首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
《Cytokine》2014,67(2):101-105
Several cytokines were assumed to play an essential role in the induction and the pathogenesis of psoriasis. The aim of this work was to investigate the role of TNF-α-308 and IL-10-1082 polymorphisms and their serum levels in the pathogenesis of psoriasis and determine their relation to disease severity. 110 Psoriasis patients and 120 healthy volunteers were genotyped for TNF-α-308 and IL-10-1082 polymorphism by polymerase chain reaction. Serum level of TNF-α and IL-10 were measured by ELISA. Our study demonstrated an association of IL-10-1082 polymorphism and psoriasis and between TNF α-308 polymorphism and psoriasis disease and severity. Serum TNF α increased in patients, while serum IL-10 decreased in patients with significant correlation between serum TNF-α and psoriasis severity. These results indicated that TNF-α-308 and IL-10-1082 polymorphisms imparted significant risk towards the development of psoriasis.  相似文献   

4.
TNF-α-blocking agents such as infliximab, adalimumab and etanercept are widely used for the treatment of severe inflammatory diseases including rheumatoid arthritis and psoriasis. The currently used TNF-α blockers have Fc regions of the human IgG1 subtype, which is advantageous in terms of in vivo half-life but also raise the potential for unwanted effector-mediated effects, such as antibody dependent cellular cytotoxicity (ADCC) or complement-dependent cytotoxicity (CDC). To address this issue, we constructed a novel hybrid protein by fusing the TNF receptor (TNFR) with a hybrid Fc (hyFc) consisting of the CH2 and CH3 regions of IgG4 and the highly flexible hinge regions of IgD which would not have ADCC and CDC activity. The resulting fusion protein, TNFR-hyFc, was over-expressed in CHO and pharmacological characteristics were evaluated in comparison with the structurally similar etanercept. TNFR-hyFc effectively neutralized TNF-α in L929 bioassay and showed a 1.5-fold higher neutralizing activity compared to etanercept. In a pharmacokinetic study in cynomolgus monkeys, TNFR-hyFc showed plasma half-life and AUC comparable to etanercept. In a mouse collagen induced arthritis model, TNFR-hyFc showed significant amelioration of arthritis compared to etanercept or vehicle control. In an LPS-induced septic shock model, TNFR-hyFc showed a similar level of protection against mortality as etanercept. These results confirm the feasibility of the TNFR-hyFc as an effective TNF-α blocker for the treatment of inflammatory diseases.  相似文献   

5.
Tumor necrosis factor α (TNF-α), a pivotal cytokine in sepsis, protects the host against pathogens by promoting an inflammatory response while simultaneously inducing apoptosis of the vascular endothelium. Unfortunately, inhibitors targeting certain components of the TNF-α signaling pathway to reduce cellular apoptosis have failed to translate into clinical applications, partly due to the adverse effects of excessive immunosuppression. In an attempt to discover potential targets in the TNF-α signaling pathway to modulate moderate inflammation and apoptosis during the development of sepsis, we performed a pooled genome-wide CRISPR/Cas9 knockout screen in human umbilical vein endothelial cells (HUVECs). Tumor necrosis factor receptor superfamily member 1A (TNFRSF1A), B-cell lymphoma 2 (BCL2), Bcl2-associated death promoter (BAD), and NLR family member X1 (NLRX1) deficiencies were identified as the effective genetic suppressors of TNF-α cytotoxicity on a list of candidate regulators. CRISPR-mediated NLRX1 knockout conferred cellular resistance to challenge with TNF-α, and NLRX1 could be induced to colocalize with mitochondria following TNF-α stimulation. Thus, our work demonstrates the advantage of genome-scale screening with Cas9 and validates NLRX1 as a potential modulator of TNF-α-induced vascular endothelial apoptosis during sepsis.  相似文献   

6.
Glutathione peroxidase-1 (GPx-1) is a crucial antioxidant enzyme, the deficiency of which promotes atherogenesis. Accordingly, we examined the mechanisms by which GPx-1 deficiency enhances endothelial cell activation and inflammation. In human microvascular endothelial cells, we found that GPx-1 deficiency augments intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expression by redox-dependent mechanisms that involve NFκB. Suppression of GPx-1 enhanced TNF-α-induced ROS production and ICAM-1 expression, whereas overexpression of GPx-1 attenuated these TNF-α-mediated responses. GPx-1 deficiency prolonged TNF-α-induced IκBα degradation and activation of ERK1/2 and JNK. JNK or NFκB inhibition attenuated TNF-α induction of ICAM-1 and VCAM-1 expression in GPx-1-deficient and control cells, whereas ERK1/2 inhibition attenuated only VCAM-1 expression. To analyze further signaling pathways involved in GPx-1-mediated protection from TNF-α-induced ROS, we performed microarray analysis of human microvascular endothelial cells treated with TNF-α in the presence and absence of GPx-1. Among the genes whose expression changed significantly, dual specificity phosphatase 4 (DUSP4), encoding an antagonist of MAPK signaling, was down-regulated by GPx-1 suppression. Targeted DUSP4 knockdown enhanced TNF-α-mediated ERK1/2 pathway activation and resulted in increased adhesion molecule expression, indicating that GPx-1 deficiency may augment TNF-α-mediated events, in part, by regulating DUSP4.  相似文献   

7.
Early cellular and molecular events in inflamed skin include the active participation of epidermal keratinocytes (KCs) and dermal mast cells which can produce diffusible mediators such as tumor necrosis factor-alpha (TNF-α), histamine, and urocanic acid (UCA). Rapid induction of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) by KCs is observed following a highly diverse array of stimuli which can provoke both irritant, inflammatory, as well as allergic and immune reactions. To determine if the aforementioned mediators could interact in either an additive or synergistic fashion with each other, cultured KCs were exposed to these mediators alone and in combination, and the degree of ICAM-1 mRNA and protein quantitated. Whereas histamine or cis-UCA alone only weakly induced KC ICAM-1, when they were combined with TNF-α, significant augmentation was observed by Northern blot hybridization studies, immunostaining, and FACS analysis. Other histamine derivatives such as L-histidine, 1-methylhistidine, 3-methylhistidine, or all-trans-UCA had no effect. Histamine pretreatment did not affect cell surface high affinity TNF-α receptors, as determined by ligand binding and immunodetection, and did not induce KC TNF-α production. The KC histamine receptor was also characterized and found not to be influenced by TNF-α, cis-UCA, all-trans-UCA, or diphenyhydramine (an H1 antagonist), but it was inhibited by cimetidine (an H2 antagonist). These results demonstrate that 1) KCs can be induced to express ICAM-1 by exposure to histamine and cis-UCA, 2) histamine and cis-UCA can also augment TNF-α inducible ICAM-1 mRNA and cell surface protein expression, 3) this augmentation does not directly involve changes in KC TNF-α receptor number, affinity, or TNF-α production and, 4) KCs possess a type 2 histamine receptor which is not the photoreceptor for UCA. These findings highlight the potential for cross-talk between molecules produced by resident cutaneous cell types above (i.e., KCs) and below (i.e., mast cells) the epidermal basement membrane zone. These cells and their mediators can cooperate to respond to either exogenous or endogenous stimuli leading to rapid and strong KC ICAM-1 expression. Such induction of this important adhesion molecule by KCs ensures the retention of T lymphocytes necessary to participate in the maintenance of cutaneous immunohomeostasis. © 1993 Wiley-Liss, Inc.  相似文献   

8.
9.
Psoriasis is a chronic inflammatory skin disease, which has been linked to dyslipidemia with potential functional impairment of lipoproteins. This cross-sectional study was designed to characterize the biological activities of plasma lipoproteins in 25 patients with psoriasis and 25 age- and sex-matched healthy controls.In the present study, we found that plasma levels of high-density lipoprotein (HDL) cholesterol were decreased in the psoriasis group compared to healthy controls. The malondialdehyde (MDA) content in plasma, in HDL3 and in low-density lipoprotein (LDL) were increased. However, the activity of plasma paraoxonase-1 (PON-1) decreased in psoriasis and negatively correlated with the psoriasis area and severity index (PASI). Moreover, plasma levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were increased in psoriasis and positively correlated with the PASI. High-sensitivity C-reactive protein (hs-CRP) was increased in psoriasis, but did not reach significance when correlated with PASI. In vitro tests displayed that the functionalities of HDL3 isolated from psoriatic patients significantly decreased, which were assessed in four independent ways, namely (1) protection against LDL oxidation, (2) inhibition of tumor necrosis factor-α (TNF-α) induced monocyte adherence to endothelial cells, (3) prevention of oxidized low density lipoprotein (ox-LDL) induced monocyte migration, and (4) protection of endothelial cells from TNF-α induced apoptosis. Further, pro-oxidative and pro-inflammatory properties of LDL isolated from psoriatic patients were increased. In conclusion, the biological activities of psoriatic lipoproteins are impaired in both HDL and LDL, which may provide a link between psoriasis and cardiovascular disease.  相似文献   

10.
This study was conducted to test the hypothesis that n-3 polyunsaturated fatty acids are able to down-regulate expression of adhesion molecules and nuclear factor-κB (NF-κB) activation in vascular endothelial cells, in addition to reducing atherosclerotic lesions in vivo. We report here that docosahexaenoic acid (DHA) reduces atherosclerotic lesions in the aortic arteries of apolipoprotein E knockout (apoE-/-) mice. Consistent with the observation in animal study, DHA inhibited THP-1 cell adhesion to tumor necrosis factor α (TNF-α)-activated human aortic endothelial cells (HAECs). Expression of vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) on the cell surface of HAECs was determined by cell-surface enzyme-linked immunosorbent assay. DHA and eicosapentaenoic acid decreased VCAM-1 expression in a dose-dependent manner in TNF-α treated HAECs, while cis-linoleic acid and arachidonic acid did not have any significant effect on either VCAM-1 or ICAM-1 expression. Moreover, DHA significantly reduced VCAM-1 protein expression in the cell lysates of TNF-α-treated HAECs, as determined by Western blot analysis. In line with NF-κB signaling pathway, DHA suppressed the TNF-α-activated IκBα phosphorylation and degradation as well as IκB kinase-β phosphorylation. Subsequently, translocation of the NF-κB (p50/p65) and AP-1 (c-Fos/c-Jun) subunits was down-regulated by DHA in the nucleus of HAECs. These results suggest that DHA negatively regulates TNF-α-induced VCAM-1 expression through attenuation of NF-κB signaling pathway and AP-1 activation. This study provides evidence that DHA may contribute to the prevention of atherosclerosis and inflammatory diseases in vivo.  相似文献   

11.
Acute administration of tumor necrosis factor-α (TNF-α) resulted in decreases in renal blood flow (RBF) and glomerular filtration rate (GFR) but induced diuretic and natriuretic responses in mice. To define the receptor subtypes involved in these renal responses, experiments were conducted to assess the responses to human recombinant TNF-α (0.3 ng·min(-1)·g body wt(-1) iv infusion for 75 min) in gene knockout (KO) mice for TNF-α receptor type 1 (TNFαR1 KO, n = 5) or type 2 (TNFαR2 KO, n = 6), and the results were compared with those obtained in corresponding wild-type [WT (C57BL/6), n = 6] mice. Basal levels of RBF (PAH clearance) and GFR (inulin clearance) were similar in TNFαR1 KO, but were lower in TNFαR2 KO, than WT mice. TNF-α infusion in WT mice decreased RBF and GFR but caused a natriuretic response, as reported previously. In TNFαR1 KO mice, TNF-α infusion failed to cause such vasoconstrictor or natriuretic responses; rather, there was an increase in RBF and a decrease in renal vascular resistance. Similar responses were also observed with infusion of murine recombinant TNF-α in TNFαR1 KO mice (n = 5). However, TNF-α infusion in TNFαR2 KO mice caused changes in renal parameters qualitatively similar to those observed in WT mice. Immunohistochemical analysis in kidney slices from WT mice demonstrated that while both receptor types were generally located in the renal vascular and tubular cells, only TNFαR1 was located in vascular smooth muscle cells. There was an increase in TNFαR1 immunoreactivity in TNFαR2 KO mice, and vice versa, compared with WT mice. Collectively, these functional and immunohistological findings in the present study demonstrate that the activation of TNFαR1, not TNFαR2, is mainly involved in mediating the acute renal vasoconstrictor and natriuretic actions of TNF-α.  相似文献   

12.
Resistin is a cytokine and fractalkine (Fk) a cell adhesion molecule and chemokine that contribute to human vascular inflammation by mechanisms not clearly defined. We questioned whether resistin induces Fk expression in human endothelial cells (HEC), compared the effect with that of the pro-inflammatory cytokine, TNF-α, and evaluated the consequences of co-stimulating HEC with both activators on Fk induction and on the signalling molecules involved. We found that resistin up-regulated Fk expression at comparable level to that of TNF-α by a mechanism involving P38 and JNK MAPK and NF-κB. Co-stimulation of cells with resistin and TNF-α did not increase Fk expression induced by every single inducer. Moreover resistin reduced the expression induced by TNF-α in HEC. The new data uncover Fk as a novel molecular link between resistin and inflammation and show that resistin and TNF-α have no additive effect in Fk up-regulation or on the signalling molecules implicated.  相似文献   

13.
Endothelial activation contributes to the development of vascular inflammation and subsequent vascular diseases, particularly atherosclerosis. AGGF1, a new member of angiogenic factors with a FHA and a G-patch domain, has been shown critical for the regulation of vascular differentiation and angiogenesis. In this study, we found that various inflammatory cytokines strongly induced the expression of AGGF1 in endothelial cells (ECs) and identified AGGF1 as a novel anti-inflammatory factor both in vivo and in vitro. Overexpression of AGGF1 significantly repressed the expression of pro-inflammatory molecules such as E-Selectin, ICAM-1, and IL-8 and the adhesion of monocytes onto ECs activated by TNF-α. Conversely, the knockdown of AGGF1 resulted in the increased expressions of these pro-inflammatory molecules and the enhanced monocyte-EC interaction. We further demonstrated that AGGF1 potently attenuated TNF-α triggered NF-κB pathway, as indicated by the decreased promoter activity, nuclear distribution and phosphorylation of NF-κB p65 subunit as well as the increased protein level of IκBα. This inhibitory effect of AGGF1 was further proved through blocking the phosphorylation of ERK induced by TNF-α. Finally, we showed that the FHA domain of AGGF1 was required for its anti-inflammatory effect. Thus, our findings for the first time demonstrate that AGGF1 suppresses endothelial activation responses to TNF-α by antagonizing the ERK/NF-κB pathway, which makes AGGF1 a promising therapeutic candidate for the prevention and treatment of inflammatory diseases.  相似文献   

14.
Cryptotanshinone is a biologically active compound from the root of Salvia miltiorrhiza. In the present study, we investigated the molecular mechanisms by which cryptotanshinone is in synergy with tumor necrosis factor-alpha (TNF-α) for the induction of apoptosis in human chronic myeloid leukemia (CML) KBM-5 cells. The co-treatment of cryptotanshinone with TNF-α reduced the viability of the cells [combination index (CI) < 1]. Concomitantly, the co-treatment of cryptotanshinone and TNF-α elicited apoptosis, manifested by enhanced the number of terminal deoxynucleotide transferase-mediated dUTP-nick-end labeling (TUNEL)-positive cells, the sub-G1 cell populations, and the activation of caspase-8 and -3, in comparison with the treatment with either drug alone. The treatment with cryptotanshinone further suppressed TNF-α-mediated expression of c-FLIP(L), Bcl-x(L), but the increased level of tBid (a caspase-8 substrate). Furthermore, cryptotanshinone activated p38 but not NF-κB in TNF-α-treated KBM-5 cells. The addition of a specific p38 MAPK inhibitor SB203580 significantly attenuated cryptotanshinone/TNF-α-induced apoptosis. The combination treatment of cryptotanshinone and TNF-α also stimulated the reactive oxygen species (ROS) generation. N-acetyl-L-cysteine (NAC, a ROS scavenger) was not only able to block cryptotanshinone/TNF-α-induced ROS production but also the activation of caspase-8 and p38 MAPK. Overall, our findings suggest that cryptotanshinone can sensitize TNF-α-induced apoptosis in human myeloid leukemia KBM-5 cells, which appears through ROS-dependent activation of caspase-8 and p38.  相似文献   

15.
Chemerin is a recently identified adipocytokine which plays a role on inflammation and adipocytes metabolism. However, its function in vasculature is largely unknown. We examined the effects of chemerin on vascular endothelial inflammatory states. Treatment of human umbilical vein endothelial cells with chemerin (300 ng/ml, 20 min) induced phosphorylation of Akt (Ser473) and endothelial nitric oxide (NO) synthase (eNOS) (Ser1177). Consistently, chemerin increased intracellular cyclic GMP content. Pretreatment with chemerin (1-300 ng/ml, 24 h) significantly inhibited phosphorylation of nuclear factor (NF)-κB p65 (Ser536) and p38 as well as vascular cell adhesion molecule (VCAM)-1 expression induced by tumor necrosis factor (TNF)-α (5 ng/ml, 20 min-6 h). Inhibitor of NF-κB or p38 significantly inhibited the TNF-α-induced VCAM-1 expression. Chemerin also inhibited TNF-α-induced VCAM-1 expression in rat isolated aorta. Moreover, chemerin significantly inhibited monocytes adhesion to TNF-α-stimulated endothelial cells. The inhibitory effect of chemerin on TNF-α-induced VCAM-1 was reversed by a NOS inhibitor. Conversely, an NO donor, sodium nitroprusside significantly inhibited TNF-α-induced VCAM-1. The present results for the first time demonstrate that chemerin plays anti-inflammatory roles by preventing TNF-α-induced VCAM-1 expression and monocytes adhesion in vascular endothelial cells. The effect is mediated via inhibiting activation of NF-κB and p38 through stimulation of Akt/eNOS signaling and NO production.  相似文献   

16.
BackgroundPsoriasis is a chronic, immune-mediated, inflammatory skin disease affecting genetically predisposed individuals and requiring long-term treatment. The etiology of psoriasis is not fully understood. This article aimed to determine association between genetic polymorphisms in tumor necrosis factor-α (TNF -α) promoter ?308 (rs1800629) and ?238 (rs 361,525) and its serum level in psoriasis patients.MethodsThe study was conducted on 70 patients with psoriasis and 70 age and sex-matched, healthy individuals. All patients were subjected to history taking and complete medical examination. The polymorphisms of TNF -α promoter gene ?308 (rs1800629) and ?238 (rs 361,525) were detected by real time PCR and Serum levels of TNF -α were measured by ELISA technique.ResultsAG polymorphism and A allele of TNF-α ?238 G/A (rs 361,525) were significantly more in patients than controls, whereas AG polymorphism and A allele of TNF-α ?308 G/A (rs1800629) were significantly more in controls than patients. There were significant high levels of TNF-α in serum of patients in comparison to controls.ConclusionsThe AG polymorphism and A allele of TNF-α ?238G/A (rs 361,525) may act as a risk factor for occurrence of psoriasis, whereas AG polymorphism and A allele of TNF-α ?308G/A (rs1800629) may have protective role. There is pivotal role of TNF-α as a pro-inflammatory mediator in pathogenesis of psoriasis.  相似文献   

17.
We describe the X-ray crystallographic structure of a murine T cell receptor (TCR) Valpha domain ("Valpha85.33"; AV11S5-AJ17) to 1.85 A resolution. The Valpha85.33 domain is derived from a TCR that recognizes a type II collagen peptide associated with the murine major histocompatibility complex (MHC) class II molecule, I-A(q). Valpha85.33 packs as a Valpha-Valpha homodimer with a highly symmetric monomer-monomer interface. The first and second complementarity determining regions (CDR1 and CDR2) of this Valpha are shorter than the CDRs corresponding to the majority of other Valpha gene families, and three-dimensional structures of CDRs of these lengths have not been described previously. The CDR1 and CDR2 therefore represent new canonical forms that could serve as templates for AV11 family members. CDR3 of the Valpha85.33 domain is highly flexible and this is consistent with plasticity of this region of the TCR. The fourth hypervariable loop (HV4alpha) of AV11 and AV10 family members is one residue longer than that of other HV4alpha regions and shows a high degree of flexibility. The increase in length results in a distinct disposition of the conserved residue Lys68, which has been shown in other studies to play a role in antigen recognition. The X-ray structure of Valpha85.33 extends the database of canonical forms for CDR1 and CDR2, and has implications for antigen recognition by TCRs that contain related Valpha domains.  相似文献   

18.
目的探讨绿茶的主要成分麦没食子儿茶素没食子酸酯(EGCG)在血管内皮细胞中对肿瘤坏死因子-α(TNF-α)所诱导的纤溶酶原激活物抑制物-1(PAI-1)表达的影响及机制。方法利用人脐静脉内皮细胞体外培养方法,分别与TNF-α和/或EGCG孵育,运用蛋白免疫印迹方法检测内皮细胞中磷酸化细胞外调节蛋白激酶1/2(p-ERK1/2)和肿瘤坏死因子受体1(TNFR1)蛋白表达,应用酶联免疫吸附法方法检测细胞液中PAI-1水平。结果 TNF-α以浓度依赖和时间依赖方式增加内皮细胞中PAI-1的表达。EGCG可抑制TNF-α所诱导的PAI-1的表达,并可抑制ERK1/2磷酸化。TNF-α的刺激可使TN-FR1表达明显减少,而EGCG可抑制这一作用。结论 EGCG可能通过抑制ERK1/2的磷酸化,从而抑制TNF-α所诱导的PAI-1的表达,同时可减少TNF-α对TNFR1的抑制作用,在改善肥胖、胰岛素抵抗及相关心血管疾病中起着重要作用。  相似文献   

19.
20.
Mesenchymal stem cells (MSCs), which are modulated by cytokines present in the tumor microenvironment, play an important role in tumor progression. It is well documented that inflammation is an important part of the tumor microenvironment, so we investigated whether stimulation of MSCs by inflammatory cytokines would contribute to their ability to promote tumor growth. We first showed that MSCs could increase C26 colon cancer growth in mice. This growth-promoting effect was further accelerated when the MSCs were pre-stimulated by inflammatory factors IFN-γ and TNF-α. At the same time, we demonstrated that MSCs pre-stimulated by both inflammatory factors could promote tumor angiogenesis in vivo to a greater degree than untreated MSCs or MSCs pre-stimulated by either IFN-γ or TNF-α alone. A hen egg test-chorioallantoic membrane (HET-CAM) assay showed that treatment of MSC-conditioned medium can promote chorioallantoic membrane angiogenesis in vitro, especially treatment with conditioned medium of MSCs pretreated with IFN-γ and TNF-α together. This mechanism of promoting angiogenesis appears to take place via an increase in the expression of vascular endothelial growth factor (VEGF), which itself takes place through an increase in signaling in the hypoxia-inducible factor 1α (HIF-1α)-dependent pathway. Inhibition of HIF-1α in MSCs by siRNA was found to effectively reduce the ability of MSC to affect the growth of colon cancer in vivo in the inflammatory microenviroment. These results indicate that MSCs stimulated by inflammatory cytokines such as IFN-γ and TNF-α in the tumor microenvironment express higher levels of VEGF via the HIF-1α signaling pathway and that these MSCs then enhance tumor angiogenesis, finally leading to colon cancer growth in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号