首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water stress and nutrient deficiency are considered to be the main environmental factors limiting plant growth and species interaction in semiarid regions. However, less is known about the interactive effects of soil water, nitrogen and phosphorus on native species growth and relative competitive ability. A replacement series design method was used with 12 mixed plants of Bothriochloa ischaemum and Lespedeza davurica grown in a pot experiment under three water regimes and four fertility treatments. Intercropping systems were assessed on the basis of indices such as biomass production and allocation, relative competitive ability, aggressivity, relative yield total and water use efficiency (WUE). Water stress decreased significantly the total biomass production for each species, either in monoculture or in mixtures. N, P, or NP application can significantly improve biomass production of the two species in their mixtures. There was no obvious change trend in root/shoot ratio of B. ischaemum or L. davurica in different mixture proportions. Relative yield total (RYT) values ranged from 0.98 to 1.39. Aggressivity values of B. ischaemum to L. davurica were positive in all water regimes and fertilizations, implying that B. ischaemum was the dominant species. Relative competition intensity values of B. ischaemum (i.e., RCIB) were less than zero, while greater than zero for L. davurica (i.e., RCIL), indicating that the effects of intraspecific competition with L. davurica were stronger for B. ischaemum, and the opposite for L. davurica. WUE increased gradually as the proportion of B. ischaemum increased in mixtures, and a 10:2 B. ischaemum:L. davurica mixture proportion had significantly higher WUE. Results suggest that it is advantageous to grow the two species together to maximize biomass production and the recommended mixture ratio was 10:2 of B. ischaemum to L. davurica because it gave higher RYT and significantly higher WUE under conditions of water deficit.  相似文献   

2.
Xu BC  Xu WZ  Huang J  Shan L  Li FM 《Plant science》2011,181(6):644-651
A better understanding of the growth and interspecific competition of native dominant species under water stress should aid in prediction of succession in plant communities. In addition, such research would guide the selection of appropriate conservation and agricultural utilization of plants in semiarid environments that have not been very well characterized. Biomass production and allocation, relative competitive ability and water use efficiency of one C4 herbaceous grass (Bothriochloa ischaemum) and one C3 leguminous subshrub (Lespedeza davurica), both important species from the semiarid Loess Plateau of China, were investigated in a pot-cultivation experiment. The experiment was conducted using a replacement series design in which B. ischaemum and L. davurica were grown with twelve plants per pot, in seven combinations of the two species (12:0, 10:2, 8:4, 6:6, 4:8, 2:10, and 0:12). Three levels of water treatments included sufficient water supply (HW), moderate water stress (MW) and severe water stress (LW). These treatments were applied after seedling establishment and remained until the end of the experiment. Biomass production and its partitioning, and transpiration water use efficiency (TWUE) were determined at the end of the experiment. Interspecific competitive indices (competitive ratio (CR), aggressiveness (A) and relative yield total (RYT)) were calculated from the dry weight for shoots, roots and total biomass. Water stress decreased biomass production of both species in monoculture and mixture. The growth of L. davurica was restrained in their mixtures for each water treatment. L. davurica had significantly (P < 0.05) greater root:shoot allocation than B. ischaemum for each water treatment and proportion within the replacement series. Aggressiveness (A) values for B. ischaemum with respect to L. davurica were negative only at the proportions of B. ischaemum to L. davurica being 8:4 and 10:2 in LW treatment. B. ischaemum had a significantly (P < 0.05) higher CR value under each water treatment, and water stress considerably reduced its relative CR while increased that of L. davurica. RYT values of the two species indicated some degree of resource complimentarity under both water sufficient and deficit conditions. The results suggest that it is advantageous for growing the two species together to maximize biomass production, and the suggested ratio was 10:2 of B. ischaemum to L. davurica because of significantly higher (P < 0.05) RYT and TWUE under low water availability condition.  相似文献   

3.
Arbuscular mycorrhizal fungi (AMF) regulate soil nutrient cycling, directly supplying a host plant with nitrogen (N). AMF can also affect the outcome of interspecific interactions, but a mechanistic understanding of how soil N availability affects AMF-mediated interspecific relationships is currently lacking. We selected one dominant (Bothriochloa ischaemum; C4 grass) and one subordinate (Lespedeza davurica; legume) species in a natural grassland climax community to investigate the mechanism by which AMF influence interspecific interaction (mixed and monoculture) under three levels of N addition (0, low, and high N addition). Under the non-N addition treatment, AMF preferentially supplied N to the roots of B. ischaemum at the expense of N uptake by L. davurica, resulting in inhibited AMF benefits for L. davurica shoot growth. Under the low N addition treatment, interspecific interaction via AMF promoted L. davurica growth. Compared to the non-N addition treatment, N addition largely mitigated the effects, both positive (for B. ischaemum) and negative (for L. davurica), of AMF-mediated interspecific interaction on plant N uptake via AMF. When soil N availability severely limited plant growth, preferential N supply to the C4 grass by AMF was important for maintaining the abundance of the dominant species. When the N limitation for plant growth was alleviated by N addition, the interaction between AMF and soil microorganisms improved nutrient availability for the legume by stimulating activity of the enzyme responsible for soil organic matter mineralization, which is important for maintaining the abundance of the subordinate species. These data could influence strategies for maintaining biodiversity.  相似文献   

4.
Arbuscular mycorrhizal fungi (AMF) can improve plant nutrient acquisition, either by directly supplying nutrients to plants or by promoting soil organic matter mineralization, thereby affecting interspecific plant relationships in natural communities. We examined the mechanism by which the addition of P affects interspecific interactions between a C4 grass (Bothriochloa ischaemum, a dominant species in natural grasslands) and a C3 legume (Lespedeza davurica, a subordinate species in natural grasslands) via AMF and plant growth, by continuous 13C and 15N labelling, combined with soil enzyme analyses. The results of 15N labelling revealed that P addition affected the shoot uptake of N via AMF by Bischaemum and Ldavurica differently. Specifically, the addition of P significantly increased the shoot uptake of N via AMF by Bischaemum but significantly decreased that by Ldavurica. Interspecific plant interactions via AMF significantly facilitated the plant N uptake via AMF by B. ischaemum but significantly inhibited that by L. davurica under P-limited soil conditions, whereas the opposite effect was observed in the case of excess P. This was consistent with the impact of interspecific plant interaction via AMF on arbuscular mycorrhizal (AM) benefit for plant growth. Our data indicate that the capability of plant N uptake via AMF is an important mechanism that influences interspecific relationships between C4 grasses and C3 legumes. Moreover, the effect of AMF on the activities of the soil enzymes responsible for N and P mineralization substantially contributed to the consequence of interspecific plant interaction via AMF for plant growth.  相似文献   

5.
为阐明黄土丘陵区氮磷添加对草地群落优势种养分利用特征的影响,探究群落结构和物种多样性的变化机制,选取5个典型优势种,即白羊草(Bothriochloa ischaemum)、长芒草(Stipa bungeana)、达乌里胡枝子(Lespedeza davurica)、铁杆蒿(Artemisia sacrorum)和猪毛蒿(Artemisia scoparia)为研究对象,采用裂区试验设计,以氮添加为主区处理, 包括:0(N0)、25(N25)、50(N50) 和100(N100) kg N hm-2 a-1;以磷添加为副区处理,包括:0(P0),20(P20),40(P40) 和80(P80) kg P2O5 hm-2 a-1,测定了各物种叶片氮磷比、氮磷重吸收效率、氮磷利用效率和相对生物量等参数。5种植物的氮和磷重吸收效率正相关,对氮磷添加量的响应具有耦合性。不同氮磷添加处理下,达乌里胡枝子叶片氮磷比最高,而氮磷重吸收效率最低;白羊草和长芒草的氮磷利用效率和重吸收效率高于其他物种。单施磷或N25与磷配施下,各物种相对生物量与氮磷比和磷利用效率呈正相关关系,与氮利用效率和氮磷重吸收效率呈负相关关系。单施氮、N50和N100与磷配施下,各物种相对生物量与氮磷利用效率和重吸收效率呈正相关,与氮磷比呈负相关。不施肥处理下,白羊草和长芒草相对生物量最高,低氮高磷下达乌里胡枝子相对生物量最高,高氮高磷下铁杆蒿和猪毛蒿相对生物量最高。不同优势种对氮磷添加的响应不同,生理生态过程各异,决定了其在群落中的优势度,这是氮磷添加后草地群落结构和物种多样性发生变化的关键机制。  相似文献   

6.
Transient and steady state responses of leaf gas exchange (photosynthesis (A) and stomatal conductance to water vapor (gs)) to marked changes in photosynthetic photon flux density (PPFD) were studied for two invasive [Cynodon dactylon (L.) Pers. and Sorghum halepense (L.) Pers.] and two non-invasive, native [Bothriochloa ischaemum (L.) Keng and Chrysopogon gryllus (Torn.) Trin.] perennial C4 grass species from semiarid temperate grasslands or croplands. Following an abrupt drop in PPFD from 1300 to 270 μmol photon m?2 s?1, the two invasive species reduced gs to a greater extent than A, resulting in higher intrinsic photosynthetic water use efficiency (PWUE = A/gs) at low, compared to high-light conditions. For non-invasives, a comparable drop in gs and A led to invariant PWUE, which was lower than that for the invasive group under low light. The duration and speed of stomatal closure was similar for the four species. However, unlike the other grasses, the noxious weed S. halepense exhibited a negligible net loss in PWUE during the high-to-low light transition. Responses of the native B. ischaemum were mostly intermediate between those of the two invasive species and the non-invasive C. gryllus, which is in agreement with the species’ ecological intermediacy: non-invasive but often reaches local dominance following a disturbance. With a sudden reverse change in PPFD photosynthetic light induction was not faster for invasives than for non-invasives. These results indicate more efficient water use under variable light for invasive compared to non-invasive perennial C4 grasses which may contribute to their success in semiarid temperate habitats with a heterogeneous light regime. Yet, rapid photosynthetic light induction appears to be of less importance in such environments.  相似文献   

7.
Bothriochloa ischaemum L. is an important species in many temperate regions, but information about the interactive effects of water stress and fertilization on its photosynthetic characteristics was inadequate. A pot experiment was conducted to investigate the effects of three water [80% (HW), 40% (MW), and 20% (LW) of field capacity (FC)] and four fertilization regimes [nitrogen (N), phosphorus (P), nitrogen with phosphorus (NP), and no fertilization] on leaf photosynthesis. Leaf gas exchange and photosynthetic light-response curves were measured at the flowering phase of B. ischaemum. Water stress decreased not only the leaf gas-exchange parameters, such as net photosynthetic rate (P N), stomatal conductance (g s), transpiration rate (E), and water-use efficiency (WUE) of B. ischaemum, but also downregulated P N-photosynthetically active radiation (PAR) curve parameters, such as light-saturated net photosynthetic rate (P Nmax), apparent quantum efficiency (AQE), and light compensation point (LCP). Fertilization (N, P, and NP) enhanced the daily mean P N values and P Nmax under the HW regime. Addition of N (either alone or with P) improved the photosynthetic capacity of B. ischaemum under the MW and LW regimes by increasing P N, P Nmax, and AQE and reducing dark respiration rate and LCP, but the addition of P alone did not significantly improve the photosynthetic performance. Decline in P N under each fertilization regime occurred during the day and it was caused mainly by nonstomatal limitation. Our results indicated that water was the primary limiting factor for photosynthesis in B. ischaemum, and that appropriate levels of N fertilization improved its potential photosynthetic capacity under water-deficit conditions.  相似文献   

8.
Transient and steady state responses of leaf gas exchange (photosynthesis (A) and stomatal conductance to water vapor (gs)) to marked changes in photosynthetic photon flux density (PPFD) were studied for two invasive [Cynodon dactylon (L.) Pers. and Sorghum halepense (L.) Pers.] and two non-invasive, native [Bothriochloa ischaemum (L.) Keng and Chrysopogon gryllus (Torn.) Trin.] perennial C4 grass species from semiarid temperate grasslands or croplands. Following an abrupt drop in PPFD from 1300 to 270 μmol photon m−2 s−1, the two invasive species reduced gs to a greater extent than A, resulting in higher intrinsic photosynthetic water use efficiency (PWUE = A/gs) at low, compared to high-light conditions. For non-invasives, a comparable drop in gs and A led to invariant PWUE, which was lower than that for the invasive group under low light. The duration and speed of stomatal closure was similar for the four species. However, unlike the other grasses, the noxious weed S. halepense exhibited a negligible net loss in PWUE during the high-to-low light transition. Responses of the native B. ischaemum were mostly intermediate between those of the two invasive species and the non-invasive C. gryllus, which is in agreement with the species’ ecological intermediacy: non-invasive but often reaches local dominance following a disturbance. With a sudden reverse change in PPFD photosynthetic light induction was not faster for invasives than for non-invasives. These results indicate more efficient water use under variable light for invasive compared to non-invasive perennial C4 grasses which may contribute to their success in semiarid temperate habitats with a heterogeneous light regime. Yet, rapid photosynthetic light induction appears to be of less importance in such environments.  相似文献   

9.
Potassium- (K) and water-stratification in conservation tillage, rain-fed agroecosystems may reduce soybean [Glycine max (L.) Merr.] performance. A split-pot experiment with two soil-K levels [80 mg Kg?1 (Low-K) and 164 mg Kg?1 (Optimum-K)] and two soil-water contents [insufficient (Dry): variable between 55 to 85% field capacity (FC); sufficient (Wet): constant at 85 to 95% FC] was imposed to determine the effect of synchronous and asynchronous availability of localized K and soil water on soybean roots, nutrient uptake, and shoot growth. Asynchrony of soil water and K had no impact on soybean dry matter accumulation or nutrient uptake. Optimum soil K levels were relatively more important than soil water content to increase K availability and K tissue concentration and accumulation. Shoot?C and root-growth responded more to water?C than to K-stress. Shoot-K accumulation increased concomitantly with sufficient water availability and greater root surface area (RSA), but RSA was more important relative to water for K accumulation. Optimum-K with sufficient-water increased K accumulation by 50% compared to the insufficient-water treatment. Since enhanced K uptake occurred with greater RSA, and roots proliferated in response to water availability and not localized K, K should be placed in the soil fraction that provides sufficient water availability.  相似文献   

10.
In the Loess Plateau, China, arable cultivation of slope lands is common and associated with serious soil erosion. Planting trees or grass may control erosion, but planted species may consume more soil water and can threaten long‐term ecosystem sustainability. Natural vegetation succession is an alternative ecological solution to restore degraded land, but there is a time cost, given that the establishment of natural vegetation, adequate to prevent soil erosion, is a longer process than planting. The aims of this study were to identify the environmental factors controlling the type of vegetation established on abandoned cropland and to identify candidate species that might be sown soon after abandonment to accelerate vegetation succession and establishment of natural vegetation to prevent soil erosion. A field survey of thirty‐three 2 × 2–m plots was carried out in July 2003, recording age since abandonment, vegetation cover, and frequency of species together with major environmental and soil variables. Data were analyzed using correspondence analysis, classification tree analysis, and species response curves. Four vegetation types were identified and the data analysis confirmed the importance of time since abandonment, total P, and soil water in controlling the type of vegetation established. Among the dominant species in the three late‐successional vegetation types, the most appropriate candidates for accelerating and directing vegetation succession were King Ranch bluestem (Bothriochloa ischaemum) and Lespedeza davurica (Leguminosae). These species possess combinations of the following characteristics: tolerance of low water and nutrient availability, fibrous root system and strong lateral vegetative spread, and a persistent seed bank.  相似文献   

11.
12.
黄土丘陵沟壑区由于土壤侵蚀严重,天然植被恢复缓慢,植被稀疏,枯枝落叶层的生态效应就显得尤为重要。对该区坡沟不同立地条件下草本群落主要物种的枯落物蓄积量、持水与养分潜在归还能力进行了分析,探讨主要物种枯落物对土壤的改善作用。结果表明:1)坡沟不同立地条件下枯落物蓄积量差异显著(P0.05),在73.74—175.26 g/m2之间变化,表现为阴沟坡峁顶阳沟坡阴梁峁坡阳梁峁坡;在坡面不同微地形下也差异显著(P0.05),在阳坡表现为株丛浅沟鱼鳞坑裸地,在阴坡为浅沟鱼鳞坑株丛裸地,在峁顶为株丛裸地。2)主要物种枯落物最大持水量可达自身干重的1.22—4.34倍;不同物种枯落物间的持水能力差异极显著(P0.01),表现为白羊草叶铁杆蒿叶白羊草茎达乌里胡枝子叶长芒草达乌里胡枝子枝铁杆蒿枝。3)枯落物C、N含量分别在7.35%—40.33%和0.61%—1.60%之间,不同物种间差异极显著(P0.01),同一物种枯落物C、N含量在坡沟不同立地条件下差异不显著。4)影响枯落物分解的木质素含量(1.00%—8.20%)、纤维素含量(3.16%—14.06%)、木质素/N值(0.78—12.48)、C/N值(5.61—57.41)在不同物种间差异极显著(P0.01);同一物种木质素含量、纤维素含量和木质素/N值在坡沟不同立地条件下差异显著(P0.05),而C/N值不显著。5)铁杆蒿叶的枯落物养分潜在归还能力最大,达乌里胡枝子和白羊草的枯落物次之,长芒草的枯落物养分潜在归还能力最小。  相似文献   

13.
孙庆花  张超  刘国彬  薛萐 《生态学报》2016,36(8):2233-2242
为探索自然演替中植被群落结构与化感作用之间的关系,以黄土丘陵区自然演替中先锋种群茵陈蒿为研究对象,通过种子萌发试验,分析演替初期优势种群茵陈蒿浸提液(甲醇浸提液和水浸提液)对自身以及伴生种种子萌发以及幼苗生长的影响,从化学生态学角度解释演替初期群落结构形成的原因。结果表明,茵陈蒿浸提液对3种伴生种(铁杆蒿、白羊草和达乌里胡枝子)的种子萌发均有显著化感作用,低浓度(0.002g/m L)时表现为促进或轻微的抑制作用,高浓度(0.2g/m L)时为较强的抑制作用;不同部位茵陈蒿浸提液的化感作用不同,相比之下,地上部的抑制作用更为强烈,其浸提液均抑制铁杆蒿、白羊草和达乌里胡枝子的种子萌发,尤其在浓度为0.2 g/m L时,达到完全抑制;根系甲醇浸提液对铁杆蒿种子萌发的抑制作用要强于同浓度下的水浸提液,而地上部水浸提液对受体植物根芽的作用大于甲醇浸提液。茵陈蒿对于自身具有一定的抑制作用,表现为高浓度(0.2和0.02 g/m L)的水和甲醇浸提液抑制自身种子萌发和幼苗生长。研究结果说明化感作用可能是该地区在演替前期形成以茵陈蒿为优势种植被群落的重要原因之一。创新点:从化学生态学的角度解释了黄土丘陵区植被演替初期植物之间的关系以及群落结构形成的原因,为认识自然恢复的内在机理提供了新的视角。  相似文献   

14.
Old World Bluestems (OWB), introduced from Europe and Asia in the 1920s, recently have begun to raise concerns in the Great Plains. Despite suggestion in the late 1950s that OWB were weedy and negatively impacted biological diversity, they were widely introduced throughout the Great Plains for agricultural purposes. Anecdotal evidence suggests that OWB exhibit invasive characteristics that promote competitive exclusion of native species. The objective of our study was to quantify the competitive abilities of two OWB species (Caucasian bluestem; Bothriochloa bladhii (Retz.) S.T. Blake (= Bothriochloa caucasica (Trin.) C.E. Hubb.) and yellow bluestem; Bothriochloa ischaemum (L.) Keng) with three native grass species (big bluestem (Andropogon gerardii Vitman), little bluestem (Schizachyrium scoparium (Michx.) Nash), and sideoats grama (Bouteloua curtipendula (Michx.) Torr.)). A greenhouse target-neighbor study was conducted to assess both interspecific and intraspecific competition. A total of 480 pots (4.4 l) filled with native soil was used with all pair-wise combinations of species and four density treatments (six replications). Vegetative tiller height, above- and belowground biomass were measured at the end of 16 weeks. Both of the OWB significantly inhibited at least one growth parameter of the three native grass species, while most of the native species did not inhibit growth of either OWB species. Growth of B. ischaemum was enhanced when grown in association with S. scoparium. Based upon the results of our study of OWB competitive superiority and previous research, many of the characteristics possessed by OWB are found to be in common with known invasive species. Hence, we propose that two OWB are competitively superior to three common native prairie species providing them with the ability to invade and threaten the native grasslands of the Central and Southern Great Plains.  相似文献   

15.
干旱胁迫下黄土高原4种乡土禾草抗氧化特性   总被引:5,自引:0,他引:5  
单长卷  韩蕊莲  梁宗锁 《生态学报》2012,32(4):1174-1184
采用盆栽实验,对干旱胁迫下黄土高原4种乡土禾草冰草、长芒草、无芒隐子草和白羊草叶片过氧化氢(H2O2)、丙二醛(MDA)含量、抗氧化酶超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)、脱氢抗坏血酸还原酶(DHAR)、单脱氢抗坏血酸还原酶(MDHAR)、谷胱甘肽过氧化物酶(GPX)活性和非酶抗氧化物质还原型抗坏血酸(AsA)、还原型谷胱甘肽(GSH)、类胡萝卜素(Car)含量进行了测定。 结果表明:随着干旱胁迫程度的加剧,4种乡土禾草叶片H2O2、MDA含量均呈增加趋势,这说明它们均遭受了干旱所造成的氧化胁迫,且干旱程度越大其遭受的氧化胁迫也越大。由于4种乡土禾草均为禾本科植物并生存于相同的生态环境中,它们在抗氧化特性上具有一定共性。在60%FC和45%FC干旱胁迫下,4种乡土禾草均可以通过增加抗氧化酶SOD、CAT、APX、GR、DHAR、MDHAR、GPX活性和非酶抗氧化物质AsA含量来抵御干旱所造成的氧化胁迫。由于种属差异,4种乡土禾草的抗氧化特性也存在差异。在60%FC和45%FC干旱胁迫下,冰草、无芒隐子草和白羊草还通过增加非酶抗氧化物质Car含量增强抗氧化能力,长芒草和白羊草则还可通过增加POD活性抵御干旱。在60%FC干旱胁迫下,冰草还可通过增加非酶抗氧化物质GSH含量提高其抗氧化性。采用隶属函数法对4种乡土草种抗氧化能力的综合评价表明,冰草的抗氧化能力最强,其次为无芒隐子草和白羊草,长芒草的抗氧化能力最差。  相似文献   

16.
The effects of water stress were investigated in two Tunisian Medicago truncatula populations collected from arid (Mt-173) and sub-humid (Mt-664) climates and two Tunisian M. laciniata populations originating from arid (Ml-173) and semi-arid (Ml-345) regions. After a pre-treatment phase (24 days after sowing, DAS) of watering at 100% of field capacity (FC), the plants were either irrigated at 100% FC or at only 33% FC. After 12 days of treatment (36 DAS), one lot of dehydrated plants was rewatered at 100% FC. A final harvest was carried out after 24 days of treatment (48 DAS). Measured parameters were total dry weight (TDW), root shoot ratio (RSR), leaf relative water content (RWC), osmotic potential (OP), photosynthetic parameters (CO2 net assimilation A, stomatal conductance gs and transpiration E), malondialdehyde (MDA) concentration and leaf contents in inorganic (Na+ and K+) and organic solutes (proline and soluble sugars). Under water deficit conditions, compared to M. laciniata, M. truncatula populations showed a higher reduction in TDW, A, gs and RWC associated with a higher increase in MDA concentration. Thus, the relative tolerance of M. laciniata populations to water shortage would be related to their lower intrinsic growth rate and stomatal control of gas exchange. TDW, A, gs, E and RWC were more decreased by water deficit in Ml-345 than in Ml-173. Drought tolerance of Ml-173 was found to be associated with a more pronounced decrease of OP and a lower reduction in RWC due to the accumulation of solutes such as proline, soluble sugars and K+. In addition, Ml-173 showed the highest water use efficiency values (WUE) and the lowest MDA concentrations under water deficit stress.  相似文献   

17.
The effects of water deficit stress on growth, Na+, K+ and osmolyte accumulation in the halophyte species Cakile maritima were investigated. Two Tunisian provenances, Tabarka and Chaffar, belonging to different bioclimatic stages, humid and arid, respectively, were compared. After germination, thirty-day-old seedlings were cultivated for 4 weeks under optimal or limiting water supply, at 100% and 25% of field capacity (FC), respectively. A subset of stressed plants was thereafter rehydrated. The final harvest was carried out after 60 days of treatment. Upon water deficit stress, Chaffar provenance showed significantly lower reduction in biomass production, net CO2 assimilation and stomatal conductance as well as of leaf water content. Leaf malondialdehyde (MDA) content was significantly increased in the two provenances but this effect was more pronounced in Tabarka plants than in Chaffar ones. Several criteria seem to be associated with the relative tolerance of Chaffar to water deficit: a slow growth rate, a greater ability to control photosynthetic gas exchange, a high ability to preferentially allocate photoassimilates to its roots, and a greater capacity for osmotic adjustment ensured by K+ and some compatible solutes such as proline and glycine betaine, but not soluble sugars. The superiority of Chaffar provenance also appeared at the level of its ability to recover after a severe water deficit stress (irrigation at 25% FC only during one month). The data suggest that compatible osmolytes (proline and glycine betaine) accumulated upon water deficit stress play important roles in this halophyte, being involved not only in osmotic adjustment but probably serving also in preservation of the structural and functional integrity at the cellular level during water deficit.  相似文献   

18.
The gas exchange characteristics are reported for Amaranthus tricolor, a C4 vegetable amaranth of southeastern Asia. Maximum photosynthetic capacity was 48.3±1.0μmol CO2 m?2s?1 and the temperature optimum was 35°C. The calculated intercellular CO2 concentration at this leaf temperature and an incident photon flux (400–700 mm) of 2 mmol m?2s?1 averaged 208±14 μl l?1, abnormally high for a C4 species. The photosynthetic rate, intercellular CO2 concentration, and leaf conductance all decreased with an increase in water vapor pressure deficit. However, the decrease in leaf conductance which resulted in a decrease in intercellular CO2 concentration accounted for only one fourth of the observed decrease in photosynthetic rate as water vapor pressure deficit was increased. Subsequent measurements indicated that the depence of net photosynthesis on intercellular CO2 concetration changed with water vapor pressure deficit.  相似文献   

19.
In 7 species (Eleocharis palustris R. Br.,Juncus bufonius L.,Gypsophila muralis L.,Trifolium repens L.,Agrostis stolonifera L.,Potentilla anserina L. andAchillea millefolium L.) growing in a gradient of habitats from aquatic to terrestrial, on a sandy fishpond shore in Southern Bohemia, Czechoslovakia, the daily course of transpiration rate and water content was assessed gravimetrically in their cut-off transpiring parts on two typical summer days. Transpiration rate was largely controlled by microclimate but depressions occurred inJuncus and in some species growing in the drier habitats. The highest instantaneous transpiration rate and total daily transpiration per unit dry weight, about 100 mg g?1 min?1 and 50 g g?1 d?1, respectively, were recorded inAchillea andTrifolium. The water turnover rate ranged from 16.1 g g?1 (H2O) d?1 inJuncus to 10.7 inGypsophila. The estimated daily maximum water saturation deficit was highest inEleocharis (45.7%) and lowest inAchillea (15.0%). The adaptational significance of the observed phenomena is discussed.  相似文献   

20.
The spread of non‐indigenous, C4 grasses threatens global conservation of savannas and subtropical grasslands. Identifying control methods to selectively target these invasives has proven difficult. Here, we tested the hypothesis that the effectiveness of prescribed burns for control is determined, in part, by the phenology of the target species at burn time. We conducted two experiments in a subhumid, C4 grassland in central Texas. The focal invasive was the C4, perennial bunchgrass Bothriochloa ischaemum (L.) Keng (KR bluestem). Burns were conducted in early and late fall when plants were in different phenological states. In addition, we attempted to manipulate phenological state through temporary rainout shelters to expedite maturation. The two experiments differed in the timing of the rainout shelter application (experiment 1: May to July, experiment 2: August and September), but otherwise had the same complete factorial design (burn time × shelter). Across experiments, when at least 50% of all tillers were pre‐reproductive at burn time, either due to shelter treatment or time of year, spring tiller densities were significantly lower than when plants were burned in a more advanced reproductive state. Trends in fall biomass generally followed trends in spring tiller densities, with one exception where plants in no‐shelter plots burned in October had lower biomass than expected based on tiller densities. Treatment responses for the native C4 grass B. laguroides were consistent with those of B. ischaemum. These findings suggest that strategic burns can be used to reduce the subsequent recovery of invasive C4 grasses while not disadvantaging native grasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号