased over time and subsequently became the dominant 15N sink. Recovery in plant biomass accounted for only 0.025 % of 15N excess after 876 days. After three growing seasons, 15N excess recovery was characterized by the following sequence: non-extractable soil N?>>?extractable soil N including microbial biomass?>>?plant biomass?>?ectomycorrhizal root tips.

Conclusions

After quick vertical dislocation and cycling through microbial N pools, there was a rapid stabilization of leaf-litter-derived N in non-extractable N pools of the mineral soil. Very low 15N recovery in beech seedlings suggests a high importance of other N sources such as root litter for N nutrition of beech understorey.  相似文献   

20.
S. P. Trehan  A. Wild 《Plant and Soil》1993,151(2):287-294
Cattle slurry supplemented with 15N labelled ammonium sulphate was applied to unplanted soil and to soil planted with sprouted potato tubers. For comparison, there was a similar treatment with 15N labelled ammonium sulphate alone. The pots of soil were kept at 20°C and the plants were harvested after 21, 42, 70 and 98 days. Labelled and unlabelled nitrogen were measured in the plants and, after the same intervals, in the soil as mineral, organic and clay-fixed nitrogen. The recovery of labelled nitrogen in plants plus soil by the end of the experiment was 90% with ammonium sulphate alone and 77% with cattle slurry; the corresponding recoveries in unplanted soil were only 65% and 48%. The greater recoveries of the labelled nitrogen in the planted soil are attributed to its greater protection against gaseous loss when within the plants. Another effect of the plants was to decrease the amount of labelled nitrogen that had been initially fixed by the clay. During the first 21 days with cattle slurry almost half of the labelled nitrogen became immobilized in organic matter. In the same period there was mineralization of unlabelled nitrogen, but the overall reaction was net immobilization. In later periods, immobilized labelled nitrogen in the unplanted soil decreased indicating remineralization. Estimates are given of the rates of gross mineralization, but the periods between sampling occasions were too long to yield reliable values. ei]Section editor: R Merckx  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号