首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
帽儿山不同年龄森林土壤呼吸速率的影响因子   总被引:2,自引:0,他引:2  
王家骏  王传宽  韩轶 《生态学报》2018,38(4):1194-1202
为探明东北温带森林恢复过程中土壤呼吸(R_S)的变化趋势及其影响因子,在帽儿山选取皆伐后天然更新恢复的4个年龄(1a、10a、25a和56a)林分进行了1年的野外原位测定。结果表明:(1)皆伐后天然更新恢复1年、10年、25年和56年林分的年R_S通量差异显著(P0.05),分别为686.5、639.7、733.3、762.3g C m~(-2)a~(-1);其中生长季(5月─10月)和非生长季的R_S通量也存在显著差异,均呈现出随林龄增加先减后增的趋势。全年、生长季和非生长季R_S随林龄变化的变异系数分别为7.6%、6.3%和21.1%,表明非生长季R_S通量的变异性加大了全年R_S通量的差异。(2)4个年龄林分的Rs季节变化趋势相似,且其主控因子均随季节而变:6月─8月Rs与土壤含水率呈二次函数关系(R~2波动在56%─79%之间),其余时段则与土壤温度呈指数函数关系(R~2波动在85%─93%之间)。(3)不同年龄林分生长季R_S与0─20cm土层有机碳(SOC)密度呈正相关关系(R~2=0.434,P0.05),而非生长季R_S与同期土壤5cm温度呈正相关关系(R~2=0.959,P0.01)。本研究区森林皆伐导致R_S降低,随皆伐后森林恢复R_S不断增加,其主导驱动因子是SOC密度的增加和非生长季土壤温度的变化。  相似文献   

2.
The wetlands on the Qinghai-Tibet Plateau are experiencing serious degradation, with more than 90,000 hectares of marshland converted to wet meadow or meadow after 40 years of drainage. However, little is known about the effects of wetland conversion on soil C stocks and the quality of soil organic carbon (SOC) (defined by the proportion of labile versus more resistant organic carbon compounds). SOC, microbial biomass carbon, light fraction organic carbon (LFOC), dissolved organic carbon, and the chemical composition of SOC in the soil surface layer (0–10 cm), were investigated along a wetland degradation gradient (marsh, wet meadow, and meadow). Wetland degradation caused a 16 % reduction in the carbon stocks from marsh (178.7 ± 15.2 kg C m?2) to wet meadow (150.6 ± 21.5 kg C m?2), and a 32 % reduction in C stocks of the 0–10 cm soil layer from marsh to meadow (122.2 ± 2.6 kg C m?2). Wetland degradation also led to a significant reduction in SOC quality, represented by the lability of the carbon pool as determined by a density fractionation method (L LFOC), and a significant increase in the stability of the carbon pool as reflected by the alkyl-C:O-alkyl-C ratio. 13C NMR spectroscopy showed that the labile form of C (O-alkyl-C) declined significantly after wetland degradation. These results assist in explaining the transformation of organic C in these plateau wetland soils and suggest that wetland degradation not only caused SOC loss, but also decreased the quality of the SOC of the surface soil.  相似文献   

3.
Natural rubber is a valuable source of income in many tropical countries and rubber trees are increasingly planted in tropical areas, where they contribute to land-use changes that impact the global carbon cycle. However, little is known about the carbon balance of these plantations. We studied the soil carbon balance of a 15-year-old rubber plantation in Thailand and we specifically explored the seasonal dynamic of soil CO2 efflux (F S) in relation to seasonal changes in soil water content (W S) and soil temperature (T S), assessed the partitioning of F S between autotrophic (R A) and heterotrophic (R H) sources in a root trenching experiment and estimated the contribution of aboveground and belowground carbon inputs to the soil carbon budget. A multiplicative model combining both T S and W S explained 58 % of the seasonal variation of F S. Annual soil CO2 efflux averaged 1.88 kg C m?2 year?1 between May 2009 and April 2011 and R A and R H accounted for respectively 63 and 37 % of F S, after corrections of F S measured on trenched plots for root decomposition and for difference in soil water content. The 4-year average annual aboveground litterfall was 0.53 kg C m?2 year?1 while a conservative estimate of belowground carbon input into the soil was much lower (0.17 kg C m?2 year?1). Our results highlighted that belowground processes (root and rhizomicrobial respiration and the heterotrophic respiration related to belowground carbon input into the soil) have a larger contribution to soil CO2 efflux (72 %) than aboveground litter decomposition.  相似文献   

4.
易分解有机碳对不同恢复年限森林土壤激发效应的影响   总被引:1,自引:0,他引:1  
土壤有机碳库作为陆地生态系统最大的碳库,其微小的改变都将引起大气CO_2浓度的急剧改变。易分解有机碳的输入可以通过正/负激发效应加快/减缓土壤有机碳(SOC)的矿化,并最终影响土壤碳平衡。以长汀县不同恢复年限森林(裸地、5年、15年、30年马尾松林以及天然林)土壤为研究对象,通过室内培养向土壤中添加~(13)C标记葡萄糖研究易分解有机碳输入对不同恢复阶段森林土壤激发效应的影响。研究结果表明,易分解有机碳输入引起的土壤激发效应的方向和强度因不同恢复阶段而异。易分解有机碳输入的初期对各恢复阶段森林土壤均产生正的激发效应,然而随着时间的推移,15年、30年马尾松林以及天然林相继出现负的激发效应。从整个培养期(59 d)来看,易分解有机碳的输入促进了裸地与5年生马尾松林土壤有机碳的矿化,有机碳的矿化量分别提高了131%±27%与25%±5%;但是减缓了15年生马尾松林土壤有机碳的矿化,使其矿化量减少了10%±1%;然而,易分解有机碳输入对30年生马尾松林及天然林土壤有机碳的矿化则无明显影响。土壤累积激发碳量与葡萄糖添加前后土壤氮素的改变百分比呈显著正相关关系(R~2=0.44,P0.05),表明易分解有机碳输入诱导的土壤激发效应受土壤氮素可利用性的调控,土壤微生物需要通过分解原有土壤有机碳释放的氮素来满足自身的需求。  相似文献   

5.
Invasion by the exotic species Spartina alterniflora, which has high net primary productivity and superior reproductive capacity compared with native plants, has led to rapid organic carbon accumulation and increased methane (CH4) emission in the coastal salt marsh of China. To elucidate the mechanisms underlying this effect, the methanogen community structure and CH4 production potential as well as soil organic carbon (SOC), dissolved organic carbon, dissolved organic acids, methylated amines, aboveground biomass, and litter mass were measured during the invasion chronosequence (0–16 years). The CH4 production potential in the S. alterniflora marsh (range, 2.94–3.95 μg kg?1 day?1) was significantly higher than that in the bare tidal mudflat. CH4 production potential correlated significantly with SOC, acetate, and trimethylamine concentrations in the 0–20 cm soil layer. The abundance of methanogenic archaea also correlated significantly with SOC, and the dominant species clearly varied with S. alterniflora-driven SOC accumulation. The acetotrophic Methanosaetaceae family members comprised a substantial proportion of the methanogenic archaea in the bare tidal mudflat while Methanosarcinaceae family members utilized methylated amines as substrates in the S. alterniflora marsh. Ordination analysis indicated that trimethylamine concentration was the primary factor inducing the shift in the methanogenic archaea composition, and regressive analysis indicated that the facultative family Methanosarcinaceae increased linearly with trimethylamine concentration in the increasingly sulfate-rich salt marsh. Our results indicate that increased CH4 production during the S. alterniflora invasion chronosequence was due to increased levels of the non-competitive substrate trimethylamine and a shift in the methanogenic archaea community.  相似文献   

6.
Soil labile fractions play an important role in improving soil quality due to its ability of maintaining soil fertility and minimizing negative environmental impacts. The objective of this study was to evaluate the effects of forest transition (conversion of natural broadleaf forests into monoculture tree plantations) on soil labile fractions (light fraction organic carbon, particulate organic carbon, and microbial biomass carbon). Soil samples were collected from a natural forest of Castanopsis kawakamii Hayata (NF) and two adjacent 36-year-old monoculture plantations of C. kawakamii (CK) and Cunninghamia lanceolata Lamb. (Chinese fir) (CF) at Xinkou Experimental Forestry Centre, southeastern China. In the 0–100 cm depth, the light fraction organic carbon (LFOC), particulate organic carbon (POC) and microbial biomass carbon (MBC) were significantly lower in the CK and CF than in the NF (P?<?0.05). Generally, LFOC, POC and MBC contents declined consistently with profile depth. Significant differences in LFOC, POC and MBC concentrations between the native forest and two plantations were detected at 0–40 cm depth, especially the top 10 cm, whereas there was less change below 40 cm, indicating that labile fraction losses due to forest transition mainly occurred in the surface soils. The three indices of labile organic carbon were closely correlated, suggesting they are interrelated properties. Labile fractions (LFOC, POC and MBC) were more sensitive indicators of SOC change resulting from the forest transition. We also found that forest types significantly affected the water stable aggregate >0.25 mm content (WSA) at the 0–10 cm depth. It suggested that converting old-growth native forest to intensively-managed plantations would reduce labile organic C, which may be attributed to a combination of factors including quantity of litter materials, microbial activity and management disturbances, which would change greatly with the forest conversion. How long these changes would persist needs the further study.  相似文献   

7.

Background and Aims

Tree species composition shifts can alter soil CO2 and N2O effluxes. We quantified the soil CO2 and N2O efflux rates and temperature sensitivity from Pyrenean oak, Scots pine and mixed stands in Central Spain to assess the effects of a potential expansion of oak forests.

Methods

Soil CO2 and N2O effluxes were measured from topsoil samples by lab incubation from 5 to 25 °C. Soil microbial biomass and community composition were assessed.

Results

Pine stands showed highest soil CO2 efflux, followed by mixed and oak forests (up to 277, 245 and 145 mg CO2-C m?2 h?1, respectively). Despite contrasting soil microbial community composition (more fungi and less actinomycetes in pine plots), carbon decomposability and temperature sensitivity of the soil CO2 efflux remain constant among tree species. Soil N2O efflux rates and its temperature sensitivity was markedly higher in oak stands than in pine stands (70 vs. 27 μg N2O-N m?2 h?1, Q10, 4.5 vs. 2.5).

Conclusions

Conversion of pine to oak forests in the region will likely decrease soil CO2 effluxes due to decreasing SOC contents on the long run and will likely enhance soil N2O effluxes. Our results present only a seasonal snapshot and need to be confirmed in the field.  相似文献   

8.
The amount of soil organic carbon (SOC) released into the atmosphere as carbon dioxide (CO2), which is referred to as heterotrophic respiration (Rh), is technically difficult to measure despite its necessity to the understanding of how to protect and increase soil carbon stocks. Within this context, the aim of this study is to determine Rh in two Mediterranean forests dominated by pine and oak using radiocarbon measurements of the bulk SOC from different soil layers. The annual Rh was 3.22 Mg C ha?1 y?1 under pine and 3.13 Mg C ha?1 y?1 under oak, corresponding to 38 and 31% of the annual soil respiration, respectively. The accuracy of the Rh values was evaluated by determining the net primary production (NPP), as the sum of the Rh and the net ecosystem production measured by eddy covariance, then comparing it with the NPP obtained through independent biometric measurements. No significant differences were observed, which suggested the suitability of our methodology to infer Rh. Assuming the C inputs to soil to consist exclusively of the aboveground and belowground litter and the C output exclusively of the Rh, both soils were C sinks, which is consistent with a previous modeling study that was performed in the same stands. In conclusion, radiocarbon analysis of bulk SOC provided a reliable estimate of the average annual amount of soil carbon released to the atmosphere; hence, its application is convenient for calculating Rh because it utilizes only a single soil sampling and no time-consuming monitoring activities.  相似文献   

9.
Many studies have found that plant invasion can enhance soil organic carbon (SOC) pools, by increasing net primary production (NPP) and/or decreased soil respiration. While most studies have focused on C input, little attention has been paid to plant invasion effects on soil respiration, especially in wetland ecosystems. Our study examined the effects of Spartina alterniflora invasion on soil respiration and C dynamics in the Yangtze River estuary. The estuary was originally occupied by two native plant species: Phragmites australis in the high tide zone and Scirpus mariqueter in the low tide zone. Mean soil respiration rates were 185.8 and 142.3 mg CO2 m−2 h−1 in S. alterniflora and P. australis stands in the high tide zone, and 159.7 and 112.0 mg CO2 m−2 h−1 in S. alterniflora and S. mariqueter stands in the low tide zone, respectively. Aboveground NPP (ANPP), SOC, and microbial biomass were also significantly higher in the S. alterniflora stands than in the two native plant stands. S. alterniflora invasion did not significantly change soil inorganic carbon or pH. Our results indicated that enhanced ANPP by S. alterniflora exceeded invasion-induced C loss through soil respiration. This suggests that S. alterniflora invasion into the Yangtze River estuary could strengthen the net C sink of wetlands in the context of global climate change.  相似文献   

10.
Returning straw to deep soil layers by using a deep-ditching-ridge-ploughing method is an innovative management practice that improves soil quality by increasing the soil organic carbon (SOC) content. However, the optimum quantity of straw return has not been determined. To solve this practical production problem, the following treatments with different amounts of corn straw were investigated: no straw return, CK; 400 kg ha-1 straw, S400; 800 kg ha-1 straw, S800; 1200 kg ha-1 straw, S1200; and 1600 kg ha-1 straw, S1600. After straw was returned to the soil for two years, the microbial biomass C (MBC), easily oxidized organic C (EOC), dissolved organic C (DOC) and light fraction organic C (LFOC) content were measured at three soil depths (0–10, 10–20, and 20–40 cm). The results showed that the combined application of 800 kg ha-1 straw significantly increased the EOC, MBC, and LFOC contents and was a suitable agricultural practice for this region. Moreover, our results demonstrated that returning straw to deep soil layers was effective for increasing the SOC content.  相似文献   

11.
Soil respiration in six temperate forests in China   总被引:14,自引:0,他引:14  
Scaling soil respiration (RS), the major CO2 source to the atmosphere from terrestrial ecosystems, from chamber‐based measurements to ecosystems requires studies on variations and correlations of RS from various biomes and across geographic regions. However, few studies on RS are available for Chinese temperate forest despite the importance of this forest in the national and global carbon budgets. In this study, we conducted 18‐month RS measurements during 2004–2005 in six temperate forest types, representing the typical secondary forest ecosystems across various site conditions in northeastern China: Mongolian oak (Quercus mongolica Fisch.), aspen‐birch (Populous davidiana Dode and Betula platyphylla Suk.), mixed deciduous (no dominant tree species), hardwood (dominated by Fraxinus mandshurica Rupr., Juglans mandshurica Maxim., and Phellodendron amurense Rupr.) forests, Korean pine (Pinus koraiensis Sieb. et Zucc.) and Dahurian larch (Larix gmelinii Rupr.) plantations. Our specific objectives were to: (1) explore relationships of RS against soil temperature and water content for the six forest ecosystems, (2) quantify annual soil surface CO2 flux and its relations to belowground carbon storage, (3) examine seasonal variations in RS and related environmental factors, and (4) quantify among‐ and within‐ecosystem variations in RS. The RS was positively correlated to soil temperature in all forest types, and was significantly influenced by the interactions of soil temperature and water content in the pine, larch, and mixed deciduous forests. The sensitivity of RS to soil temperature at 10 cm depth (Q10) ranged from 2.61 in the oak forest to 3.75 in the aspen‐birch forests. The Q10 tended to increase with soil water content until reaching a threshold, and then decline. The annual RS for the larch, pine, hardwood, oak, mixed deciduous, and aspen‐birch forests averaged 403, 514, 781, 785, 786, and 813 g C m?2 yr?1, respectively. The annual RS of the broadleaved forests was 72% greater than that of the coniferous forests. The annual RS was positively correlated to soil organic carbon (SOC) concentration at O horizon (R2=0.868) and total biomass of roots <0.5 cm in diameter (R2=0.748). The coefficient of variation (CV) of RS among forest types averaged 25% across the 18‐month measurements. The CV of RS within plots varied from 20% to 27%, significantly (P<0.001) greater than those among plots (9–15%), indicating the importance of the fine‐scaled heterogeneity in RS. This study emphasized that variations in soil respiration and potential sampling bias should be appropriately tackled for accurate soil CO2 flux estimates.  相似文献   

12.
Soil carbon (C) fluxes, soil respiration and dissolved organic carbon (DOC) leaching were explored along the young Damma glacier forefield chronosequence (7–128 years) over a three-year period. To gain insight into the sources of soil CO2 effluxes, radiocarbon signatures of respired CO2 were measured and a vegetation-clipping experiment was performed. Our results showed a clear increase in soil CO2 effluxes with increasing site age from 9 ± 1 to 160 ± 67 g CO2–C m?2 year?1, which was linked to soil C accumulation and development of vegetation cover. Seasonal variations of soil respiration were mainly driven by temperature; between 62 and 70 % of annual CO2 effluxes were respired during the 4-month long summer season. Sources of soil CO2 effluxes changed along the glacier forefield. For most recently deglaciated sites, radiocarbon-based age estimates indicated ancient C to be the dominant source of soil-respired CO2. At intermediate site age (58–78 years), the contribution of new plant-fixed C via rhizosphere respiration amounted up to 90 %, while with further soil formation, heterotrophically respired C probably from accumulated ‘older’ soil organic carbon (SOC) became increasingly important. In comparison with soil respiration, DOC leaching at 10 cm depth was small, but increased similarly from 0.4 ± 0.02 to 7.4 ± 1.6 g DOC m?2 year?1 over the chronosequence. A strong rise of the ratio of SOC to secondary iron and aluminium oxides strongly suggests that increasing DOC leaching with site age results from a faster increase of the DOC source, SOC, than of the DOC sink, reactive mineral surfaces. Overall, C losses from soil by soil respiration and DOC leaching increased from 9 ± 1 to 70 ± 17 and further to 168 ± 68 g C m?2 year?1 at the <10, 58–78, and 110–128 year old sites. By comparison, total ecosystem C stocks increased from 0.2 to 1.1 and to 3.1 kg C m?2 from the young to intermediate and old sites. Therefore, the ecosystem evolved from a dominance of C accumulation in the initial phase to a high throughput system. We suggest that the relatively strong increase in soil C stocks compared to C fluxes is a characteristic feature of initial soil formation on freshly exposed rocks.  相似文献   

13.
Soil labile organic carbon and soil enzymes play important roles in the carbon cycle of coastal wetlands that have high organic carbon accumulation rates. Soils under three vegetations (Phragmites australis, Spartina alterniflora, and Scirpusm mariqueter) as well as bare mudflat in Hangzhou Bay wetland of China were collected seasonally. Seasonal dynamics and correlations of soil labile organic carbon fractions and soil enzyme activities were analyzed. The results showed that there were significant differences among vegetation types in the contents of soil organic carbon (SOC) and dissolved organic carbon (DOC), excepting for that of microbial biomass carbon (MBC). The P. australis soil was with the highest content of both SOC (7.86 g kg-1) and DOC (306 mg kg-1), while the S. mariqueter soil was with the lowest content of SOC (6.83 g kg-1), and the bare mudflat was with the lowest content of DOC (270 mg kg-1). Soil enzyme activities were significantly different among vegetation types except for urease. The P. australis had the highest annual average activity of alkaline phosphomonoesterase (21.4 mg kg-1 h-1), and the S. alterniflora had the highest annual average activities of β-glycosidase (4.10 mg kg-1 h-1) and invertase (9.81mg g-1 24h-1); however, the bare mudflat had the lowest activities of alkaline phosphomonoesterase (16.2 mg kg-1 h-1), β-glycosidase (2.87 mg kg-1 h-1), and invertase (8.02 mg g-1 24h-1). Analysis also showed that the soil labile organic carbon fractions and soil enzyme activities had distinct seasonal dynamics. In addition, the soil MBC content was significantly correlated with the activities of urease and β-glucosidase. The DOC content was significantly correlated with the activities of urease, alkaline phosphomonoesterase, and invertase. The results indicated that vegetation type is an important factor influencing the spatial-temporal variation of soil enzyme activities and labile organic carbon in coastal wetlands.  相似文献   

14.
The basal respiration rate at 10°C (R10) and the temperature sensitivity of soil respiration (Q10) are two premier parameters in predicting the instantaneous rate of soil respiration at a given temperature. However, the mechanisms underlying the spatial variations in R10 and Q10 are not quite clear. R10 and Q10 were calculated using an exponential function with measured soil respiration and soil temperature for 11 mixed conifer-broadleaved forest stands and nine broadleaved forest stands at a catchment scale. The mean values of R10 were 1.83 µmol CO2 m−2 s−1 and 2.01 µmol CO2 m−2 s−1, the mean values of Q10 were 3.40 and 3.79, respectively, for mixed and broadleaved forest types. Forest type did not influence the two model parameters, but determinants of R10 and Q10 varied between the two forest types. In mixed forest stands, R10 decreased greatly with the ratio of coniferous to broadleaved tree species; whereas it sharply increased with the soil temperature range and the variations in soil organic carbon (SOC), and soil total nitrogen (TN). Q10 was positively correlated with the spatial variances of herb-layer carbon stock and soil bulk density, and negatively with soil C/N ratio. In broadleaved forest stands, R10 was markedly affected by basal area and the variations in shrub carbon stock and soil phosphorus (P) content; the value of Q10 largely depended on soil pH and the variations of SOC and TN. 51% of variations in both R10 and Q10 can be accounted for jointly by five biophysical variables, of which the variation in soil bulk density played an overwhelming role in determining the amplitude of variations in soil basal respiration rates in temperate forests. Overall, it was concluded that soil respiration of temperate forests was largely dependent on soil physical properties when temperature kept quite low.  相似文献   

15.
The conversion of annually cultivated or disturbed marginal land to forage grasses has the potential to accrete soil organic carbon (SOC) in the surface 0–15 cm depth. Soil organic carbon mass (Mg ha–1) was measured in ten side-by-side cultivated versus forage grass seed-down restoration treatments on catenae at various sites in east-central Saskatchewan, Canada. Treatments were imposed for time periods ranging from five to twelve years. It was found that SOC mass was usually significantly higher in the grassland restorations versus the paired cultivated equivalents. Estimated SOC gain rates (0–15 cm) from grass seed-down in the region was estimated to be 0.6 to 0.8 Mg C ha–1 yr–1. Light fraction organic carbon (LFOC), the labile component of SOC, was more variable in the comparisons than SOC. Measured 13C natural abundance values in selected equivalent comparisons revealed a possible contribution from seeded warm season C4 grasses and soil carbonate 13C to the C pools in upslope positions of the landscape. Overall, grassland restoration in this region appears to result in increased carbon storage in the surface soil.  相似文献   

16.
The perhumid coastal temperate rainforest (PCTR) of southeast Alaska has some of the densest soil organic carbon (SOC) stocks in the world (>300 Mg C ha?1) but the fate of this SOC with continued warming remains largely unknown. We quantified dissolved organic carbon (DOC) and carbon dioxide (CO2) yields from four different wetland types (rich fen, poor fen, forested wetland and cedar wetland) using controlled laboratory incubations of surface (10 cm) and subsurface (25 cm) soils incubated at 8 and 15 °C for 37 weeks. Furthermore, we used fluorescence characterization of DOC and laboratory bioassays to assess how climate-induced soil warming may impact the quality and bioavailability of DOC delivered to fluvial systems. Soil temperature was the strongest control on SOC turnover, with wetland type and soil depth less important in controlling CO2 flux and extractable DOC. The high temperature incubation increased average CO2 yield by ~40 and ~25% for DOC suggesting PCTR soils contain a sizeable pool of readily biodegradable SOC that can be mineralized to DOC and CO2 with future climate warming. Fluxes of CO2 were positively correlated to both extractable DOC and percent bioavailable DOC during the last few months of the incubation suggesting mineralization of SOC to DOC is a strong control of soil respiration rates. Whether the net result is increased export of either carbon form will depend on the balance between the land to water transport of DOC and the ability of soil microbial communities to mineralize DOC to CO2.  相似文献   

17.
There is a strong trend toward reforestation of abandoned grasslands in alpine regions which may impact the carbon balance of alpine ecosystems. Here, we studied the effects of afforestation with Norway spruce (Picea abies L.) on an extensively grazed subalpine pasture in Switzerland on soil organic carbon (SOC) cycling and storage. Along a 120-year long chronosequence with spruce stands of 25, 30, 40, 45, and >120 years and adjacent pastures, we measured tree biomass, SOC stocks down to the bedrock, natural 13C abundances, and litter quality. To unravel controls on SOC cycling, we have monitored microclimatic conditions and quantified SOC decomposability under standardized conditions as well as soil respiration in situ. Stocks of SOC were only moderately affected by the afforestation: in the mineral soil, SOC stocks transiently decreased after tree establishment, reaching a minimum 40–45 years after afforestation (?25 %) and increased thereafter. Soils of the mature spruce forest stored the largest amount of SOC, 13 % more than the pasture soils, mainly due to the accumulation of an organic layer (23 t C ha?1). By comparison, C accumulated in the tree biomass exceeded the SOC pool by a factor of three in the old forest. In contrast to the small impact on C storage, afforestation strongly influenced the composition and quality of the soil organic matter (SOM). With increasing stand age, δ13C values of the SOM became consistently more positive, which can be interpreted as a gradual replacement of grass- by spruce-derived C. Fine roots of spruce were enriched in 13C, in lignin and had a higher C/N ratio in comparison to grass roots. As a consequence, SOM quality as indicated by the lower fraction of readily decomposable (labile) SOM and higher C:N ratios declined after the land-use change. Furthermore, spruce plantation induced a less favorable microclimate for microbial activity with the average soil temperature during the growing season being 5 °C lower in the spruce stands than in the pasture. In situ soil respiration was approximately 50 % lower after the land use conversion, which we primarily attribute to the colder conditions and the lower SOM quality, but also to drier soils (?25 %) and to a decreased fine root biomass (?40 %). In summary, afforestation on subalpine pastures only moderately affected SOC storage as compared to the large C sink in tree biomass. In contrast, SOC cycling rates strongly decreased as a result of a less favorable microclimate for decomposition of SOM, a lower C input by roots, and a lower litter quality.  相似文献   

18.
以中国北亚热带地区退化灌木林补植改造7 a和11 a后形成的木荷-青冈栎混交林为研究对象,以保留的灌木林为对照,分析了造林初期林龄对林分土壤活性有机碳含量的影响。结果表明:(1) 7 a和11 a生木荷-青冈栎林0~50 cm各土层土壤总有机碳含量比灌木林分别增加了22.79%~43.34%和52.33%~96.13%,易氧化碳含量增加了11.11%~25.18%和57.89%~100.90%,轻组有机质含量增加了18.18%~85.20%和74.50%~93.75%,水溶性有机碳含量7 a生木荷-青冈栎林比灌木林降低了4.10%~9.53%(10~20 cm除外),而11 a生林分比灌木林增加了0.71%~5.37%。(2) 3种林分土壤活性有机碳在总有机碳中所占的比率大小顺序、水溶性有机碳/土壤总有机碳均为灌木林>7 a生木荷-青冈栎林>11 a生木荷-青冈栎林,易氧化碳/土壤总有机碳为11 a生木荷-青冈栎林>灌木林>7 a生木荷-青冈栎林。(3)3种林分各活性有机碳组分与土壤总有机碳的相关性均达到极显著水平,而水溶性有机碳与总有机碳的相关系数相对较低;各林分土壤总有机碳、易氧化碳、轻组有机质与土壤养分的相关性均达到极显著水平,而灌木林水溶性有机碳与土壤水解氮、速效钾相关性不显著。研究认为,灌木林改造为常绿阔叶人工林,林分土壤有机碳在幼林期已有显著变化,随着林龄增长,人工林有机碳的积累还有待进一步研究。  相似文献   

19.

Background and Aims

Mediterranean forests are vulnerable to numerous threats including wildfires due to a combination of climatic factors and increased urbanization. In addition, increased temperatures and summer drought lead to increased risk of forest fires as a result of climate change. This may have important consequences for C dynamics and balance in these ecosystems. Soil respiration was measured over 2 successive years in Holm oak (Quercus ilex subsp. ballota; Qi); Pyrenean Oak (Quercus pyrenaica Willd; Qp); and Scots pine (Pinus sylvestris L.; Ps) forest stands located in the area surrounding Madrid (Spain), to assess the long term effects of wildfires on C efflux from the soil, soil properties, and the role of soil temperature and soil moisture in the variation of soil respiration.

Methods

Soil respiration, soil temperature, soil moisture, fine root mass, microbial biomass, biological and chemical soil parameters were compared between non burned (NB) and burned sites (B).

Results

The annual C losses through soil respiration from NB sites in Qi, Qp and Ps were 790, 1010, 1380 gCm?2?yr?1, respectively, with the B sites emitting 43 %, 22 % and 11 % less in Qi, Qp and Ps respectively. Soil microclimate changed with higher soil temperature and lower soil moisture in B sites after fire. Exchangeable cations and the pH also decreased. The total SOC stocks were not significantly altered, but 6–8 years after wildfires, there was still measurably lower fine root and microbial biomass, while SOC quality changed, indicated by lower the C/N ratio and the labile carbon and a relative increase in refractory SOC forms, which resulted in lower Q10 values.

Conclusions

We found long term effects of wildfires on the physical, chemical and biological soil characteristics, which in turn affected soil respiration. The response of soil respiration to temperature was controlled by moisture and changed with ecosystem type, season, and between B and NB sites. Lower post-burn Q10 integrated the loss of roots and microbial biomass, change in SOC quality and a decrease in soil moisture.  相似文献   

20.
宫立  刘国华  李宗善  叶鑫  王浩 《生态学报》2017,37(14):4696-4705
土壤碳氮沿海拔梯度变化及其耦合关系是山地生态系统碳氮循环研究的重要内容。为分析不同土层土壤有机碳,土壤全氮及有机碳活性组分在海拔梯度上的分布规律及相互之间的耦合关系,选取亚高山物种岷江冷杉(Abies faxoniana)原始林为研究对象,以卧龙邓生野牛沟岷江冷杉原始林2920—3700 m的样地调查数据为基础,分析不同土层土壤碳氮及活性组分沿海拔的变化规律,总结土壤有机碳稳定性沿海拔主要规律,从土壤有机碳活性组分和碳氮关系的角度揭示其对土壤有机碳沿海拔变化的影响。结果表明:1)腐殖质层土壤有机碳(SOC)随海拔升高逐渐增加,与温度显著负相关,轻组有机碳(LFOC)及颗粒态有机碳(POC)随海拔上升均表现先增加后降低的趋势,土壤全氮(TN)随海拔变化不显著,但林线处LOFC、POC和TN均显著增加;0—10 cm土壤有机碳及全氮则表现为双峰特征,峰值分别在3089 m和3260 m处,与年均温度无显著关系。2)LFOC及POC在腐殖质层和0—10 cm土层中所占比例较大,是表征土壤有机碳含量沿海拔变化规律的主要活性组分,腐殖质层LFOC/SOC和POC/SOC随海拔上升逐渐增高,0—10 cm层则逐渐降低,暗示腐殖质层有机碳稳定性沿海拔逐渐降低,0—10 cm有机碳稳定性逐渐升高。3)SOC与TN显著正相关,SOC是影响TN的主要因子,但腐殖质层TN与有机碳活性组分无显著相关关系。4)土壤C/N和微生物量C/N在3177 m大于25:1,是引起土壤有机碳含量显著降低的主要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号