首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work investigated the influence of temperature, enzyme concentration, substrates molar ratio, in the absence and presence of organic solvent, at two molar ratios of the substrates on the enzymatic production of linalil esters using the immobilized lipase Novozym 435 as catalyst, different acids and linalool and Ho-Sho essential oil as substrates. The best reaction conversion was obtained at the highest temperature (70 °C), for both solvent free (3.81%) and with solvent addition (2.25%), for a solvent to substrates molar ratio of 2:1, enzyme concentration of 5 wt% and acid to alcohol molar ratio of 1:1. The reaction kinetics revealed that Ho-Sho essential oil afforded the greatest conversions when compared with pure linalool. Higher linalil esters production were achieved after 10 h reaction (5.58%) in 2:1 solvent to substrates molar ratio, with enzyme concentration of 5 wt%, at 70 °C and anhydride to alcohol molar ratio of 1:1 using Ho-Sho essential oil as substrate.  相似文献   

2.
The enzymatic coproduction of biodiesel and glycerol carbonate by the transesterification of soybean oil was studied using lipase as catalyst in organic solvent. To produce biodiesel and glycerol carbonate simultaneously, experiments were designed sequentially. Enzyme screening, the molar ratio of dimethyl carbonate (DMC) to soybean oil, reaction temperature and solvent effects were investigated. The results of enzyme screening, at 100 g/L Novozym 435 (immobilized Candida antarctica lipase B), biodiesel and glycerol carbonate showed conversions of 58.7% and 50.7%, respectively. The optimal conditions were 60 °C, 100 g/L Novozym 435, 6.0:1 molar ratio with tert-butanol as solvent: 84.9% biodiesel and 92.0% glycerol carbonate production was achieved.  相似文献   

3.
The use of immobilized lipase from Candida antarctica (Novozym(?) 435) to catalyze acetylation of trans-3,5,4'-trihydroxystilbene was investigated in this study. Response surface methodology and 5-level-4-factor central composite rotatable design were adopted to evaluate the effects of synthesis variables, including reaction time (24-72 h), temperature (25-65 °C), substrate molar ratio (1:15-1:75), and enzyme amount (600-3,000 PLU) on the percentage molar conversion of trans-4'-O-acetyl-3,5-dihydroxystilbene. The results showed that reaction temperature and enzyme amount were the most important parameters on percentage molar conversion. Based on ridge max analysis, the optimum conditions for synthesis were: reaction time 60 h, reaction temperature 64 °C, substrate molar ratio 1:56 and enzyme amount 2,293 PLU. The molar conversion of actual experimental values was 95% under optimal conditions. The synthesis product was analyzed using HPLC, mass and NMR. The results revealed that the major product was trans-4'-O-acetyl-3,5-dihydroxystilbene. The reaction kinetics was found to follow the Ping-Pong mechanism; substrate inhibition was not found at high vinyl acetate concentration.  相似文献   

4.
In this study, we report the enzymatic production of glycerol acetate from glycerol and methyl acetate. Lipases are essential for the catalysis of this reaction. To find the optimum conditions for glycerol acetate production, sequential experiments were designed. Type of lipase, lipase concentration, molar ratio of reactants, reaction temperature and solvents were investigated for the optimum conversion of glycerol to glycerol acetate. As the result of lipase screening, Novozym 435 (Immobilized Candida antarctica lipase B) was turned out to be the optimal lipase for the reaction. Under the optimal conditions (2.5 g/L of Novozym 435, 1:40 molar ratio of glycerol to methyl acetate, 40 °C and tert-butanol as the solvent), glycerol acetate production was achieved in 95.00% conversion.  相似文献   

5.
In this study, the synthesis of 3-O-β-D-galactopyranosyl-sn-glycerol (GG) was performed by the reverse hydrolysis of D-galactose and glycerol using β-galactosidase from Kluyveromyces lactis. Four process variables, reaction temperature (30.0–45.0?°C), reaction time (24–48?h), enzyme concentration (150.00–350.00?U/mL), and substrate molar ratio (glycerol:D-galactose, 7.5:12.5?mmol/mmol) were investigated and optimized via response surface methodology (RSM) for optimal GG synthesis. Both quadratic equations and the optimal reaction conditions were established. Results showed that the four variables, i.e., reaction temperature, reaction time, enzyme concentration, and substrate molar ratio had significant (p?β-galactosidase concentration and 8.65:1.00 of substrate molar concentration ratio (glycerol: D-galactose) at 39.8?°C and 48?h of reaction. Under these conditions, the GG concentration was 140.03?g/L and GG yield was 55.71%, which both were close to the predicted values (143.26?g/L and 56.73%). This finding proves the RSM to be a useful tool in optimizing process conditions for GG synthesis.  相似文献   

6.
In this study, benzyl benzoate was successfully synthesized via enzymatic acylation using three immobilized enzymes as biocatalysts. Different acyl donors (benzoic acid and benzoic anhydride), operation regimes (batch, fed-batch), mixing modes (conventional mechanical stirring and ultrasound), process parameters (temperature, substrate molar ratio of acyl donor to acyl acceptor), presence or absence of solvents, enzyme amount and type were evaluated. Benzoic acid is a solid that is difficult to solubilize and, thus, was not efficient as acyl donor for the synthesis of benzyl benzoate. On the other hand, benzoic anhydride was very effective for the acylation of benzyl benzoate, and the presence of an excess of benzyl alcohol was essential to ensure the solute-solvent intermolecular attractions and good substrate solubilization, allowing the ester synthesis to be performed in the absence of organic solvents. The ultrasound was effective in increasing increase the initial reaction rate and the final conversion (88 %). However, the Lipozyme TL-IM and RM-IM supports were damaged, and the reuse was unfeasible. The batch and fed-batch approaches in conventional stirring ensured high conversions of 92 and 90 %, respectively, for batch (anhydride: alcohol 1:6) and fed-batch (1:3) using the Lipozyme TL-IM as biocatalyst. The controlled addition of the anhydride (fed-batch) allowed the reduction of alcohol molar ratio but decreased the reaction rates, and the maximum conversions were reached only after 24 h, while the batch approach had 92 % of conversion after 6 h. The yield of benzyl benzoate was high at 6 wt.% of enzyme, low temperature (50 °C), and simple reactor operation (batch). Results show the feasibility of the synthesis of benzyl benzoate via acylation using a green process that may be an alternative route to the chemical synthesis.  相似文献   

7.
Commercially available enzyme preparations were screened for enzymes that have a high ability to catalyze direct ester-synthesis of ferulic acid with glycerol. Only a preparation, Pectinase PL “Amano” produced by Aspergillus niger, feruloylated glycerol under the experimental conditions. The enzyme responsible for the esterification was purified and characterized. This enzyme, called FAE-PL, was found to be quite similar to an A. niger ferulic acid esterase (FAE-III) in terms of molecular mass, pH and temperature optima, substrate specificity on synthetic substrates, and the N-terminal amino acid sequence. FAE-PL highly catalyzed direct esterification of ferulic acid and sinapinic acid with glycerol. FAE-PL could feruloylate monomeric sugars including arabinose, fructose, galactose, glucose, and xylose. We determined the suitable conditions for direct esterification of ferulic acid with glycerol to be as follows: 1% ferulic acid in the presence of 85% glycerol and 5% dimethyl sulfoxide at pH 4.0 and 50 °C. Under these conditions, 81% of ferulic acid could be converted to 1-glyceryl ferulate, which was identified by 1H-NMR. The ability of 1-glyceryl ferulate to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals was higher than that of the anti-oxidant butyl hydroxytoluene.  相似文献   

8.
《Process Biochemistry》2010,45(4):586-592
Immobilized lipase-catalyzed synthesis of benzoic acid hydrazide from hydrazine and phenyl benzoate is reported in this work. A series of immobilized lipases such as Candida antarctica lipase B, Mucor miehei lipase and Thermomyces lanuginosus lipase were screened to establish that C. antarctica lipase B was the best lipase for hydrazinolysis. When phenyl benzoate (0.01 mol) and hydrazine (0.02 mol) in toluene (15 ml) were reacted with C. antarctica lipase B (Novozym 435) at 50 °C, 95% of phenyl benzoate was converted to benzoic acid hydrazide after 2 h. The effects of various parameters such as speed of agitation, concentration of the substrates, temperature, enzyme concentration, and reusability of the enzyme were studied to deduce kinetics and mechanism of the reaction. A mechanism based on an ordered bi–bi dead end complex with hydrazine was found to fit the data. Systematic deactivation studies indicated that the enzyme was deactivated due to the hydrazine and phenol, enzyme deactivation obeys first-order series model. The kinetic parameters deduced from these models were used to simulate the lipase activity. There was a very good agreement between the simulated and experimental values.  相似文献   

9.
《Process Biochemistry》2010,45(4):519-525
The production of biodiesel with soybean oil and methanol through transesterification by Novozym 435 (Candida antarctica lipase B immobilized on polyacrylic resin) were conducted under two different conditions—ultrasonic irradiation and vibration to compare their overall effects. Compared with vibration, ultrasonic irradiation significantly enhanced the activity of Novozym 435. The reaction rate was further increased under the condition of ultrasonic irradiation with vibration (UIV). Effects of reaction conditions, such as ultrasonic power, water content, organic solvents, ratio of solvent/oil, ratio of methanol/oil, enzyme dosage and temperature on the activity of Novozym 435 were investigated under UIV. Under the optimum conditions (50% of ultrasonic power, 50 rpm vibration, water content of 0.5%, tert-amyl alcohol/oil volume ratio of 1:1, methanol/oil molar ratio of 6:1, 6% Novozym 435 and 40 °C), 96% yield of fatty acid methyl ester (FAME) could be achieved in 4 h. Furthermore, repeated use of Novozym 435 after five cycles showed no obvious loss in enzyme activity, which suggested this enzyme was stable under the UIV condition. These results indicated that UIV was a fast and efficient method for biodiesel production.  相似文献   

10.
Glycerol carbonate is one of the higher value-added products derived from glycerol. In this study, glycerol carbonate (GC) was synthesized by transesterification of glycerol and dimethyl carbonate (DMC) using Novozym 435 (Candida antarctica Lipase B) at various conditions. For the enzymatic production of GC, the optimum conditions were the amount of enzyme (75 g/L), DMC/glycerol molar ratio (2.00), reaction temperature (60°C) and organic solvent (acetonitrile). Experimental investigation of the effect of water content revealed that the conversion of GC was maximized with no added water. The addition of surfactant such as Tween 80 increased the GC conversion, which finally reached 96.25% under the optimum condition and with surfactant addition.  相似文献   

11.
Commercially available enzyme preparations were screened for enzymes that have a high ability to catalyze direct ester-synthesis of ferulic acid with glycerol. Only a preparation, Pectinase PL "Amano" produced by Aspergillus niger, feruloylated glycerol under the experimental conditions. The enzyme responsible for the esterification was purified and characterized. This enzyme, called FAE-PL, was found to be quite similar to an A. niger ferulic acid esterase (FAE-III) in terms of molecular mass, pH and temperature optima, substrate specificity on synthetic substrates, and the N-terminal amino acid sequence. FAE-PL highly catalyzed direct esterification of ferulic acid and sinapinic acid with glycerol. FAE-PL could feruloylate monomeric sugars including arabinose, fructose, galactose, glucose, and xylose. We determined the suitable conditions for direct esterification of ferulic acid with glycerol to be as follows: 1% ferulic acid in the presence of 85% glycerol and 5% dimethyl sulfoxide at pH 4.0 and 50 degrees C. Under these conditions, 81% of ferulic acid could be converted to 1-glyceryl ferulate, which was identified by (1)H-NMR. The ability of 1-glyceryl ferulate to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals was higher than that of the anti-oxidant butyl hydroxytoluene.  相似文献   

12.
Immobilized cutinase HiC from the ascomycete Humicola insolens was applied as a novel biocatalyst for the synthesis of functionalized acryclic esters by transesterification. As a model reaction, transesterification of methyl acrylate with 6-mercapto-1-hexanol at a high molar ratio in a solvent free system was chosen. Besides two minor Michael-addition by-products, 6-mercaptohexyl acrylic ester was identified as the main product with the thiol as the functional end group. Reaction conditions were optimized regarding the influence of water (0-1.72 M), temperature (22-50 °C), product inhibition and addition of the radical inhibitor butylated hydroxytoluol (BHT; 0.14-0.71 M) on conversion and by-product formation. Highest conversion of 6-mercapto-1-hexanol to 6-mercaptohexyl acrylic ester (95.4 ± 0.3%) was achieved after 6h at 40 °C in the presence of 0.025% (w/w) water without formation of by-products in a solvent free system. Applying methyl methacrylate, transesterification with 6-mercapto-1-hexanol was significantly lower (43.6 ± 0.1%) compared to transesterification of methyl acrylate with 6-mercapto-1-hexanol.  相似文献   

13.
4-Methoxy cinnamoyl glycerol (4MCG) is a very promising UV filters material in personal care products. In order to effectively improve the yield of 4MCG, a systematic study on ultrasonic pretreatment enzymatic esterification for 4MCG products was carried out. An ultrasonic frequency of 35 kHz, ultrasonic power of 150 W and ultrasound irradiation time of 1.5 h was determined to guarantee satisfactory degree of esterification and lipase activity. The optimum production was achieved in organic solvent system at 65 °C with 4MCA to glycerol molar ratio of 1:5, enzyme amount of 15 mg/mL, resulting in a monoester yield of above 66% and 55% after 48 h and 24 h of reaction under ultrasonic pretreatment, respectively. The experimental kinetic data were studied. The reactions were modeled by a system of sequential first-order rate expressions, kinetic parameters were estimated from experimental data fit to the model equations. Results show that the monoester yield in the ultrasonic pretreatment process (24 h) were above 1.5-fold as that in mechanical stirring process without essential damaging to lipase activity. The enzymatic method using ultrasonic pretreatment was obviously superior to the mechanical stirring for enzymatic method and chemical method in terms of conversion rate and the monoester yield. These results are of great significance for applying ultrasonic pretreatment method to prepare 4MCG.  相似文献   

14.
Xu Y  Du W  Liu D  Zeng J 《Biotechnology letters》2003,25(15):1239-1241
A new enzymatic route for biodiesel production from soybean oil was developed using methyl acetate as a novel acyl acceptor. Novozym 435 (immobilized Candida antarctica lipase) gave the highest methyl ester (ME) yield of 92%. The optimum conditions of the transesterification were 30% enzyme based on oil weight; a molar ratio of methyl acetate/oil of 12:1; temperature 40 °C and reaction time 10 h. Since no glycerol was produced in the process, this method is very convenient for recycling the catalyst and by-product triacetylglycerol showed no negative effect on the fuel property.  相似文献   

15.
固定化脂肪酶合成维生素A棕榈酸酯   总被引:3,自引:0,他引:3  
研究了有机溶剂中脂肪酶催化维生素A棕榈酸酯的合成工艺。采用维生素A醋酸酯和棕榈酸乙酯作为反应底物, 对催化合成维生素A棕榈酸酯反应介质进行了比较, 同时对影响合成维生素A棕榈酸酯反应的因素(温度、初始水含量、底物摩尔比、反应时间和酶量等)进行了探讨, 优化了反应条件: 在10 mL的石油醚中, 体系初始含水量0.2%(体积比V/V), 0.100 g 维生素A醋酸酯和0.433 g 棕榈酸乙酯在酶量为1.1 g的固定化酶催化下, 在30°C、190 r/min下反应12 h, 转化率可以达到83%, 固定化酶可连续使用5次以上。  相似文献   

16.
固定化脂肪酶合成维生素A棕榈酸酯   总被引:2,自引:0,他引:2  
研究了有机溶剂中脂肪酶催化维生素A棕榈酸酯的合成工艺。采用维生素A醋酸酯和棕榈酸乙酯作为反应底物, 对催化合成维生素A棕榈酸酯反应介质进行了比较, 同时对影响合成维生素A棕榈酸酯反应的因素(温度、初始水含量、底物摩尔比、反应时间和酶量等)进行了探讨, 优化了反应条件: 在10 mL的石油醚中, 体系初始含水量0.2%(体积比V/V), 0.100 g 维生素A醋酸酯和0.433 g 棕榈酸乙酯在酶量为1.1 g的固定化酶催化下, 在30°C、190 r/min下反应12 h, 转化率可以达到83%, 固定化酶可连续使用5次以上。  相似文献   

17.
Optically active 1-phenyl 1-propanol is used as a chiral building block and synthetic intermediate in the pharmaceutical industries. In this study, the enantioselective production of 1-phenyl 1-propanol was investigated systematically using response surface methodology (RSM). Before RSM was applied, the effects of the enzyme source, the type of acyl donor, and the type of solvent on the kinetic resolution of 1-phenyl 1-propanol were studied. The best results were obtained with Candida antartica lipase (commercially available as Novozym 435), vinyl laurate as the acyl donor, and isooctane as the solvent. In the RSM, substrate concentration, molar ratio of acyl donor to the substrate, amount of enzyme, temperature, and stirring rate were chosen as independent variables. The predicted optimum conditions for a higher enantiomeric excess (ee) were as follows: substrate concentration, 233 mM; molar ratio of acyl donor to substrate, 1.5; enzyme amount, 116 mg; temperature, 47 °C; and stirring rate, 161 rpm. A verification experiment conducted at these optimized conditions for maximum ee yielded 91% for 3 hr, which is higher than the predicted value of 83%. The effect of microwave on the ee was also investigated and ee reached 87% at only 5 min.  相似文献   

18.
This work reports the optimization of 2-ethylhexyl palmitate production by esterification reaction in a solvent-free system using a commercial lipase as catalyst. For this, a sequential strategy was performed applying three experimental designs. An empirical model was built so as to assess the effects of process variables on the reaction conversion. Afterward, the operating conditions that optimized 2-ethylhexyl palmitate production were determined to be acid to alcohol molar ratio of 1:5.5, 70 °C, 150 rpm and 10.5 wt% of enzyme, leading to a reaction conversion as high as 93%. From this point, a kinetic study was carried out evaluating the influence of acid to alcohol molar ratio, enzyme concentration and temperature on product yield. Results obtained in this step allow to conclude that an excess of alcohol (acid to alcohol molar ratio of 1:6), relatively low enzyme concentration (10 wt%) and temperature of 70 °C led to nearly complete reaction conversion.  相似文献   

19.
Enzymatic synthesis of glyceryl monoundecylenate (GMU) was performed using indigenously immobilized Candida anatarctica lipase B preparation (named as PyCal) using glycerol and undecylenic acid as substrates. The effect of molar ratio, enzyme load, reaction time, and organic solvent on the reaction conversion was determined. Both batch and continuous processes for GMU synthesis with shortened reaction time were developed. Under optimized batch reaction conditions such as 1:5 molar ratio of undecylenic acid and glycerol, 2?h of reaction time at 30% substrate concentration in tert-butyl alcohol, conversion of 82% in the absence of molecular sieve, and conversion of 93% in the presence of molecular sieve were achieved. Packed bed reactor studies resulted in high conversion of 86% in 10-min residence time. Characterization of formed GMU was performed by FTIR, MS/MS. Enzymatic process resulted in GMU as a predominant product in high yield and shorter reaction time periods with GMU content of 92% and DAG content of 8%. Optimized GMU synthesis in the present study can be used as a useful reference for industrial synthesis of fatty acid esters of glycerol by the enzymatic route.  相似文献   

20.
This study reports the maximization of geranyl oleate production by esterification of geraniol and oleic acid in a solvent-free system using a commercial lipase as catalyst. The operating conditions that maximized geranyl oleate production were determined to be 40?°C, geraniol to oleic acid molar ratio of 5:1, 150?rpm and 10?wt% of enzyme, with a resulting reaction conversion of about 93%. After determining the best reaction parameters, a kinetic study was performed and the results obtained in this step allow to conclude that an excess of alcohol (alcohol to acid molar ratio of 5:1), relatively low enzyme concentration (5?wt%) and temperature of 50?°C afforded nearly complete reaction conversion after 1?h of reaction. New experimental data on enzymatic esterification of geraniol and oleic acid for geranyl oleate production are reported in this work, showing a promising perspective of the technique to overcome the inconvenience of the chemical-catalyzed route.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号