首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
? We tested the prediction that the abundance and diversity of arbuscular mycorrhizal (AM) fungi are influenced by resource availability and plant community composition by examining the joint effects of carbon dioxide (CO(2) ) enrichment, nitrogen (N) fertilization and plant diversity on AM fungi. ? We quantified AM fungal spores and extramatrical hyphae in 176 plots after 7 yr of treatment with all combinations of ambient or elevated CO(2) (368 or 560 ppm), with or without N fertilization (0 or 4 g Nm(-2) ), and one (monoculture) or 16 host plant species (polyculture) in the BioCON field experiment at Cedar Creek Ecosystem Science Reserve, Minnesota, USA. ? Extramatrical hyphal lengths were increased by CO(2) enrichment, whereas AM spore abundance decreased with N fertilization. Spore abundance, morphotype richness and extramatrical hyphal lengths were all greater in monoculture plots. A structural equation model showed AM fungal biovolume was most influenced by CO(2) enrichment, plant community composition and plant richness, whereas spore richness was most influenced by fungal biovolume, plant community composition and plant richness. ? Arbuscular mycorrhizal fungi responded to differences in host community and resource availability, suggesting that mycorrhizal functions, such as carbon sequestration and soil stability, will be affected by global change.  相似文献   

2.
Enhanced nitrogen (N) availability is one of the main drivers of biodiversity loss and degradation of ecosystem functions. However, in very nutrient-poor ecosystems, enhanced N input can, in the short-term, promote diversity. Mediterranean Basin ecosystems are nutrient-limited biodiversity hotspots, but no information is available on their medium- or long-term responses to enhanced N input. Since 2007, we have been manipulating the form and dose of available N in a Mediterranean Basin maquis in south-western Europe that has low ambient N deposition (<4 kg N ha−1 yr−1) and low soil N content (0.1%). N availability was modified by the addition of 40 kg N ha−1 yr−1 as a 1∶1 NH4Cl to (NH4)2SO4 mixture, and 40 and 80 kg N ha−1 yr−1 as NH4NO3. Over the following 5 years, the impacts on plant composition and diversity (richness and evenness) and some ecosystem characteristics (soil extractable N and organic matter, aboveground biomass and % of bare soil) were assessed. Plant species richness increased with enhanced N input and was more related to ammonium than to nitrate. Exposure to 40 kg NH4 +-N ha−1 yr−1 (alone and with nitrate) enhanced plant richness, but did not increase aboveground biomass; soil extractable N even increased under 80 kg NH4NO3-N ha−1 yr−1 and the % of bare soil increased under 40 kg NH4 +-N ha−1 yr−1. The treatment containing less ammonium, 40 kg NH4NO3-N ha−1 yr−1, did not enhance plant diversity but promoted aboveground biomass and reduced the % of bare soil. Data suggest that enhanced NHy availability affects the structure of the maquis, which may promote soil erosion and N leakage, whereas enhanced NOx availability leads to biomass accumulation which may increase the fire risk. These observations are relevant for land use management in biodiverse and fragmented ecosystems such as the maquis, especially in conservation areas.  相似文献   

3.
Although nitrogen (N) deposition is increasing globally, N availability still limits many organisms, such as microorganisms and mesofauna. However, little is known to which extent soil organisms rely on mineral‐derived N and whether plant community composition modifies its incorporation into soil food webs. More diverse plant communities more effectively compete with microorganisms for mineral N likely reducing the incorporation of mineral‐derived N into soil food webs. We set up a field experiment in experimental grasslands with different levels of plant species and functional group richness. We labeled soil with 15NH4 15NO3 and analyzed the incorporation of mineral‐derived 15N into soil microorganisms and mesofauna over 3 months. Mineral‐derived N incorporation decreased over time in all investigated organisms. Plant species richness and presence of legumes reduced the uptake of mineral‐derived N into microorganisms. In parallel, the incorporation of mineral‐derived 15N into mesofauna species declined with time and decreased with increasing plant species richness in the secondary decomposer springtail Ceratophysella sp. Effects of both plant species richness and functional group richness on other mesofauna species varied with time. The presence of grasses increased the 15N incorporation into Ceratophysella sp., but decreased it in the primary decomposer oribatid mite Tectocepheus velatus sarekensis. The results highlight that mineral N is quickly channeled into soil animal food webs via microorganisms irrespective of plant diversity. The amount of mineral‐derived N incorporated into soil animals, and the plant community properties affecting this incorporation, differed markedly between soil animal taxa, reflecting species‐specific use of food resources. Our results highlight that plant diversity and community composition alter the competition for N in soil and change the transfer of N across trophic levels in soil food webs, potentially leading to changes in soil animal population dynamics and community composition. Sustaining high plant diversity may buffer detrimental effects of elevated N deposition on soil biota.  相似文献   

4.
Rates of nitrogen (N) deposition have been historically high throughout much of the northeastern United States; thus, understanding the legacy of these high N loads is important for maintaining forest productivity and resilience. Though many studies have documented plant invasions due to N deposition and associated impacts on ecosystems, less is known about whether invasive plants will continue to increase in dominance with further shifting nutrient regimes. Using soil N and carbon additions, we examined the impact of both increasing and decreasing soil N on native and invasive understory plant dynamics over 4 years in a northeastern deciduous forest with a long history of N deposition. Despite applying large quantities of N, we found no difference in soil nitrate (NO3) or ammonium (NH4 +) pools in N addition plots over the course of the study. Indicative of the potential N saturation in these forest soils, resin-available NO3 ? and NH4 + showed evidence that the added N was rapidly moving out of the soil in N addition plots. Accordingly, we also found that adding N to soil altered neither invasive nor native plant abundance, though adding N temporally increased invasive plant richness. Carbon additions decreased soil N availability seasonally, but did not alter the total percent cover of invasive or native plants. Rather than being suppressed by excess N availability, native plant species in this ecosystem are primarily inhibited by the invasive species, which now dominate this site. In conclusion, understory plant communities in this potentially N-saturated ecosystem may be buffered to future alterations in N availability.  相似文献   

5.
We examined plant community responses to interactions between arbuscular mycorrhizal (AM) fungi and availability of atmospheric CO2 and soil N. Communities of 14 plant species were grown in mesocosms containing living or killed AM fungal inoculum, ambient or elevated atmospheric CO2 and low or enriched soil N. After one growing season, significantly different plant communities existed in the different treatments. Plant species richness was lowest in +N mesocosms and highest in +AM + CO2 mesocosms. At ambient CO2, AM fungi reduced richness but at elevated CO2 they increased it. This was caused by changes in mortality rates of several C3 forbs and may suggest that CO2 enrichment ameliorates the carbon cost of some AM symbioses. Soil moisture was higher in +CO2 mesocosms but +AM counteracted this effect. These results suggest that AM symbioses may be important mediators of plant community responses to anthropogenic CO2 and N enrichment.  相似文献   

6.
Increased resource availability and feedbacks with soil biota have both been invoked as potential mechanisms of plant invasion. Nitrogen (N) deposition can enhance invasion in some ecosystems, and this could be the result of increased soil N availability as well as shifts in soil biota. In a two-phase, full-factorial greenhouse experiment, we tested effects of N availability and N-impacted soil communities on growth responses of three Mediterranean plant species invasive in California: Bromus diandrus, Centaurea melitensis, and Hirschfeldia incana. In the first phase, plants were grown individually in pots and inoculated with sterile soil, soil from control field plots or soil from high N addition plots, and with or without supplemental N. In the second phase, we grew the same species in soils conditioned in the first phase. We hypothesized growth responses would differ across species due to species-specific relationships with soil biota, but overall increased N availability and N-impacted soil communities would enhance plant growth. In the first phase, Centaurea had the greatest growth response when inoculated with N-impacted soil, while Bromus and Hirschfeldia performed best in low N soil communities. However, in phase two all species exhibited positive growth responses in N-impacted soil communities under high N availability. While species may differ in responses to soil biota and N, growth responses to soils conditioned by conspecifics appear to be most positive in all species under high N availability and/or in soil communities previously impacted by simulated N deposition. Our results suggest N deposition could facilitate invasion due to direct impacts of soil N enrichment on plant growth, as well as through feedbacks with the soil microbial community.  相似文献   

7.
Understanding the links between plant diversity and soil communities is critical to disentangling the mechanisms by which plant communities modulate ecosystem function. Experimental plant communities varying in species richness, evenness, and density were established using a response surface design and soil community properties including bacterial and archaeal abundance, richness, and evenness were measured. The potential to perform a representative soil ecosystem function, oxidation of ammonium to nitrite, was measured via archaeal and bacterial amoA genes. Structural equation modeling was used to explore the direct and indirect effects of the plant community on soil diversity and potential function. Plant communities influenced archaea and bacteria via different pathways. Species richness and evenness had significant direct effects on soil microbial community structure, but the mechanisms driving these effects did not include either root biomass or the pools of carbon and nitrogen available to the soil microbial community. Species richness had direct positive effects on archaeal amoA prevalence, but only indirect impacts on bacterial communities through modulation of plant evenness. Increased plant evenness increased bacterial abundance which in turn increased bacterial amoA abundance. These results suggest that plant community evenness may have a strong impact on some aspects of soil ecosystem function. We show that a more even plant community increased bacterial abundance, which then increased the potential for bacterial nitrification. A more even plant community also increased total dissolved nitrogen in the soil, which decreased the potential for archaeal nitrification. The role of plant evenness in structuring the soil community suggests mechanisms including complementarity in root exudate profiles or root foraging patterns.  相似文献   

8.
Atmospheric nitrogen (N) deposition greatly affects ecosystem processes and properties. However, few studies have simultaneously examined the responses of both the above- and belowground communities to N deposition. Here, we investigated the effects of 8 years of simulated N deposition on soil microbial communities and plant diversity in a subtropical forest. The quantities of experimental N added (g of N m−2 year−1) and treatment codes were 0 (N0, control), 6 (N1), 12 (N2), and 24 (N3). Phospholipid fatty acids (PLFAs) analysis was used to characterize the soil microbial community while plant diversity and coverage were determined in the permanent field plots. Microbial abundance was reduced by the N3 treatment, and plant species richness and coverage were reduced by both N2 and N3 treatments. Declines in plant species richness were associated with decreased abundance of arbuscular mycorrhizal fungi, increased bacterial stress index, and reduced soil pH. The plasticity of soil microbial community would be more related to the different responses among treatments when compared with plant community. These results indicate that long-term N deposition has greater effects on the understory plant community than on the soil microbial community and different conservation strategies should be considered.  相似文献   

9.
The world's ecosystems are subjected to various anthropogenic global change agents, such as enrichment of atmospheric CO2 concentrations, nitrogen (N) deposition, and changes in precipitation regimes. Despite the increasing appreciation that the consequences of impending global change can be better understood if varying agents are studied in concert, there is a paucity of multi‐factor long‐term studies, particularly on belowground processes. Herein, we address this gap by examining the responses of soil food webs and biodiversity to enrichment of CO2, elevated N, and summer drought in a long‐term grassland study at Cedar Creek, Minnesota, USA (BioCON experiment). We use structural equation modeling (SEM), various abiotic and biotic explanatory variables, and data on soil microorganisms, protozoa, nematodes, and soil microarthropods to identify the impacts of multiple global change effects on drivers belowground. We found that long‐term (13‐year) changes in CO2 and N availability resulted in modest alterations of soil biotic food webs and biodiversity via several mechanisms, encompassing soil water availability, plant productivity, and – most importantly – changes in rhizodeposition. Four years of manipulation of summer drought exerted surprisingly minor effects, only detrimentally affecting belowground herbivores and ciliate protists at elevated N. Elevated CO2 increased microbial biomass and the density of ciliates, microarthropod detritivores, and gamasid mites, most likely by fueling soil food webs with labile C. Moreover, beneficial bottom‐up effects of elevated CO2 compensated for detrimental elevated N effects on soil microarthropod taxa richness. In contrast, nematode taxa richness was lowest at elevated CO2 and elevated N. Thus, enrichment of atmospheric CO2 concentrations and N deposition may result in taxonomically and functionally altered, potentially simplified, soil communities. Detrimental effects of N deposition on soil biodiversity underscore recent reports on plant community simplification. This is of particular concern, as soils house a considerable fraction of global biodiversity and ecosystem functions.  相似文献   

10.
Background: Gradients in the amounts and duration of snowpack and resulting soil moisture gradients have been associated with different plant communities across alpine landscapes.

Aims: The extent to which snow additions could alter plant community structure, both alone and in combination with nitrogen (N) and phosphorus (P) additions, provided an empirical assessment of the strength of these variables on structuring the plant communities of the alpine tundra at Niwot Ridge, Colorado Front Range.

Methods: A long-term snow fence was used to study vegetation changes in responses to snowpack, both alone and in conjunction with nutrient amendments, in plots established in dry and moist meadow communities in the alpine belt. Species richness, diversity, evenness and dissimilarity were evaluated after 20 years of treatments.

Results: Snow additions, alone, reduced species richness and altered species composition in dry meadow plots, but not in moist meadow; more plant species were found in the snow-impacted areas than in nearby controls. Changes in plant community structure to N and N + P additions were influenced by snow additions. Above-ground plant productivity in plots not naturally affected by snow accumulation was not increased, and the positive responses of plant species to nutrient additions were reduced by snow addition. Plant species showed individualistic responses to changes in snow and nutrients, and indirect evidence suggested that competitive interactions mediated responses. A Permanova analysis demonstrated that community dissimilarity was affected by snow, N, and P additions, but with these responses differing by community type for snow and N. Snow influenced community patterns generated by N, and finally, the communities impacted by N + P were significantly different than those affected by the individual nutrients.

Conclusions: These results show that changes in snow cover over a 20-year interval produce measureable changes in community composition that concurrently influence and are influenced by soil nutrient availability. Dry meadow communities exhibit more sensitivity to increases in snow cover whereas moist meadow communities appear more sensitive to N enrichment. This study shows that the dynamics of multiple limiting resources influence both the productivity and composition of alpine plant communities, with, species, life form, and functional traits mediating these responses.  相似文献   

11.
12.
Legumes are an important component of plant diversity that modulate nitrogen (N) cycling in many terrestrial ecosystems. Limited knowledge of legume effects on soil N cycling and its response to global change factors and plant diversity hinders a general understanding of whether and how legumes broadly regulate the response of soil N availability to those factors. In a 17‐year study of perennial grassland species grown under ambient and elevated (+180 ppm) CO2 and ambient and enriched (+4 g N m?2 year?1) N environments, we compared pure legume plots with plots dominated by or including other herbaceous functional groups (and containing one or four species) to assess the effect of legumes on N cycling (net N mineralization rate and inorganic N pools). We also examined the effects of numbers of legume species (from zero to four) in four‐species mixed plots on soil N cycling. We hypothesized that legumes would increase N mineralization rates most in those treatments with the greatest diversity and the greatest relative limitation by and competition for N. Results partially supported these hypotheses. Plots with greater dominance by legumes had greater soil nitrate concentrations and mineralization rates. Higher species richness significantly increased the impact of legumes on soil N metrics, with 349% and 505% higher mineralization rates and nitrate concentrations in four‐species plots containing legumes compared to legume‐free four‐species plots, in contrast to 185% and 129% greater values, respectively, in pure legume than nonlegume monoculture plots. N‐fertilized plots had greater legume effects on soil nitrate, but lower legume effects on net N mineralization. In contrast, neither elevated CO2 nor its interaction with legumes affected net N mineralization. These results indicate that legumes markedly influence the response of soil N cycling to some, but not all, global change drivers.  相似文献   

13.
To address how multiple, interacting climate drivers may affect plant–insect community associations, we sampled insects that naturally colonized a constructed old‐field plant community grown for over 2 years under simultaneous CO2, temperature, and water manipulation. Insects were sampled using a combination of sticky traps and vacuum sampling, identified to morphospecies and the insect community with respect to abundance, richness, and evenness quantified. Individuals were assigned to four broad feeding guilds in order to examine potential trophic level effects. Although there were occasional effects of CO2 and water treatment, the effects of warming on the insect community were large and consistent. Warming significantly increased Order Thysanoptera abundance and reduced overall morphospecies richness and evenness. Nonmetric multidimensional scaling found that only temperature affected insect community composition, while a Sørensen similarity index showed less correspondence in the insect community between temperature treatments compared with CO2 or soil water treatments. Within the herbivore guild, elevated temperature significantly reduced richness and evenness. Corresponding reductions of diversity measures at higher trophic levels (i.e. parasitoids), along with the finding that herbivore richness was a significant predictor of parasitoid richness, suggest trophic‐level effects within the insect community. When the most abundant species were considered in temperature treatments, a small number of species increased in abundance at elevated temperature, while others declined compared with ambient temperature. Effects of temperature in the dominant insects demonstrated that treatment effects were limited to a relatively small number of morphospecies. Observed effects of elevated CO2 concentration on whole‐community foliar N concentration did not result in any effect on herbivores, which are probably the most susceptible guild to changes in plant nutritional quality. These results demonstrate that climatic warming may alter certain insect communities via effects on insect species most responsive to a higher temperature, contributing to a change in community structure.  相似文献   

14.
Long-term responses of terrestrial ecosystems to the combined effects of warming and elevated CO2 (eCO2) will likely be regulated by N availability. The stock of soil N determines availability for organisms, but also influences loss to the atmosphere or groundwater. eCO2 and warming can elicit changes in soil N via direct effects on microbial and plant activity, or indirectly, via soil moisture. Detangling the interplay of direct- and moisture-mediated impacts on soil N and the role of organisms in controlling soil N will improve predictions of ecosystem-level responses. We followed individual soil N pools over two growing seasons in a semiarid temperate grassland, at the Prairie Heating and CO2 Enrichment experiment. We evaluated relationships of N pools with environmental factors and explored the role of plants by assessing plant biomass, plant N, and plant inputs to soil. We also assessed N forms in plots with and without vegetation to remove plant-mediated effects. Our study demonstrated that the effects of warming and eCO2 are highly dependent on individual N form and on year. In this water-constrained grassland, eCO2, warming and their combination appear to impact soil N pools through a complex combination of direct- and moisture-mediated effects. eCO2 decreased NO3 ? but had neutral to positive effects on NH4 + and dissolved organic N (DON), particularly in a wet year. Warming increased NO3 ? availability due to a combination of indirect drying and direct temperature-driven effects. Warming also increased DON only in vegetated plots, suggesting plant mediation. Our results suggest that impacts of combined eCO2 and warming are not always equivalent for plant and soil pools; although warming can help offset the decrease in NO3 ? availability for plants under eCO2, the NO3 ? pool in soil is mainly driven by the negative effects of eCO2.  相似文献   

15.
Recent interest in spatial pattern in terrestrial ecosystems has come from an awareness of the intimate relationship between spatial heterogeneity of soil resources and maintenance of plant species diversity. Soil and vegetation can vary spatially in response to several state factors of the system. In this study, we examined fine-scale spatial variability of soil nutrients and vascular plant species in contrasting herb-dominated communities (a pasture and an old field) to determine degree of spatial dependence among soil variables and plant community characteristics within these communities by sampling at 1-m intervals. Each site was divided into 25 1-m2 plots. Mineral soil was sampled (2-cm diameter, 5-cm depth) from each of four 0.25-m2 quarters and combined into a single composite sample per plot. Soil organic matter was measured as loss-on-ignition. Extractable NH4 and NO3 were determined before and after laboratory incubation (28 days at 27°C) to determine potential net N mineralization and nitrification. Cations were analyzed using inductively coupled plasma emission spectrometry. Vegetation was assessed using estimated percent cover. Most soil and plant variables exhibited sharp contrasts between pasture and old-field sites, with the old field having significantly higher net N mineralization/nitrification, pH, Ca, Mg, Al, plant cover, and species diversity, richness, and evenness. Multiple regressions revealed that all plant variables (species diversity, richness, evenness, and cover) were significantly related to soil characteristics (available nitrogen, organic matter, moisture, pH, Ca, and Mg) in the pasture; in the old field only cover was significantly related to soil characteristics (organic matter and moisture). Both sites contrasted sharply with respect to spatial pattern of soil variables, with the old field exhibiting a higher degree of spatial dependence. These results demonstrate that land-use practices can exert profound influence on spatial heterogeneity of both soil properties and vegetation in herb-dominated communities.  相似文献   

16.
We determined soil microbial community composition and function in a field experiment in which plant communities of increasing species richness were exposed to factorial elevated CO2 and nitrogen (N) deposition treatments. Because elevated CO2 and N deposition increased plant productivity to a greater extent in more diverse plant assemblages, it is plausible that heterotrophic microbial communities would experience greater substrate availability, potentially increasing microbial activity, and accelerating soil carbon (C) and N cycling. We, therefore, hypothesized that the response of microbial communities to elevated CO2 and N deposition is contingent on the species richness of plant communities. Microbial community composition was determined by phospholipid fatty acid analysis, and function was measured using the activity of key extracellular enzymes involved in litter decomposition. Higher plant species richness, as a main effect, fostered greater microbial biomass, cellulolytic and chitinolytic capacity, as well as the abundance of saprophytic and arbuscular mycorrhizal (AM) fungi. Moreover, the effect of plant species richness on microbial communities was significantly modified by elevated CO2 and N deposition. For instance, microbial biomass and fungal abundance increased with greater species richness, but only under combinations of elevated CO2 and ambient N, or ambient CO2 and N deposition. Cellobiohydrolase activity increased with higher plant species richness, and this trend was amplified by elevated CO2. In most cases, the effect of plant species richness remained significant even after accounting for the influence of plant biomass. Taken together, our results demonstrate that plant species richness can directly regulate microbial activity and community composition, and that plant species richness is a significant determinant of microbial response to elevated CO2 and N deposition. The strong positive effect of plant species richness on cellulolytic capacity and microbial biomass indicate that the rates of soil C cycling may decline with decreasing plant species richness.  相似文献   

17.
Mediterranean ecosystems are water-limited and frequently also nutrient-limited. We aimed to investigate the effects of increasing drought, as predicted by GCM and eco-physiological models for the next decades, on the P cycle and P plant availability in a Mediterranean forest. We conducted a field experiment in a mature evergreen oak forest, establishing four drought-treatment plots and four control plots (150 m2 each). After three years, the runoff and rainfall exclusion reduced an overall 22% the soil moisture, and the runoff exclusion alone reduced it 10%. The reduction of 22% in soil moisture produced a decrease of 40% of the accumulated aboveground plant P content, above all because there was a smaller increase in aerial biomass. The plant leaf P content increased by 100 ± 40 mg m−2 in the control plots, whereas it decreased by 40 ± 40 mg m−2 in the drought plots. The soil Po-NaHCO3 (organic labile-P fraction) increased by 25% in consonance with the increase in litterfall, while the inorganic labile-P fraction decreased in relation to the organic labile-P fraction up to 48%, indicating a decrease in microbial activity. Thus, after just three years of slight drought, a clear trend towards an accumulation of P in the soil and towards a decrease of P in the stand biomass was observed. The P accumulation in the soil in the drought plots was mainly in forms that were not directly available to plants. These indirect effects of drought including the decrease in plant P availability, may become a serious constraint for plant growth and therefore may have a serious effect on ecosystem performance.  相似文献   

18.
Baer SG  Blair JM  Collins SL  Knapp AK 《Oecologia》2004,139(4):617-629
Availability and heterogeneity of resources have a strong influence on plant community structure in undisturbed systems, as well as those recovering from disturbance. Less is known about the role of resource availability and heterogeneity in restored communities, although restoration provides a valuable opportunity to test our understanding of factors that influence plant community assembly. We altered soil nitrogen (N) availability and soil depth during a prairie restoration to determine if the availability and/or heterogeneity of soil resources influenced plant community composition in restored grassland communities. Plant community responses to three levels of N availability (ambient, enriched by fertilization, and reduced by carbon amendment) and two levels of soil depth (deep and shallow) were evaluated. In addition, we evaluated plant community responses to four whole plot heterogeneity treatments created from the six possible combinations of soil N availability and soil depth. The soil depth treatment had little influence on community structure during the first 3 years of restoration. Total diversity and richness declined over time under annual N enrichment, whereas diversity was maintained and richness increased over time in soil with reduced N availability. Non-native species establishment was lowest in reduced-N soil in the initial year, but their presence was negligible in all of the soil N treatments by the second year of restoration. Panicum virgatum, a native perennial C4 grass, was the dominant species in all soil N treatments by year three, but the magnitude of its dominance was lowest in the reduced-N soil and highest in enriched-N soil. Consequently, the relative cover of P. virgatum was strongly correlated with community dominance and inversely related to diversity. The differential growth response of P. virgatum to soil N availability led to a higher degree of community similarity to native prairie in the reduced-N treatment than in the enriched-N treatment. There were no differences in plant community structure among the four whole plot-level heterogeneity treatments, which all exhibited the same degree of similarity to native prairie. Diversity and community heterogeneity in the whole-plot treatments appeared to be regulated by the dominant species effect on light availability, rather than soil N heterogeneity per se. Our results indicate that a strong differential response of a dominant species to resource availability in a restored community can regulate community structure, diversity, and similarity to the native (or target) community, but the importance of resource heterogeneity in restoring diversity may be dampened in systems where a dominant species can successfully establish across a range of resource availability.  相似文献   

19.
This study is the first to investigate quantitative effects of plant community composition and diversity on N2 fixation in legumes. N2 fixation in three perennial Trifolium species grown in field plots with varied number of neighbouring species was evaluated with the 15N natural abundance method (two field sites, several growing seasons, no N addition) and the isotope dilution method (one site, one growing season, 5 g N m−2). The proportion of plant N derived from N2 fixation, pNdfa, was generally high, but the N addition decreased pNdfa, especially in species-poor communities. Also following N addition, the presence of grasses in species-rich communities increased pNdfa in T. hybridum and T. repens L., while legume abundance had the opposite effect. In T. repens, competition for light from grasses appeared to limit growth and thereby the amount of N2 fixed at the plant level, expressed as mg N2 fixed per sown seed. We conclude that the occurrence of diversity effects seems to be largely context dependent, with soil N availability being a major determinant, and that species composition and functional traits are more important than species richness regarding how neighbouring plant species influence N2 fixation in legumes.  相似文献   

20.
牛玉斌  余海龙  王攀  樊瑾  王艳红  黄菊莹 《生态学报》2019,39(22):8462-8471
为了深入了解P添加是否有助于缓解N沉降增加引起的植物群落多样性降低等问题,以宁夏盐池县长期围封的荒漠草原为研究对象,探讨了连续两年(2015—2016年) 5 g/m~2/a的N水平下,P添加对植物生物量、群落多样性和土壤C∶N∶P生态化学计量特征的影响,分析了植物群落多样性与土壤C∶N∶P比及其他关键因子的关系。结果表明:少量N添加下,增施P肥促进了植物生物量积累,但中高量P添加抑制了多数植物生长,使牛枝子(Lespedeza potaninii)、草木樨状黄芪(Astragalus melilotoides)和苦豆子(Sophora alopecuroides)等物种重要值降低;随着P添加量增加,Shannon-Wiener多样性指数和Patrick丰富度指数先增加后降低,Simpson优势度指数逐渐增加,Pielou均匀度指数变化幅度较小;随着P添加量增加,土壤C∶P和N∶P比逐渐降低;土壤N∶P比、C∶P比、全P含量、速效P浓度以及微生物量C∶P比与植物群落多样性关系密切,意味着N沉降增加下趋于解耦的土壤元素平衡关系可能会影响到植物群落组成。综合以上结果,适量P添加可以通过提高土壤P有效性、增加凋落物归还量和刺激微生物P释放等途径,调节土壤P供给和植物P需求间的压力,从而缓解N添加引起的植物群落多样性降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号