首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In each wheat type, cultivars have different propensities to accumulate Cd in their grains, likely depending on Cd uptake by roots and/or Cd distribution in the plant. This study investigates the processes in the root–soil interface and their role in high or low grain Cd accumulation. Twenty-four cultivars of spring bread, winter bread, durum, and spelt wheat with different grain Cd accumulation levels were investigated regarding removal of Cd from soil, pH, Cd and organic acids in root exudates, and cation-exchange capacity of roots (rootCEC). In addition, we investigated 109Cd uptake from a nutrient solution resembling soil solution. The removal of Cd from the rhizosphere soil increased, likely due to increased rootCEC with increased grain Cd accumulation propensity, except in spring bread wheat. The 109Cd uptake from solution did not differ between high and low grain Cd accumulators. If the soil Cd concentration was elevated, rootCEC increased, as did pH, and succinic acid levels in the exudates, while lactic and citric acid levels in root exudates decreased. This work indicates that high grain Cd accumulators take up more Cd from soil than do low accumulators. But not by a different capacity to take up Cd from soil solution. The higher rootCEC in high accumulating cultivars may influence the release of Cd from the soil particles.  相似文献   

2.
The aim of the present study was to determine long-term K release rates from soil by use of a modified resin method, where vigorous agitation and soil–resin separations were avoided to minimise the dissolution of the soil minerals. Resins saturated with Ca2+ or H+ were tested; Ca2+ because it is the most dominating cation on the soil exchange complex, and H+ because it is an important K+ counter-ion released from plant roots. The tested soil: resin systems included two rates of agitation; no agitation, and gentle agitation where the soil particles visually did not move relative to each other. The resin beds were kept physically separated from the soil particles by use of a specially designed extraction tube. Three soils of the same mineralogical and textural origin, but exposed to different K input levels during more than 80 years, were used. A pot experiment with ryegrass was carried out using the same three soils. Vigorous shaking of the resin–soil systems was not needed to obtain a sufficiently high and rapid K release to the resin; even without agitation long-term K release rates could be determined. The accumulated K release was in all combinations of agitation rate, resin saturation ion and soil K status proportional to the square root of extraction time after 1000 h of extraction, indicating diffusion controlled K release from the minerals. Resin extractable K was closely correlated with ryegrass K uptake, indicating similarity in the extraction process. In contrast, K extracted with ammonium acetate or nitric acid did not provide information about the ability of the soils to release K in the long term. Based on the criteria :(i) substantial K adsorption under slow K release conditions; and (ii) achievement of a stable long-term K release within a limited extraction period, the Ca-saturated resins with gentle agitation and H-saturated resins without agitation are concluded to be best suited for routine laboratory work.  相似文献   

3.
Intensive cropping of Italian ryegrass (Lolium multiforum L.) in pots was used to assess the contribution of non-exchangeable K to plant uptake. The soils used were: two soils high in mica (illite) developed on recent alluvium plus two smectitic (beidellitic) soils and a soil of mixed mineralogy rich in mica. Four K treatments were used (0, 28.6, 143, and 286 mg kg-1 soil) with 8 successive monthly cuttings. A response of plant K uptake to added K was observed in all soils. Both 1.0 M NH40Ac and 0.2 M CaCl2 extractable K were depleted to a minimum level specific for each soil. The minima were lower in the old upland soils compared to the young alluvial soils. Uptake of K by Italian ryegrass induced K release from the non-exchangeable K to replenish the plant available pool of K ions. The release of mica interlayer K in the alluvial and in the high K smectitic soil supplied sufficient K to plants even under intensive cropping. The rate of mobilization of interlayer K was low in the smectitic soil with lower K. The lowest release rate was in the old high mica soil. Iron coatings may have inhibited mobilization of interlayer K. The rates of mobilization cannot be predicted from mineralogical and K-extraction data only. The rates of K uptake and the rates of K release by ryegrass under intensive cropping are potential values which can be used for modelling K availability to plants in the soils studied.  相似文献   

4.
Bisphenol A (BPA) is an endocrine disruptor compound widespread in terrestrial and aquatic systems of urbanized and industrialized regions. This study evaluated the capacity of ryegrass (Lolium perenne) aqueous exudates to degrade BPA at a concentration of 10 mg L?1 both in the absence and in the presence of an organic fraction often coexisting with plant exudates, i.e., natural organic matter (NOM), tested at a concentration of 20 mg L?1. In exudates alone, BPA degradation ceased after one day from the product addition when residual BPA resulted 65% of the initial BPA, whereas in exudates with the addition of NOM the degradation process continued for 4 days when residual BPA resulted 49%. Measurements of peroxidase and laccase activities in exudates suggested a significant involvement of these enzymes in BPA degradation. This finding was further confirmed by the almost complete absence of BPA degradation in aqueous exudates strongly acidified. In some BPA-contaminated exudates, chromatographic analysis revealed the presence of a newly formed compound identified as a BPA oxidation product by Fourier transform - ion cyclotron resonance mass spectrometry analysis. In conclusion, ryegrass exudates possess a relevant decontamination capacity towards BPA which persists and appears to be enhanced by the addition of NOM.  相似文献   

5.
Potassium release rates from ustisols and their application   总被引:1,自引:0,他引:1  
Lu  Xiaonan  Zhang  Minghua  Xu  Jianming 《Plant and Soil》2002,246(1):23-29
Second-order equations were used to characterize the potassium release rate for 20 low-hilly ustisols derived from Quaternary red clay in Zhejiang province, China. This was done under the condition of electric field strength of 44.4 and 88.8 V cm–1. The values of the initial K release rate (v 0) ranged from 1.17 to 21.23 and from 1.93 to 61.58, with an average of 5.36 and 9.54 mg kg–1 min–1 under the electric field strength of 44.4 and 88.8 V cm–1, respectively. Six indices, including the relative grain yield, relative total dry matter yield and K uptake in NP treatments of 20 corn field experiments and available K, HNO3 soluble K and slowly available K of soils were used to assess the practical applicability of K release rates. The correlation analysis showed that v 0 was very significantly correlated (P=0.01) with the above six indices, and their correlation coefficients were 0.6275**, 0.5645**, 0.6624**, 0.7277**, 0.7843** and 0.6299**, respectively, under the electric strength of 44.4 V cm–1. The v 0 was related to relative total dry matter yield (P = 0.05, r = 0.5445*) and very significantly correlated to the other five indices (relative grain yield, K uptake in NP treatment, available K, HNO3 soluble K and slowly available K), with the correlation coefficients of 0.6064**, 0.7216**, 0.7523**, 0.8202** and 0.6686**, respectively, under the electric strength of 88.8 V cm–1. From the results, we conclude that v 0 can be used to estimate the supplying power of soil K to annual crops such as corn, and to characterize soil K fertility.  相似文献   

6.
K562 erythroleukaemic cells produced ascorbate when incubated with dehydroascorbic acid. The reduction depended on the number of cells and on the concentration of dehydroascorbic acid. The observed rate consists of a high affinity (apparent) Km 7 μM , Vmax 3·25 pmol min?1 (106 cells)?1 and a low affinity component, which was non-saturable up to 1 mM of DHA (rate increase of 0·1 pmol min?1 (106 cells)?1 (1 μM of DHA?1). The rate was dependent on temperature and was stimulated by glucose and inhibited by phloretin, N-ethylmaleimide, parachloro-mercuribenzoate and thenoyltrifluoroacetone. Although uptake of DHA proceeded at a higher rate than its extracellular reduction, the generation of extracellular ascorbate from DHA cannot be accounted for by intracellular reduction and the release of ascorbate, since the latter was not linear with time and had an initial rate of approximately 3 pmol min?1 (106 cells?1). At a concentration of DHA of 100 μM this is 25 per cent of the observed reduction.  相似文献   

7.
Waegeneers  N.  Camps  M.  Smolders  E.  Merckx  R. 《Plant and Soil》2001,235(1):11-20
The differences in radiocaesium uptake between species were analysed in a series of solution culture and pot trials. Since radiocaesium uptake is very sensitive to the solution potassium (K) concentration, it was hypothesised that species depleting K in the rhizosphere to a larger extent, will have a higher radiocaesium uptake. Five species (bean, lettuce, winter barley, ryegrass and bentgrass) were grown for 18–21 days in nutrient solution spiked with 137Cs and at 4 K concentrations between 0.025 and 1.0 mM. Shoot 137Cs activities all decreased between 17- and 81-fold with increasing K supply. Shoot 137Cs activities were 4-fold different between species at the lowest K supply and 3.4-fold different at high K supply. The same five species were grown in two 134Cs spiked soils with contrasting exchangeable K but similar clay content. Shoot 134Cs activities were up to 19-fold higher in the soil with lowest exchangeable K. Differences in shoot activity concentrations between the species were only 4.5-fold in the high K soil, but were 15-fold in the low K soil. Bulk soil solution 134Cs and K concentration data were combined with radiocaesium uptake characteristics measured in solution culture to predict radiocaesium uptake from soil. Predictions were within 1.6-fold of observations in the high K soil but largely underestimated 134Cs uptake in lettuce, ryegrass and barley in the low K soil. A solute transport model was used to estimate K and radiocaesium concentrations in the rhizosphere. These calculations confirmed the assumption that higher radiocaesium uptake is found for species that deplete K in the rhizosphere to a larger extent.  相似文献   

8.
Nutrient uptake is generally thought to exhibit a simple seasonal pattern, but few studies have measured temporal variation of nutrient uptake capacity in mature trees. We measured net uptake capacity of K, NH+4, NO3, Mg and Ca across a range of solution concentrations by roots of mature loblolly pine at Calhoun Experimental Forest in October 2001, July 2001, and April 2002. Uptake capacity was generally lowest in July; rates in October were similar to those in April. Across a range of concentrations, antecedent nutrient solution concentrations affected the temporal patterns in uptake in July but not in October or April. In July, uptake of NH+4, Mg and Ca was positively correlated with concentration when roots were exposed to successively lower concentrations, but negatively correlated with concentration when exposed to successively higher concentrations. In contrast, uptake in October was constant across the range of concentrations, while uptake increased with concentration in April. As in studies of other species, we found greater uptake of NH+4 than NO3. Temporal patterns of uptake capacity are difficult to predict, and our results indicate that experimental conditions, such as experiment duration, antecedent root conditions and nutrient solution concentration, affect measured rates of nutrient uptake.  相似文献   

9.
Chen  C. R.  Condron  L. M.  Sinaj  S.  Davis  M. R.  Sherlock  R. R.  Frossard  E. 《Plant and Soil》2003,256(1):115-130
Vegetative conversion from grass to forest may influence soil nutrient dynamics and availability. A short-term (40 weeks) glasshouse experiment was carried out to investigate the impacts of ryegrass (Lolium perenne) and radiata pine (Pinus radiata) on soil phosphorus (P) availability in 15 grassland soils collected across New Zealand using 33P isotopic exchange kinetics (IEK) and chemical extraction methods. Results from this study showed that radiata pine took up more P (4.5–33.5 mg P pot–1) than ryegrass (1.1–15.6 mg pot–1) from the soil except in the Temuka soil in which the level of available P (e.g., E 1min Pi, bicarbonate extractable Pi) was very high. Radiata pine tended to be better able to access different forms of soil P, compared with ryegrass. There were no significant differences in the level of water soluble P (Cp, intensity factor) between soils under ryegrass and radiata pine, but the levels of Cp were generally lower compared with original soils due to plant uptake. The growth of both ryegrass and radiata pine resulted in the redistribution of soil P from the slowly exchangeable Pi pool (E > 10m Pi, reduced by 31.8% on the average) to the rapidly exchangeable Pi (E 1min-1d Pi, E 1d-10m Pi) pools in most soils. The values of R/r 1 (the capacity factor) were also generally greater in most soils under radiata pine compared with ryegrass. Specific P mineralisation rates were significantly greater for soils under radiata pine (8.4–21.9%) compared with ryegrass (0.5–10.8%), indicating that the growth of radiata pine enhanced mineralisation of soil organic P. This may partly be ascribed to greater root phosphatase activity for radiata pine than for ryegrass. Plant species × soil type interactions for most soil variables measured indicate that the impacts of plant species on soil P dynamics was strongly influenced by soil properties.  相似文献   

10.
Paasikallio  A. 《Plant and Soil》1999,206(2):213-222
Biotite is a potassium rich mineral, which is used as a fertilizer in organic farming and as a soil amendment in conventional farming. Its ability to reduce 134Cs uptake by ryegrass from peat soil was studied in pot experiments and compared with zeolite, heavy clay, bentonite and apatite. In addition, the long-term effect of biotite on 137Cs uptake from peat soil was studied in the peat field. In the pot experiments in the first cut of ryegrass, the minerals decreased 134Cs uptake by plants in the following order: zeolite > heavy clay > bentonite > biotite > apatite. Apatite did not have any effect on the plant 134Cs level. In the later cuts, the uptake of 134Cs from biotite-treated soil decreased further while that from soils treated with other minerals remained unchanged or even increased. In general, 134Cs uptake by plants decreased with increasing mineral level. The decrease of 134Cs uptake became more efficient, especially at the early growth stage, by mixing small amounts of zeolite in biotite. The results of the field experiment indicated the long-term effect of biotite on reducing 134Cs uptake by plants. Biotite application rate was 30 t ha-1. The five-year mean of the plant/soil concentration ratio of 137Cs was 0.05 for biotite-treated soil, in contrast to 0.14 for the control soil. On the whole, biotite reduced considerably the 137Cs level of plants on peat soil and this effect was long-lasting. For an effective reduction of plant radiocesium a great quantity of biotite is needed and therefore it is most suitable for greenhouse cultivation where contaminated slightly decomposed peat is used as a growing medium.  相似文献   

11.
The uptake ofl-andd-aspartate was studied in astrocytes cultured from prefrontal cortex and in granule cells cultured from cerebellum. A high affinity uptake system forl- andd-aspartate was found in both cell types, and the two stereoisomers exhibited essentially the sameK m - andV max -values in bouth astrocytes (l-aspartate:K m 77 μM;V max 11.8 nmol×min?1×mg?1;d-aspartate:K m 83 μM;V max 14.0 nmol×min?1×mg?1) and granule cells (l-aspartate:K m 32 μM;V max 2.8 nmol ×min?1×mg?1;d-aspartate:K m 26 μM;V max 3.0 nmol×min?1×mg?1). To investigate whetherl-glutamate,l-aspartate andd-aspartate use the same uptake system a detailed kenetic analysis was performed. The uptake kinetics of each one of the three amino acids was studied in the presence of the two other amino acids, and no essential differences between the uptake characteristics of the amino acids were found. In addition to the uptake studies the release ofD-aspartate from cerebellar granule cells was investigated and compared withl-glutamate release. A Ca2+-dependent, K+-induced release was found for both amino acids.  相似文献   

12.
More than 90% of potassium (K) in soil exists in forms of insoluble silicate minerals and cannot be directly utilized by plants. K-solubilizing bacteria (KSB) can improve soil fertility and plant growth as biofertilizers by decomposing silicate minerals and releasing insoluble K into soluble forms. The objectives of this study were to isolate and characterize KSB from rape rhizospheric soil and to evaluate their effects on ryegrass growth. In this study, 16 cultivable potential KSB were isolated from rape rhizosphere at first. Then, quantitative analysis revealed that three KSB strains, named S-15, S-17 and S-18, showed the best K mineral solubilizing ability and they were identified as Mesorhizobium sp., Paenibacillus sp. and Arthrobacter sp. Inoculating the three strains into available K limit soil increased available K content significantly. The result of the pot experiment revealed that the three strains increased ryegrass growth vigor, biomass yield and K uptake to different degrees in available K deficient soil. S-17 showed the most pronounced ryegrass growth promotion ability. Further studies are required to determine the effects of the three KSB on mobilization of K-bearing minerals under field conditions.  相似文献   

13.

Background and aims

A critical soil mineral nitrogen concentration (Nmin) for guiding fertilizer application and maximizing maize grain yield is needed.

Methods

A three-year field experiment with three N regimes, unfertilized (N0), optimized N management (Opt.) and conventional N practice (Con.) was performed in maize.

Results

The mean soil Nmin in 0–60 cm soil profile for N0, Opt. and Con. treatments was 2.0, 6.7 and 8.9 mg?kg–1 at V8–VT growth stages and 2.2, 6.1 and 11.2 mg?kg–1 on average over the whole growth season, respectively. Correspondingly, the soil N supplying capacity (soil Nmin content?+?fertilizer N) of the three N treatments was smaller, identical or greater than the plant N accumulation at different growth stages. The Opt. treatment had significantly higher N use efficiency, N recovery efficiency and N partial factor productivity compared with the Con. treatment, while it did not cause maize yield loss.

Conclusions

Compared with the insensitivity of the critical shoot N dilution curve to excessive N application, soil Nmin showed strong response to all treatments. We propose a minimum of soil Nmin of 6.1 mg?kg–1 at the sowing–V8, 6.7 mg?kg–1 at the V8–VT, and 5.5 mg?kg–1 at the VT–R6 growing stages with an average of about 6 mg?kg–1 of soil Nmin in the 0–60 soil depth for maximizing maize yield and N use efficiency in northern China. To maintain this critical Nmin value over the whole growth period, N topdressing at V8 and V12 stages was recommended.  相似文献   

14.
Abstract

This work investigates the relationship between plant growth, grain yield, nutrient acquisition and partitioning in rice (Oryza sativa L.) under elevated CO2. Plants were grown hydroponically in growth chambers with a 12-h photoperiod at either 370 or 700 µmol CO2 mol?1 concentration. Plant dry mass (DM), grain yield and macro- and micronutrient concentrations of vegetative organs and grains were determined. Elevated CO2 increased biomass at tillering, and this was largely due to an increase in root mass by 160%. Elevated CO2 had no effect on total nutrient uptake (N, P, K, Mg and Ca). However, nutrient partitioning among organs was significantly altered. N partitioning to leaf blades was significantly decreased, whereas the N partitioning into the leaf sheaths and roots was increased. Nutrient use efficiency of N, P, K, and Mg in all organs was significantly increased at elevated CO2. At harvest maturity, grain yield was increased by 27% at elevated CO2 while grain (protein) concentration was decreased by a similar magnitude (28%), suggesting that critical nutrient requirements for rice might need to be reassessed with global climate change.  相似文献   

15.
芘对黑麦草根系几种低分子量有机分泌物的影响   总被引:3,自引:0,他引:3  
谢晓梅  廖敏  杨静 《生态学报》2011,31(24):7564-7570
植物根系释放分泌物与有机污染物的植物修复机制密切相关,研究具有有机污染物修复潜力植物在污染胁迫条件下的根系分泌物特征有助于揭示其修复机制.以多环芳烃修复研究中常用的黑麦草为材料(Lolium perenneL.)为材料,在营养液栽培方式下研究了在芘胁迫处理下,黑麦草根系几种低分子量有机物分泌特征.结果表明,黑麦草对芘具有较强的耐受能力,芘胁迫处理下,生物量无显著变化.黑麦草根系分泌的低分子量有机酸主要为草酸.3、6 mg/L和9 mg/L芘胁迫处理下,低分子量有机酸的组成无明显变化,但含量随芘胁迫处理浓度上升而显著增加(P<0.05);总糖分泌量随着芘胁迫处理浓度升高而呈现先略微上升后下降的趋势,相对高峰值出现在芘胁迫处理浓度3 mg/L,但差异不显著;氨基酸分泌总量随着芘胁迫处理浓度的增加而显著增多,芘胁迫浓度在3、6 mg/L和9 mg/L时,根系氨基酸的分泌总量分别是空白的1.37、2.02倍和2.65倍,但根系分泌的氨基酸组成无明显变化,19种常见氨基酸分泌的数量变化情况却不相同,分泌量总体均随着芘胁迫处理浓度的提高而增加,其中苏氨酸、丝氨酸、脯氨酸、甘氨酸、丙氨酸、亮氨酸、组氨酸和鸟氨酸的分泌量显著增多,差异显著(P<0.05).  相似文献   

16.
A hydroponics experiment was conducted to test the effects of sodium nitroprusside (SNP, a donor of NO) supplied with different concentrations on copper (Cu) toxicity in ryegrass seedlings (Lolium perenne L.). Excess Cu (200 µM) reduced chlorophyll content, resulting a decrease in photosynthesis. Cu stress induced the production of hydrogen peroxide (H2O2) and superoxide anion (O2? ?), leading to malondialdehyde (MDA) accumulation. Furthermore, activities of antioxidant enzymes in Cu-treated seedlings such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were decreased. In addition, Cu stress inhibited the uptake of K, Mg, Fe, and Zn and increased Ca content in roots. Moreover, in leaves of Cu-stressed seedlings, K, Fe, and Zn contents were decreased and the contents of Ca and Mg were not affected significantly. In Cu-treated seedlings, Cu concentration in roots was higher than in leaves. Addition of 50, 100, 200 µM SNP in Cu-mediated solutions increased chlorophyll content and photosynthesis, improved antioxidant enzyme activities, reduced Cu-induced oxidative damages, kept intracellular ion equilibrium under Cu stress, increased Cu concentration in roots and inhibited Cu accumulation in leaves. In particular, addition of 100 µM SNP had the best effect on promoting growth of ryegrass seedlings under Cu stress. However, the application of 400 µM SNP had no obvious alleviating effect on Cu toxicity in ryegrass seedlings.  相似文献   

17.
Moritsuka  Naoki  Yanai  Junta  Kosaki  Takashi 《Plant and Soil》2004,258(1):261-268
The source and the releasing processes of nonexchangeable K from the rhizosphere were evaluated by using a 0.01 M HCl sequential extraction that enables the detection of subtle depletion of nonexchangeable K in the rhizosphere. Rhizobox experiments were conducted in which maize (Zea mays L.) plants were grown on different K sources (non-allophanic Andosol, Fluvisol, biotite and orthoclase) for 17 days. Nonexchangeable K decreased significantly in the rhizosphere of Andosol, Fluvisol and biotite, but not of orthoclase. The width of depletion was about 0–1 mm from the root-accumulating compartment regardless of the K sources, and was much less than that of exchangeable (5–10 mm) and water-soluble (50 mm) K. Rhizosphere pHs were above 4.5 in any treatment. These results suggested that the main source of nonexchangeable K for maize was interlayer K in 2:1 type phyllosilicate, and that the releasing process involved was cation exchange of the K rather than mineral dissolution by protons. For the exchange of interlayer K, a decrease of solution K+ below a certain threshold is known as a prerequisite. But the concentration of solution K+ at the root compartment of Andosol or Fluvisol, estimated to be more than 100 M, was relatively higher than the known thresholds. Moreover, the significant release of nonexchangeable K from biotite occurred only at the root compartment where marked depletion of solution K+ was not observed. We therefore suggest that the release of interlayer K from the rhizosphere can occur even without a marked depletion of solution K+ through the following processes; (1) accumulation of cations such as Ca2+, Mg2+ or Na+ in the rhizosphere, (2) their adsorption on 2:1 type clay minerals near the edge of interlayer but inaccessible and nonexchangeable by NH4 +, (3) concomitant removal of the NH4 +-nonexchangable K even above the known thresholds of solution K+, which is followed by the expansion of the interlayer space, and (4) further removal of the deeper K by repetition of the above processes.  相似文献   

18.
Summary Rates of O2 uptake across isolated perfused skin of bullfrogs (Rana catesbeiana) were measured in relation to blood flow at three levels of ambient O2 tension: normoxia (O2 tension=152 torr), hypoxia (12% O2, 87 torr) and hyperoxia (42% O2, 306 torr). At bulk perfusion rates ranging from 3.4 to 10.1 l·cm-2·min-1, O2 uptake was positively correlated with hemoglobin delivery rate in both normoxia and hyperoxia, but was independent of delivery rate in hypoxia. Mean O2 uptake in normoxia was 3.8 nmol O2·cm-2·min-1 at a delivery rate of 9.8 nmol·cm-2·min-1 and 6.5 nmol O2·cm-2·min-1 at a delivery rate of 28.3 nmol·cm-2·min-1. At any given bulk perfusion rate, oxygen uptake averaged about 49% lower in hypoxia than in normoxia, decreasing in proportion to the reduction of O2 tension difference between medium and blood. In hyperoxia, O2 uptake did not increase proportionally with the difference in O2 tension between blood and medium, averaging only 50% higher at a 2.4-fold greater O2 tension difference. Cutaneous diffusing capacity for O2 averaged 0.041 nmol O2·cm-2·torr-1·min-1 during the first hour of perfusion in normoxia, and was not affected by reduction of ambient O2 tension. The results indicate that cutaneous O2 uptake in hypoxia is highly diffusion limited, and consequently, increases in cutaneous perfusion can not effectively compensate for reduction of ambient O2 tension. In hyperoxia, O2 uptake may be substantially perfusion limited because of reduced blood O2 capacitance at high O2 saturations.Abbreviations O2 capacitance - C Hb hemoglobin concentration - D diffusing capacity - PO2 medium-blood PO2 difference - Hb flow, hemoglobin delivery rate - Hepes N-[2-Hydroxyethyl]piperacine-N-[2 ethanesulfonic acid] - L diff extent of diffusion limitation - MO2 oxygen uptake rate - PO2 oxygen tension - S O2 saturation  相似文献   

19.
Kinetics for uptake and release of glutamate were measured in normal, i.e., nontransformed, astrocytes in cultures obtained from the dissociated, cortexenriched superficial parts of the brain hemispheres of newborn DBA mice. The uptake kinetics indicated a minor, unsaturable component together with an intense uptake following Michaelis-Menten kinetics. TheK m (50 M) was reasonably comparable to the corresponding values in brain slices and in other glial preparations. TheV max (58.8 nmol min–1 mg–1 protein) was, however, much higher than that observed in glial cell lines or peripheral satellite cells, and also considerably higher than that generally reported for brain slices. The release of glutamate was much smaller than the uptake, and only little affected by an increase of the external glutamate concentration, suggesting a net accumulation of glutamate rather than a homoexchange. Such an intense accumulation of glutamate into normal astrocytes may play a major role in brain metabolism and may help keep the extracellular glutamate cohcentration below excitatory levels.  相似文献   

20.
Here we characterized transepithelial taurine transport in monolayers of cultured human intestinal Caco-2 cells by analyzing kinetic apical and basolateral uptake and efflux parameters. Basolateral uptake was Na+- and Cl- dependent and was inhibited by β-amino acids. Uptake by this membrane showed properties similar to those of the apical TauT system. In both membranes, taurine uptake fitted a model consisting of a non-saturable plus a saturable component, with a higher half-saturation constant and transport capacity at the apical membrane (Km, 17.1 μmol/L; Vmax, 28.4 pmol·cm−2·5 min−1) than in the basolateral domain (Km, 9.46 μmol/L; Vmax, 5.59 pmol·cm−2·5 min−1). The non-saturable influx component, estimated in the absence of Na+ and Cl, showed no significant differences between apical and basolateral membranes (KD, 89.2 and 114.7 nL·cm−2 · 5 min−1, respectively). Taurine efflux from the cells is a diffusive process, as shown in experiments using preloaded cells and in trans-stimulation studies (apical KD,72.7 and basolateral KD, 50.1 nL·cm−2·5 min−1). Basolateral efflux rates were significantly lower than passive influx rates. We conclude that basolateral taurine uptake in Caco-2 cells is mediated by a transport mechanism that shares some properties with the apical system TauT. Moreover, calculation of unidirectional and transepithelial taurine fluxes reveals that apical influx of this amino acid is higher than basolateral efflux rates, thereby enabling epithelial cells to accumulate taurine against a concentration gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号