首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Mediterranean basin, Verticillium Wilt of Olive (VWO) is diffused throughout its range of cultivation, causing severe yield losses and tree mortality. The disease was reported in almost all the Mediterranean and Middle East countries, and in Lebanon it is of increasing significance also on many valuable crops. The disease has already been reported on potato, peach and almond in the Bekaa valley; however, to date no information is available about the incidence of VWO and the inoculum density of Verticillium dahliae microsclerotia in soil of the main agricultural areas of Lebanon. Results from the present investigations demonstrate a high V. dahliae frequency in soils (75.3%), coupled with a mean soil inoculum density of 17.0 MS g?1, clearly indicating a great impact on the production of susceptible hosts in Lebanon, mainly in Bekaa region. Molecular method to assess the microsclerotia inoculum density in soil allowed the detection of a higher frequency of infested soils, as compared with the traditional plating, thus confirming its higher sensitivity. The overall Verticillium wilt prevalence in the inspected olive orchards was 46.2%, and the frequency of V. dahliae‐infected trees was 25.7%. The widespread presence of V. dahliae in all olive growing areas of Lebanon enforces the adoption of measures aimed at reducing the soil inoculum density before any new olive plantation, and the use of strong phytosanitary regulations to improve the certification schemes of propagating material.  相似文献   

2.
Ulvan, carrageenan, alginate and laminarin were tested in olive trees’ twigs to elicit phenolic metabolism and control verticillium wilt of olive (VWO) caused by Verticillium dahliae. The elicitation effect was determined through phenylalanine ammonia-lyase activity, total polyphenol content and lignin content. VWO was assessed in twigs previously elicited (24?h) and maintained in a solution containing bio-elicitors (2?g/L) and conidial suspension (106?conidia/mL). Our results showed stimulation of the phenolic metabolism and the decline of wilt symptoms. Ulvan reduced significantly the area under the disease progress curve for severity to 39.9% and the final incidence to 28.9%. Ulvan and alginate produced significant inhibitory rates on mycelial growth of the fungus in vitro. Seaweed polysaccharides might help to overcome VWO by strengthening the host defense metabolism and restricting the pathogen’s growth.  相似文献   

3.
Plant and Soil - Verticillium wilt, caused by the soil-borne pathogenic fungus Verticillium dahliae (Kleb), is one of the most severe diseases of olive trees in Mediterranean agriculture. At...  相似文献   

4.
Olive trees play an important role in cultural, ecological, environmental and social fields, constituting in large part the Mediterranean landscape. In Tuscany, an important economic activity is based on olive. Unfortunately, the Verticillium wilt affects this species and causes vascular disease. In the present study, a real-time quantitative PCR approach has been used to detect and quantify Verticillium dahliae in soil and in olive tree tissues both in micropropagated and in seedling olives. The minimum amounts of V. dahliae DNA sequences detected in soil were 11.4 fg which is equivalent to less than one fungal haploid genome. In micropropagated olive the pathogen was detected in the leaves after 43 days, showing a vertical upward movement of the fungus from the culture medium to stem and leaves. A similar fungal behaviour was observed in inoculated olive stem where after 15 days the fungal DNA was detected from symptomless stem tissue above 8 cm the inoculation site. The described molecular approach is expected to provide a more sensitive and less time-consuming alternative detection method for V. dahliae than plating assay procedures, which were traditionally proposed as an early diagnosis method for Verticillium wilt to farmers and tree nursery growers.  相似文献   

5.
Pseudomonas fluorescens PICF7 is an indigenous inhabitant of olive (Olea europaea L.) rhizosphere, able to display endophytic lifestyle in roots, to induce a wide range of defence responses upon colonization of this organ and to exert effective biological control against Verticillium wilt of olive (VWO) (Verticillium dahliae). We aimed to evaluate the involvement of specific PICF7 phenotypes in olive root colonization and VWO biocontrol effectiveness by generating mutants impaired in swimming motility (fliI) or siderophore pyoverdine production (pvdI). Besides, the performance of mutants with diminished in vitro growth in potato dextrose agar medium (gltA) and cysteine (Cys) auxotrophy was also assessed. Results showed that olive root colonization and VWO biocontrol ability of the fliI, pvdI and gltA mutants did not significantly differ from that displayed by the parental strain PICF7. Consequently, altered in vitro growth, swimming motility and pyoverdine production contribute neither to PICF7 VWO suppressive effect nor to its colonization ability. In contrast, the Cys auxotroph mutant showed reduced olive root colonization capacity and lost full biocontrol efficacy. Moreover, confocal laser scanning microscopy revealed that all mutants tested were able to endophytically colonize root tissue to the same extent as wild‐type PICF7, discarding these traits as relevant for its endophytic lifestyle.  相似文献   

6.
New olive cultivars adapted to Tunisia’s growing conditions were examined for their resistance to verticillium wilt (VWO) to determine whether differences in susceptibility among currently grown cultivars might contribute to the management of this disease. Based on the evaluation of 14 cultivars, 10 were classified as susceptible or extremely susceptible (Chetoui, Chemlali, Rkhami, Jarboui, Zalmati, Jarboui, Oueslati, Manzanille, Picholine and Frangivento), 2 as moderately susceptible (Koroneiki and Coratina), and 2 as resistant (Meski and Sayali) to VWO. Three cultivars with different susceptibility levels were selected to examine the levels of hydrogen peroxide (H2O2), soluble sugars (SS), soluble proteins (SP), total polyphenols (TP), lipid peroxidation, activities of antioxidant enzymes, and fungal biomass in planta. V. dahliae DNA occurred early in the roots at 15 dpi and reached a maximum of 3.507 and 2.52 ng/100 ng of plant DNA, respectively, in the extremely susceptible and resistant cultivars. Fungal DNA in the stems occurred at 30 dpi and increased slowly to reach a maximum of 0.23 ng/100 ng of total DNA in the extremely susceptible cultivars. We showed that the amount of fungal DNA in planta was roughly correlated with the susceptibility to VWO (P < 0.0001; r = 0.95). The comparison of cultivars at the physiological level indicated that olive resistance is roughly correlated with the antioxidant enzymes activity, H2O2 concentration, and TP and SP contents. The results of this study open new perspectives for olive genetic improvement programs aiming at developing new cultivars resistant to this wilt.  相似文献   

7.
Olive knot disease, caused by Pseudomonas savastanoi pv. savastanoi, is one of the most important biotic constraints for olive cultivation. Pseudomonas fluorescens PICF7, a natural colonizer of olive roots and effective biological control agent (BCA) against Verticillium wilt of olive, was examined as potential BCA against olive knot disease. Bioassays using in vitro-propagated olive plants were carried out to assess whether strain PICF7 controlled knot development either when co-inoculated with the pathogen in stems or when the BCA (in roots) and the pathogen (in stems) were spatially separated. Results showed that PICF7 was able to establish and persist in stem tissues upon artificial inoculation. While PICF7 was not able to suppress disease development, its presence transiently decreased pathogen population size, produced less necrotic tumours, and sharply altered the localization of the pathogen in the hyperplasic tissue, which may pose epidemiological consequences. Confocal laser scanning microscopy combined with fluorescent tagging of bacteria revealed that when PICF7 was absent the pathogen tended to be localized at the knot surface. However, presence of the BCA seemed to confine P. savastanoi at inner regions of the tumours. This approach has also enabled to prove that the pathogen can moved systemically beyond the hypertrophied tissue.  相似文献   

8.

Background

Development of Verticillium wilt in olive, caused by the soil-borne fungus Verticillium dahliae, can be influenced by biotic and environmental factors. In this study we modeled i) the combined effects of biotic factors (i.e., pathotype virulence and cultivar susceptibility) and abiotic factors (i.e., soil temperature) on disease development and ii) the relationship between disease severity and several remote sensing parameters and plant stress indicators.

Methodology

Plants of Arbequina and Picual olive cultivars inoculated with isolates of defoliating and non-defoliating V. dahliae pathotypes were grown in soil tanks with a range of soil temperatures from 16 to 32°C. Disease progression was correlated with plant stress parameters (i.e., leaf temperature, steady-state chlorophyll fluorescence, photochemical reflectance index, chlorophyll content, and ethylene production) and plant growth-related parameters (i.e., canopy length and dry weight).

Findings

Disease development in plants infected with the defoliating pathotype was faster and more severe in Picual. Models estimated that infection with the defoliating pathotype was promoted by soil temperatures in a range of 16 to 24°C in cv. Picual and of 20 to 24°C in cv. Arbequina. In the non-defoliating pathotype, soil temperatures ranging from 16 to 20°C were estimated to be most favorable for infection. The relationship between stress-related parameters and disease severity determined by multinomial logistic regression and classification trees was able to detect the effects of V. dahliae infection and colonization on water flow that eventually cause water stress.

Conclusions

Chlorophyll content, steady-state chlorophyll fluorescence, and leaf temperature were the best indicators for Verticillium wilt detection at early stages of disease development, while ethylene production and photochemical reflectance index were indicators for disease detection at advanced stages. These results provide a better understanding of the differential geographic distribution of V. dahliae pathotypes and to assess the potential effect of climate change on Verticillium wilt development.  相似文献   

9.
马铃薯黄萎病研究现状   总被引:5,自引:0,他引:5  
马铃薯黄萎病是一种重要的世界性病害之一,为土传兼种传维管束病害,危害大且防治困难。本文将该病害的分布与危害、症状、6种病原的形态学及其生物学特性、发病规律、病原检测技术和病害综合防控措施等方面研究进行了综合概述,可为该病害的相关深入研究提供理论指导。  相似文献   

10.
Verticillium wilt of olive (Olea europaea L.), caused by Verticillium dahliae, is nowadays the most serious olive disease in Spain. The disease increments are being observed particularly in young olive plantations, favoured by several factors including inadequate cultural practices and crop production intensification, such as irrigation. Thus, three olive orchards affected by Verticillium wilt, with disease incidence ranging 30–50%, were selected to determine if the drip irrigation could favour the increase of pathogen in soil. Pathogen in soil was quantified in wet zones around the drippers and in dry zones out of them. Inoculum density in all experiments was higher in wet than in dry areas. After 4 months of watering, soil pathogen population increased considerably in wet and dry areas but inoculum density remained higher in the wet soil.  相似文献   

11.
In the present study, the efficiency of the biocontrol agent Paenibacillus alvei (strain K165) to suppress Verticillium wilt of olive tree was evaluated in greenhouse and field experiments. In planta bioassays were conducted under greenhouse conditions and revealed that K165 significantly decreased symptoms on the susceptible cultivar ‘Amfissis’ by 44.5 and 51.6 % of the final disease severity index and relative area under disease progress curve (AUDPC), respectively. Thereafter, the suppressive effect of K165 against Verticillium dahliae was studied for two consecutive years (2007 and 2008) in a newly established olive orchard of the susceptible cv Amfissis and the resistant cv Kalamon, naturally infested with V. dahliae. The evaluation of K165 was carried out by recording symptoms, isolations and qPCR quantification of the pathogen in olive tissues. In both years, ‘Amfissis’ trees treated with K165 showed significantly lower final disease severity and relative AUDPC values compared to the non treated controls, whereas, in 2008 decreased symptom severity was associated with significantly lower V. dahliae DNA levels in plant tissues, indicating the suppressive effect of the biocontrol agent. However, no significant suppression was observed in ‘Kalamon’. Pathogen isolations along with qPCR quantification revealed a seasonal fluctuation of V. dahliae biomass in olive tissues with higher amounts occurring in May, and lower amounts in February, August and November. This is the first report of biological control of Verticillium wilt of olive tree under field conditions, associated with reduced pathogen levels inside the xylem tissues.  相似文献   

12.
Ethylene evolved during compatible or susceptible disease interactions may hasten and/or worsen disease symptom development; if so, the prevention of disease-response ethylene should reduce disease symptoms. We have examined the effects of reduced ethylene synthesis on Verticillium wilt (causal organism, Verticillium dahliae) of tomato by transforming tomato with ACC deaminase, which cleaves ACC, the immediate biosynthetic precursor of ethylene in plants. Three promoters were used to express ACC deaminase in the plant: (i) CaMV 35S (constitutive expression); (ii) rolD (limits expression specifically to the site of Verticillium infection, i.e. the roots); and (iii) prb-1b (limits expression to certain environmental cues, e.g. disease infection). Significant reductions in the symptoms of Verticillium wilt were obtained for rolD- and prb-1b-, but not for 35S-transformants. The pathogen was detected in stem sections of plants with reduced symptoms, suggesting that reduced ethylene synthesis results in increased disease tolerance. The effective control of formerly recalcitrant diseases such as Verticillium wilt may thus be obtained by preventing disease-related ethylene production via the tissue-specific expression of ACC deaminase.  相似文献   

13.
Tian J  Zhang X  Liang B  Li S  Wu Z  Wang Q  Leng C  Dong J  Wang T 《PloS one》2010,5(12):e14218

Background

Programmed cell death plays an important role in mediating plant adaptive responses to the environment such as the invasion of pathogens. Verticillium wilt, caused by the necrotrophic pathogen Verticillium dahliae, is a serious vascular disease responsible for great economic losses to cotton, but the molecular mechanisms of verticillium disease and effective, safe methods of resistance to verticillium wilt remain unexplored.

Methodology/Principal Findings

In this study, we introduced baculovirus apoptosis inhibitor genes p35 and op-iap into the genome of cotton via Agrobacterium-mediated transformation and analyzed the response of transgenic plants to verticillium wilt. Results showed that p35 and op-iap constructs were stably integrated into the cotton genome, expressed in the transgenic lines, and inherited through the T3 generation. The transgenic lines had significantly increased tolerance to verticillium wilt throughout the developmental stages. The disease index of T1–T3 generation was lower than 19, significantly (P<0.05) better than the negative control line z99668. After treatment with 250 mg/L VD-toxins for 36 hours, DNA from negative control leaves was fragmented, whereas fragmentation in the transgenic leaf DNA did not occur. The percentage of cell death in transgenic lines increased by 7.11% after 60 mg/L VD-toxin treatment, which was less than that of the negative control lines''s 21.27%. This indicates that p35 and op-iap gene expression partially protects cells from VD-toxin induced programmed cell death (PCD).

Conclusion/Significance

Verticillium dahliae can trigger plant cells to die through induction of a PCD mechanism involved in pathogenesis. This paper provides a potential strategy for engineering broad-spectrum necrotrophic disease resistance in plants.  相似文献   

14.
Verticillium wilt, caused by the soilborne fungus, Verticillium alfalfae, is one of the most serious diseases of alfalfa (Medicago sativa L.) worldwide. To identify loci associated with resistance to Verticillium wilt, a bulk segregant analysis was conducted in susceptible or resistant pools constructed from 13 synthetic alfalfa populations, followed by association mapping in two F1 populations consisted of 352 individuals. Simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers were used for genotyping. Phenotyping was done by manual inoculation of the pathogen to replicated cloned plants of each individual and disease severity was scored using a standard scale. Marker-trait association was analyzed by TASSEL. Seventeen SNP markers significantly associated with Verticillium wilt resistance were identified and they were located on chromosomes 1, 2, 4, 7 and 8. SNP markers identified on chromosomes 2, 4 and 7 co-locate with regions of Verticillium wilt resistance loci reported in M. truncatula. Additional markers identified on chromosomes 1 and 8 located the regions where no Verticillium resistance locus has been reported. This study highlights the value of SNP genotyping by high resolution melting to identify the disease resistance loci in tetraploid alfalfa. With further validation, the markers identified in this study could be used for improving resistance to Verticillium wilt in alfalfa breeding programs.  相似文献   

15.
Verticillium wilt of olive, caused by Verticillium dahliae Kleb., is the most severe disease affecting this crop in most olive growing countries. In this study, the presence of viable structures of V. dahliae in dried inflorescences from wilted olive shoots was investigated. The pathogen was found inside peduncles and flowers, by assessing the number of typical star‐shaped microsclerotial colonies formed onto the modified sodium polypectate agar medium. Microsclerotia of V. dahliae were observed inside the peduncles under the stereoscopic microscope. The presence of microsclerotia in these easily decomposable olive tissues shows that infected inflorescences can act as a source of inoculum for Verticillium wilt epidemics.  相似文献   

16.
Fusarium wilt, caused by Fusarium oxysporum f. sp. lycopersici, and Verticillium wilt, caused by either Verticillium albo-atrum or Verticillium dahliae, are devastating diseases of tomato (Lycopersicon esculentum) found worldwide. Monitoring is the cornerstone of integrated pest management of any disease. The lack of rapid, accurate, and reliable means by which plant pathogens can be detected and identified is one of the main limitations in integrated disease management. In this paper, we describe the development of a molecular detection system, based on DNA array technology, for rapid and efficient detection of these vascular wilt pathogens. We show the utility of this array for the sensitive detection of these pathogens from complex substrates like soil, plant tissues and irrigation water, and samples that are collected by tomato growers in their greenhouses.  相似文献   

17.
The wilt diseases caused by Verticillium dahliae and Fusarium oxysporum are the major diseases of eggplant (Solanum melongena L.). In order to generate transgenic resistance against the wilt diseases, Agrobacterium-mediated gene transfer was performed to introduce alfalfa glucanase gene encoding an acidic glucanase into eggplant using neomycin phosphotransferase (npt-II) gene as a plant selection marker. The transgene integration into eggplant genome was confirmed by Polymerase chain reaction (PCR) and Southern blot analysis and transgene expression by the glucanase activity and western blot analysis. The selected transgenic lines were challenged with V. dahliae and F. oxysporum under in vitro and in vivo growth conditions, and transgenic lines showed enhanced resistance against the wilt-causing fungi with a delay of 5–7 days in the disease development as compared to wild-type plants.  相似文献   

18.

Aims

Our objective was to evaluate if natural recovery may be exploited in disease control of Verticillium wilt in olive. Therefore, we evaluated the following: the incidence of natural recovery; the Verticillium dahliae viability within olive tissues over time and the effectiveness of soil solarization, calcium cyanamide and pollarding of trees at soil level in promoting natural recovery.

Methods

Three different experiments (A, B and C) were performed in commercial olive orchards planted with the highly susceptible cv. ‘Bella di Cerignola’ and infested with the non-defoliating V. dahliae pathotype.

Results

In experiment A, in the period 2010–2012, natural recovery occurred on 35 of 138 diseased trees (25 %); however, this recovery was transient and lasted between 3 months for 11 trees (8 %) and 21 months for one tree (0.7 %). V. dahliae tended to be inactivated in twigs within 1 or 2 years after symptom onset (experiment A). However, it was evident that V. dahliae was more abundant in larger (trunk and first- or second-order branches) versus thinner woody parts of olive trees (roots; experiment B). In the attempt to explore whether natural recovery could be further stimulated artificially, it was observed that soil solarization and soil application of calcium cyanamide were ineffective in promoting its occurrence. Tree pollarding at soil level induced a transient recovery, which lasted only 1 year (experiment C).

Conclusions

Based on our observations, natural recovery of susceptible olive from Verticillium wilt has a low impact on the disease epidemiology in the short-term only and cannot be effectively stimulated in practice by soil solarization, calcium cyanamide or tree pollarding.  相似文献   

19.
20.
《Plant science》1988,58(1):111-119
Somaclonal variation in disease reaction type to infection by the vascular wilt pathogen Verticillium albo-atrum Reinke & Berth was assessed in a population of lucerne plants regenerated from callus lines obtained from a susceptible cultivar. Disease severity in the regenerant population was reduced by comparison with parental controls. Seed progeny and plants recovered via a second tissue culture cycle reverted to mainly susceptible reaction types. In a further experiment a low molecular weight toxic fraction from culture filtrates of the fungus was incorporated into the callus medium prior to regeneration. Toxin treatment reduced the regenerative capacity of callus, and there was little evidence for a higher frequency of wilt resistant plants in populations selected at low toxin concentrations. The results suggest that somaclonal variation as an alternative breeding strategy for disease resistance in lucerne offers no advantages over conventional recurrent selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号