首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental pollution in addition to direct damage on plant growth, with the destruction of biological control agents, causes indirect damage to plants. The aim of this research was to study the effects of different concentrations (0, 500, 1000, 1500 and 2000 ppm) of heavy metals including Ag, Co, Cu, Fe, Hg, Mn, Pb and Zn on the mycelial growth and to assess the fungicidal or fungistatic effects of these salts on five Nematophagus fungi including Trichoderma harzianum (T8), Trichoderma virens (T21), Trichoderma hamatum (T9), Pochonia chlamydosporia var. chlamydosporia and Arthrobotrys oligospora. The results show that Ag, Co, Cu, Fe and Hg could stop the mycelium growth of all fungi, but Mn, Pb and Zn cannot inhibit the growth of these fungi completely. Among the first group, Hg and Cu stopped the growth of fungi even in 500 ppm. Among these metals that inhibit the growth of fungi, Cu has fungistatic effect and others have fungicide effect. The experiment was conducted in vitro condition, using potato dextrose agar (PDA) under complete randomised design with four replications. The data of mycelium growth were recorded at seven days after inoculation at 25 ± 2°C.  相似文献   

2.
Sustainability of soil-plant systems requires, among other things, good development and function of mycorrhizal symbioses. The effects of P and micronutrient levels on development of an arbuscular mycorrhizal fungus (AMF) and uptake of Zn, Cu, Mn and Fe by maize (Zea mays L.) were studied. A pot experiment with maize either inoculated or not with Glomus intraradices was conducted in a sand:soil (3 :1) mix (pH 6.5) in a greenhouse. Our goal was to evaluate the contribution of mycorrhizae to uptake of Cu, Zn, Mn and Fe by maize as influenced by soil P and micronutrient levels. Two levels of P (10 and 40 mg kg−1 soil) and three levels of a micronutrient mixture: 0, 1X and 2X (1X contained, in mg kg−1 soil, 4.2 Fe, 1.2 Mn, 0.24 Zn, 0.06 Cu, 0.78 B and 0.036 Mo), were applied to pots. There were more extraradical hyphae at the low P level than at the high P level when no micronutrients were added to the soil. Root inoculation with mycorrhiza and application of micronutrients increased shoot biomass. Total Zn content in shoots was higher in mycorrhizal than non-mycorrhizal plants grown in soils with low P and low or no micronutrient addition. Total Cu content in shoots was increased by mycorrhizal colonization when no micronutrients were added. Mycorrhizal plants had lower Mn contents than non-mycorrhizal plants only at the highest soil micronutrient level. AMF increased total shoot Fe content when no micronutrients were added, but decreased shoot Fe when plants were grown at the high level of micronutrient addition. The effects of G. intraradices on Zn, Cu, Mn, and Fe uptake varied with micronutrient and P levels added to soil. Accepted: 27 December 1999  相似文献   

3.
研究了溶液培养条件下Cd、Zn及其复合对小麦幼苗吸收Ca、Fe、Mn的影响.结果表明,小麦幼苗对Zn、Cd的吸收随溶液中Cd2+、Zn2+浓度的升高而增加,Cd、Zn同时存在时与其单独作用时幼苗对它们的吸收不同,Zn影响幼苗对Cd的吸收,Cd对Zn的吸收起抑制作用.Ca、Mn的吸收随溶液中Cd2+、Zn2+浓度升高而呈下降趋势,在Cd单独处理组和Zn单独处理组中Fe的吸收随Cd2+、Zn2+浓度升高而增加,但在Zn+Cd处理组中,Fe的吸收则呈下降趋势,其效应方式还与作物具体部位有关.  相似文献   

4.
Pot experiment was conducted to study the effect of biofertilizers (inoculation with different bacterial isolates), foliar spraying with some micronutrients (Mn, Zn, Fe and Mn+Zn+Fe) and their interaction on growth, physiological parameters and nutrients content of wheat plants grown on reclaimed soil. Pot experiment was conducted in the greenhouse of National Research center, The experimental design was split plot with four replicates. Four biofertilizer treatments (un‐inoculated, Bacillus polymyxa, Azotobacter chroococcum or Azosprillium barasilense) were used and randomly distributed in the main pots. The foliar treatments with micronutrients were randomly distributed in the sub plots. The growth parameters (plant height, leaf area, roots, shoots and whole plant dry weights and number of tillers & leaves per plant); some physiological parameters (soluble sugar %, protein %, polysaccharide %, chl. A+b μg cm?1 leaf per plant, carotenoids μg g?1, IAA mg kg?1 and psll mol DCPIP reduced per mg chl. per h) and nutrient contents (N, P, K, Mg, Mn, Zn and Cu) of wheat plants were significantly increased by inoculating wheat grains with different bacteria as compared with un‐inoculated plants (control). The highest values of all the mentioned parameters were obtained by using Azospirillum brasilense followed by Azotobacter chroococcum and Bacillus polymyxa in decreasing order. Foliar spraying treatments significantly increased the growth parameters, physiological parameters as well as nutrients content of wheat plants as compared with control. Highest values were obtained by using (Mn+Fe+Zn) treatment followed by Zn, Fe and Mn in decreasing order. Micronutrients in wheat plants differed as the foliar treatments were differed, so application of any micronutrient individually significantly increased its content and enhanced the content of other micronutrients in wheat. Interaction between the used biofertilizers and foliar spraying with micronutrients significantly affected all the studied parameters of wheat plants, the highest were obtained by inoculating wheat grains with Azospirillum brasilense and spraying the plants with (Mn+Fe+Zn) treatment, while the lowest values were attained by un‐inoculated grains (control) and spraying the wheat plants with tap water (control). Effective microorganisms in combination with micronutrients could be recommended to farmers to lead higher wheat yield.  相似文献   

5.
Zn、Cd及其复合对小麦幼苗吸收Ca,Fe,Mn的影响   总被引:14,自引:2,他引:12  
研究了溶液培养条件下,Cd,Zn及其复合对小麦幼苗吸收Ca,Fe,Mn的影响,结果表明,小麦幼苗对Zn,Cd的吸收随溶液中Cd^2 ,Zn^2 浓度的升高而增加,Cd,Zn同时存在时与其单独作用时幼苗对它们的吸收不同,Zn影响幼苗对Cd的吸收,Cd对Zn的吸收起抑制作用,Ca,Mn的吸收随溶液中Cd^2 ,Zn2 浓度升高而呈下降趋势,在Cd单独处理组和Zn单独处理组中Fe的吸收随Cd2 ,Zn2 浓度升高而增加,但在Zn Cd处理组中,Fe的吸收则呈下降趋势,其效应试学与作物具体部位有关。  相似文献   

6.
 The effects of an arbuscular mycorrhizal (AM) fungus and drought stress on the growth, phosphorus, and micronutrient uptake of two wheat genotypes exhibiting differences in drought resistance were investigated. Plants were grown on a low P (4 mg kg–1 soil) silty clay (Typic Xerochrept) soil-sand mix. Mycorrhizal infection was higher under well-watered than under dry soil conditions and the drought-resistant genotype CR057 had a higher mycorrhizal colonization than the drought-sensitive genotype CR006. Total and root dry matter yields and total root length were higher in mycorrhizal than in nonmycorrhizal plants of both genotypes. CR057 had higher total dry matter but not root dry matter than CR006 plants. The enhancement in total dry matter due to AM inoculation was 42 and 39% under well-watered and 35 and 45% under water-stressed for CR057 and and CR006, respectively. For both genotypes, the contents of P, Zn, Cu, Mn, and Fe were higher in mycorrhizal than in nonmycorrhizal plants and higher under well-watered than under dry soil conditions. The enhancement of P, Zn, Cu, Mn, and Fe uptake due to AM inoculation was more pronounced in CR006 than in CR057, particularly under water-stressed conditions. Thus CR006 benefitted from AM infection more than the CR057 under dry soil conditions, despite the fact that CR057 roots were highly infected. It appears that CR006 is more dependent on AM symbiosis than CR057. Accepted: 12 February 1997  相似文献   

7.
Endophytic fungi, which live within host plant tissues without causing any visible symptom of infection, are important mutualists that mediate plant–herbivore interactions. Thrips tabaci (Lindeman) is one of the key pests of onion, Allium cepa L., an economically important agricultural crop cultivated worldwide. However, information on endophyte colonization of onions, and their impacts on the biology of thrips feeding on them, is lacking. We tested the colonization of onion plants by selected fungal endophyte isolates using two inoculation methods. The effects of inoculated endophytes on T. tabaci infesting onion were also examined. Seven fungal endophytes used in our study were able to colonize onion plants either by the seed or seedling inoculation methods. Seed inoculation resulted in 1.47 times higher mean percentage post-inoculation recovery of all the endophytes tested as compared to seedling inoculation. Fewer thrips were observed on plants inoculated with Clonostachys rosea ICIPE 707, Trichoderma asperellum M2RT4, Trichoderma atroviride ICIPE 710, Trichoderma harzianum 709, Hypocrea lixii F3ST1 and Fusarium sp. ICIPE 712 isolates as compared to those inoculated with Fusarium sp. ICIPE 717 and the control treatments. Onion plants colonized by C. rosea ICIPE 707, T. asperellum M2RT4, T. atroviride ICIPE 710 and H. lixii F3ST1 had significantly lower feeding punctures as compared to the other treatments. Among the isolates tested, the lowest numbers of eggs were laid by T. tabaci on H. lixii F3ST1 and C. rosea ICIPE 707 inoculated plants. These results extend the knowledge on colonization of onions by fungal endophytes and their effects on Thrips tabaci.  相似文献   

8.
H Zhao  L Wu  T Chai  Y Zhang  J Tan  S Ma 《Journal of plant physiology》2012,169(13):1243-1252
Synchrotron radiation X-ray fluorescence (SRXRF) and inductively coupled plasma mass spectrometry were used to estimate major, minor and trace elements in Cu-, Zn- and Mn-treated Phytolacca americana. The effects of the addition of Cu, Zn and Mn on morphological parameters, such as root length, shoot height, and fresh and dry weights of shoots and roots, were also examined. In addition, the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidases (GPX) and catalase (CAT) and the expression of Fe-SOD, Cu/Zn-SOD, metallothionein-2 and glutathione S-transferase (GST) exposed to the highest amounts of Cu, Zn or Mn were detected. Our results confirmed the following: (1) Zn supplementation leads to chlorosis, disturbed elemental homeostasis and decreased concentrations of micro- and macroelements such as Fe, Mg, Mn, Ca and K. Cu competed with Fe, Mn and Zn uptake in plants supplemented with 25μM Cu. However, no antagonistic interactions took place between Cu, Zn, Mn and Fe uptake in plants supplemented with 100μM Cu. Mn supplementation at various concentrations had no negative effects on elemental deficits. Mn was co-located with high concentrations of Fe and Zn in mature leaves and the concentrations of macro elements were unchanged. (2) P. americana supplemented with increased concentrations of Zn and Cu exhibited lower biomass production and reduced plant growth. (3) When plants were supplemented with the highest Zn and Cu concentrations, symptoms of toxicity corresponded to decreased SOD or CAT activities and increased APX and GPX activities. However, Mn tolerance corresponded to increased SOD and CAT activities and decreased POD and APX activities. Our study revealed that heavy metals partially exert toxicity by disturbing the nutrient balance and modifying enzyme activities that induce damage in plants. However, P. americana has evolved hyper accumulating mechanisms to maintain elemental balance and redox homeostasis under excess Mn.  相似文献   

9.
Macroalgae in estuarine and coastal waters, in contrast to vascular salt marsh plants, have previously been utilised as biomonitors of sediment-held metals. The colonising halophyte Salicornia spp., however, occurs in both mudflats alongside macroalgae, as well as in association with salt marsh vascular plants. The present research aims to determine the relationships between fluctuations in sediment-held metals and those in Salicornia spp. over the course of a growing season. Samples of the species and corresponding underlying sediment were collected from the metal mine-polluted Restronguet Creek of the Fal Estuary, Cornwall on a monthly basis between March and November, 2000. Oven-dried sediment and vegetation samples were analysed for total Fe, Cu, Zn and Mn. Significant correlations with both the roots and aerial portion of the plant were found with sediment Cu and Zn concentrations. Significant relationships with either Mn or Fe were not observed. Thus, Salicornia spp. would appear to be a suitable tool for biomonitoring Zn and, particularly, Cu. Hyperaccumulation of Zn in the aerial portion during initial growth also indicates that Salicornia spp. may be useful for alleviating metal contamination through phytoextraction, whilst Cu in the roots is proposed as having potential for phytostabilization.  相似文献   

10.
Trichoderma harzianum strain SQR-T037 is a biocontrol agent that has been shown to enhance the uptake of nutrients (macro- and microelements) by plants in fields. The objective of this study was to investigate the contribution of SQR-T037 to P and microelement (Fe, Mn, Cu and Zn) nutrition in tomato plants grown in soil and in hydroponic conditions. Inoculation with SQR-T037 significantly improved the biomass and nutrient uptake of tomato seedlings grown in a nutrient-limiting soil. So we investigated the capability of SQR-T037 to solubilise sparingly soluble minerals in vitro via four known mechanisms: acidification by organic acids, chelation by siderophores, redox by ferric reductase and hydrolysis by phytase. SQR-T037 was able to solubilise phytate, Fe2O3, CuO, and metallic Zn but not Ca3(PO4)2 or MnO2. Organic acids, including lactic acid, citric acid, tartaric acid and succinic acid, were detected by HPLC and LC/MS in two Trichoderma cultures. Additionally, we inoculated tomato seedlings with SQR-T037 using a hydroponic system with specific nutrient deficiencies (i.e., nutrient solutions deficient in P, Fe, Cu or Zn and supplemented with their corresponding solid minerals) to better study the effects of Trichoderma inoculation on plant growth and nutrition. Inoculated seedlings grown in Cu-deficient hydroponic conditions exhibited increases in dry plant biomass (92%) and Cu uptake (42%) relative to control plants. However, we did not observe a significant effect on seedling biomass in plants grown in the Fe- and Zn-deficient hydroponic conditions; by contrast, the biomass decreased by 82% in the P-deficient hydroponic condition. Thus, we demonstrated that Trichoderma SQR-T037 competed for P (phytate) and Zn with tomato seedlings by suppressing root development, releasing phytase and/or chelating minerals. The results of this study suggest that the induction of increased or suppressed plant growth occurs through the direct effect of T. harzianum on root development, in combination with indirect mechanisms, such as mineral solubilisation (including solubilisation via acidification, redox, chelation and hydrolysis).  相似文献   

11.
Yedidia  Iris  Srivastva  Alok K  Kapulnik  Yoram  Chet  Ilan 《Plant and Soil》2001,235(2):235-242
The potential of the biocontrol agent Trichoderma harzianum strain T-203 to induce a growth response in cucumber plants was studied in soil and under axenic hydroponic growth conditions. When soil was amended with T. harzianum propagules, a 30% increase in seedling emergence was observed up to 8 days after sowing. On day 28, these plants exhibited a 95 and 75% increase in root area and cumulative root length, respectively, and a significant increase in dry weight (80%), shoot length (45%) and leaf area (80%). Similarly, an increase of 90 and 30% in P and Fe concentration respectively, was observed in T. harzianum inoculated plants. To better characterize the effect of T. harzianum during the early stages of root colonization, experiments were carried out in a gnotobiotic hydroponic system. An increased growth response was apparent as early as 5 days post-inoculation with T. harzianum, resulting in an increase of 25 and 40% in the dry weight of roots and shoots, respectively. Similarly a significant increase in the concentration of Cu, P, Fe, Zn, Mn and Na was observed in inoculated roots. In the shoots of these plants, the concentration of Zn, P and Mn increased by 25, 30 and 70%, respectively. Using the axenic hydroponic system, we showed that the improvement of plant nutritional level may be directly related to a general beneficial growth effect of the root system following T. harzianum inoculation. This phenomenon was evident from 5 days post-inoculation throughout the rest of the growth period, resulting in biomass accumulation in both roots and shoots.  相似文献   

12.
Summary Levels of extractable micronutrients in a peat and the growth and nutrient uptake of young highbush blueberry plants (Vaccinium corymbosum L cv. Blueray) were studied in a greenhouse experiment in response to liming and two rates of addition of Fe, Mn, Zn and Cu.Levels of extractable micronutrients showed different trends with liming depending upon the extractant used and the element being considered. Levels of 0.05M CaCl2-extractable Fe, Mn and Zn decreased as the pH was raised whilst those of Cu first decreased and then increased again. There was a general decline in 0.1M HCl-extractable Fe, Mn and Cu with increasing pH but levels of Zn were not greatly affected. Levels of 0.005M DTPA extractable Fe, Mn Zn and Cu generally declined but those extractable with 0.04M EDTA were either unaffected or increased as the pH was raised. Levels of CaCl2-extractable Mn and Zn were the same order of magnitude as those extractable with HCl, DTPA and EDTA. In contrast, the latter reagents extracted considerably more Fe and Cu than did CaCl2.Dry matter yields of plants were increased as the pH was raised from 3.9 to 4.3 but then decreased markedly as the pH was raised further to 6.7. With increasing pH, concentrations of plant Fe generally increased those of Mn were decreased and those of Zn and Cu were not greatly affected except for a marked decline in plant Cu at pH 6.7.  相似文献   

13.
Phaseolus vulgaris plants, 3, 8, 11, and 13 days old, were inoculated with 0, 2,000, 4,000, or 8,000 second-stage Meloidogyne incognita larvae and maintained under controlled conditions. The photosynthetic rate and the shoot and root concentration of K, Ca, Mn, Fe, Cu, and Zn were determined by destructive assay at 1-27-day intervals and by nondestructive assay of leaves, stems, and roots at 27 or 28 days after inoculation. In the destructive assay, the concentration of the elements in the plant tissues did not change until 1 week after inoculation. Thereafter, the trend was mostly decreasing for shoot K and Fe and increasing in the root, whereas Ca had the opposite trend in the shoots. Manganese, Cu, and Fe showed variable trends. Generally, the concentration of K and Mn increased, whereas Ca and Fe decreased, with duration of infection in all treatments. Zinc and Cu decreased in the highest nematode treatments. The overall elemental content generally decreased with level of infection from 1 week after inoculation. Photosynthetic rate based on shoot K concentration significantly decreased with level of infection. In most of the nondestructive assays, the concentrations of shoot K, Zn, and Mn decreased, whereas Ca increased with increasing nematode treatment. One of the first effects of the nematode on host physiology appears to be a change in concentration of nutrient elements in the host plant.  相似文献   

14.
Summary Humic acid affected nutrient uptake differently in sand culture. It generally increased Cu uptake, slightly, though insignificantly, increased Fe uptake and practically had no effect on Zn uptake. Such results agree fairly well with the relative stability of humic acid with these metals.When humic acid was added to sand culture at increasing concentration of the metal, it considerably increased dry weight, Cu uptake and Cu concentration through decreasing its toxicity to plant. With Fe, however, humic acid and Na2EDDHA slightly increased Fe uptake at lower Fe concentration (30 ppm) but significantly reduced both Fe uptake and Fe concentration in plant at higher concentration of Fe compared to the control treatment. Humic acid reduced Zn uptake and Zn concentration in plant at concentrations of 0.5–1.5 ppm Zn, and guarded against Zn toxicity which developed at higher concentration of Zn when no humic acid was added.  相似文献   

15.
Two wheat (Triticum aestivum L.) cultivars, Sids 1 and Giza 168, were grown under non-saline or saline conditions (4.7 and 9.4 dS m?1) with and without arbuscular mycorrhizal fungi (AMF) inoculation. Salt stress considerably decreased root colonization, plant productivity and N, P, K+, Fe, Zn and Cu concentrations, while it increased Na+ level, particularly in Giza 168. Mycorrhizal colonization significantly enhanced plant productivity and N, P, K+, Fe, Zn and Cu acquisition, while it diminished Na+ uptake, especially in Sids 1. Salinity increased putrescine level in Giza 168, however, values of spermidine and spermine increased in Sids 1 and decreased in Giza 168. Mycorrhization changed the polyamine balance under saline conditions, an increase in putrescine level associated with low contents of spermidine and spermine in Giza 168 was observed, while Sids 1 showed a decrease in putrescine and high increase in spermidine and spermine. Moreover, mycorrhizal inoculation significantly reduced the activities of diamine oxidase and polyamine oxidase in salt-stressed wheat plants. Modulation of nutrient acquisition and polyamine pool can be one of the mechanisms used by AMF to improve wheat adaptation to saline soils. This is the first report dealing with mycorrhization effect on diamine oxidase and polyamine oxidase activities under salt stress.  相似文献   

16.
Most research on micronutrients in maize has focused on maize grown as a monocrop. The aim of this study was to determine the effects of intercropping on the concentrations of micronutrients in maize grain and their acquisition via the shoot. We conducted field experiments to investigate the effects of intercropping with turnip (Brassica campestris L.), faba bean (Vicia faba L.), chickpea (Cicer arietinum L.), and soybean (Glycine max L.) on the iron (Fe), manganese (Mn), copper (Cu) and zinc (Zn) concentrations in the grain and their acquisition via the above-ground shoots of maize (Zea mays L.). Compared with monocropped maize grain, the grain of maize intercropped with legumes showed lower concentrations of Fe, Mn, Cu, and Zn and lower values of their corresponding harvest indexes. The micronutrient concentrations and harvest indexes in grain of maize intercropped with turnip were the same as those in monocropped maize grain. Intercropping stimulated the above-ground maize shoot acquisition of Fe, Mn, Cu and Zn, when averaged over different phosphorus (P) application rates. To our knowledge, this is the first report on the effects of intercropping on micronutrient concentrations in maize grain and on micronutrients acquisition via maize shoots (straw+grain). The maize grain Fe and Cu concentrations, but not Mn and Zn concentrations, were negatively correlated with maize grain yields. The concentrations of Fe, Mn, Cu, and Zn in maize grain were positively correlated with their corresponding harvest indexes. The decreased Fe, Mn, Cu, and Zn concentrations in grain of maize intercropped with legumes were attributed to reduced translocation of Fe, Mn, Cu, and Zn from vegetative tissues to grains. This may also be related to the delayed senescence of maize plants intercropped with legumes. We conclude that turnip/maize intercropping is beneficial to obtain high maize grain yield without decreased concentrations of Fe, Mn, Cu, and Zn in the grain. Further research is required to clarify the mechanisms underlying the changes in micronutrient concentrations in grain of intercropped maize.  相似文献   

17.
Since most experiments regarding the symbiosis between arbuscular mycorrhizal (AM) fungi and their host plants under salinity stress have been performed only under greenhouse conditions, this research work was also conducted under field conditions. The effects of three AM species including Glomus mosseae, G.?etunicatum and G.?intraradices on the nutrient uptake of different wheat cultivars (including Roshan, Kavir and Tabasi) under field and greenhouse (including Chamran and Line 9) conditions were determined. At field harvest, the concentrations of N, Ca, Mg, Fe, Cu, and Mn, and at greenhouse harvest, plant growth, root colonization and concentrations of different nutrients including N, K, P, Ca, Mg, Mn, Cu, Fe, Zn, Na and Cl were determined. The effects of wheat cultivars on the concentrations of N, Ca, and Mn, and of all nutrients were significant at field and greenhouse conditions, respectively. In both experiments, AM fungi significantly enhanced the concentrations of all nutrients including N, K, P, Ca, Mg, Mn, Cu, Fe, Zn, Na and Cl. The synergistic and enhancing effects of co-inoculation of AM species on plant growth and the inhibiting effect of AM species on Na(+) rather than on Cl(-) uptake under salinity are also among the important findings of this research work.  相似文献   

18.
Summary The effects of soil acidification and micronutrient addition on levels of extractable Fe, Mn, Zn and Cu in a soil, and on the growth and micronutrient uptake of young highbush blueberry plants (Vaccinium corymbosum L. cv. Blueray) was investigated in a greenhouse study.Levels of 0.05M CaCl2-extractable Fe, Mn, Zn and Cu increased as the pH was lowered from 7.0 to 3.8. However, the solubility (CaCl2-extractability) of Fe and Cu was considerably less pH-dependent than that of Mn and Zn. With the exception of HCl-and DTPA-extractable Mn, micronutrients extractable with 0.1M HCl, 0.005M DTPA and 0.04M EDTA were unaffected or raised only slightly as the pH was lowered from 6.0 to 3.8. Quantities of Mn and Zn extractable with CaCl2 were similar in magnitude to those extractable with HCl, DTPA and EDTA whilst, in contrast, the latter reagents extracted considerably more Cu and Fe than did CaCl2. A fractionation of soil Zn and Cu revealed that soil acidification resulted in an increase in the CaCl2- and pyrophosphate-extractable fractions and a smaller decrease in the oxalate-extractable fraction.Plant dry matter production increased consistently when the soil pH was lowered from 7.0 to 4.6 but there was a slight decline in dry matter as the pH was lowered to 3.8. Micronutrient additions had no influence on plant biomass although plant uptake was increased. As the pH was lowered, concentrations of plant Fe first decreased and then increased whilst those of Mn, and to a lesser extent Zn and Cu, increased markedly.  相似文献   

19.
To explore the copper uptake mechanisms by the Cu-tolerant plant Commelina communis, the contents of Cu and other metals (including Fe, Zn, and Mn) in roots were detected using atomic absorption spectrometer under transporter inhibitors, partial element deficiency, or Cu excess treatments, while distribution characters of Cu and other metals in root growth zones were investigated by synchrotron radiation X-ray fluorescence spectroscopy (SRXRF). Cu uptake was inhibited by the uncoupler DNP and P-type ATPase inhibitor Na3VO4, not by the Ca2+ ion channel inhibitor LaCl3, suggesting that Cu could probably be assimilated actively by root and be related with P-type ATPase, but not through Ca2+ ion channel. Fe or Zn deficiency could enhance Cu uptake, while 100 μM Cu inhibited Fe, Zn, and Mn accumulation in roots significantly. Metal distribution under 100 μM Cu treatment was investigated by SRXRF. High level of Cu was found in the root meristem, and higher Cu concentrations were observed in the vascular cylinder than those in the endodermis, further demonstrating the initiative Cu transport in the root of C. communis. Under excess Cu stress, most Fe was located in the epidermis, and Fe concentrations in the endodermis were higher than those in the vascular cylinder, suggesting Cu and Fe competition not only in the epidermal cells but also for the intercellular and intracellular transport in roots. Zn was present in the meristem and the vascular cylinder similar to Cu. Cu and Zn showed a similar pattern. Mn behaves as Zn does, but not like Fe.  相似文献   

20.
The patterns of accumulation of Ni, Cu, Zn, Pb, Cd, Fe, Mn and Al in plant species which are members of the flora of soft-water central Ontario (Canada) lakes are presented. The allocation of each metal between roots and shoots varies with the metal and the overall level of metal enrichment of the site. There is interspecific variation in metal accumulation, but the greatest differences are between vascular plants and bryophytes, rather than within these groups. An index of overall metal enrichment of each site is developed using Cu and Ni sediment concentrations. In Eriocaulon septangulare With., plant metal concentrations were uncorrelated to environmental levels of the corresponding metal but did show trends relative to the index. High plant metal concentrations did not correspond to high index levels for Zn, Mn, Cd and Al. It is suggested that in highly metal-enriched environments competitive exclusions by more common metal ions may be occurring at uptake sites within the plant. As a result of this complexity, metal accumulation in E. septangulare has no predictive value as an indicator of environmental metal contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号