首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epidemiological studies in humans have shown that perinatal nutrition affects health later in life. We have previously shown that the ratio of n-6 to n-3 polyunsaturated fatty acids (PUFA) in the maternal diet affects serum leptin levels and growth of the suckling pups. The aim of the present study was to investigate the long-term effects of various ratios of the dietary n-6 and n-3 PUFA during the perinatal period on serum leptin, insulin, and triacylglycerol, as well as body growth in the adult offspring. During late gestation and throughout lactation, rats were fed an isocaloric diet containing 7 wt% fat, either as linseed oil (n-3 diet), soybean oil (n-6/n-3 diet), or sunflower oil (n-6 diet). At 3 wk of age, the n-6/n-3 PUFA ratios in the serum phospholipids of the offspring were 2.5, 8.3, and 17.5, respectively. After weaning, all pups were given a standard chow. At the 28th postnatal wk, mean body weight and fasting insulin levels were significantly increased in the rats fed the n-6/n-3 diet perinatally compared with the other groups. The systolic blood pressure and serum triacylglycerol levels were only increased in adult male rats of the same group. These data suggest that the balance between n-6 and n-3 PUFA during perinatal development affects several metabolic parameters in adulthood, especially in the male animals.  相似文献   

2.

Objectives

To investigate if perinatal Omega-3 polyunsaturated fatty acids (n-3 PUFAs) supplementation can improve sevoflurane-induced neurotoxicity and cognitive impairment in neonatal rats.

Methods

Female Sprague-Dawley rats (n = 3 each group) were treated with or without an n-3 PUFAs (fish oil) enriched diet from the second day of pregnancy to 14 days after parturition. The offspring rats (P7) were treated with six hours sevoflurane administration (one group without sevoflurane/prenatal n-3 PUFAs supplement as control). The 5-bromodeoxyuridine (Brdu) was injected intraperitoneally during and after sevoflurane anesthesia to assess dentate gyrus (DG) progenitor proliferation. Brain tissues were harvested and subjected to Western blot and immunohistochemistry respectively. Morris water maze spatial reference memory, fear conditioning, and Morris water maze memory consolidation were tested at P35, P63 and P70 (n = 9), respectively.

Results

Six hours 3% sevoflurane administration increased the cleaved caspase-3 in the thalamus, parietal cortex but not hippocampus of neonatal rat brain. Sevoflurane anesthesia also decreased the neuronal precursor proliferation of DG in rat hippocampus. However, perinatal n-3 PUFAs supplement could decrease the cleaved caspase-3 in the cerebral cortex of neonatal rats, and mitigate the decrease in neuronal proliferation in their hippocampus. In neurobehavioral studies, compared with control and n-3 PUFAs supplement groups, we did not find significant spatial cognitive deficit and early long-term memory impairment in sevoflurane anesthetized neonatal rats at their adulthood. However, sevoflurane could impair the immediate fear response and working memory and short-term memory. And n-3 PUFAs could improve neurocognitive function in later life after neonatal sevoflurane exposure.

Conclusion

Our study demonstrated that neonatal exposure to prolonged sevoflurane could impair the immediate fear response, working memory and short-term memory of rats at their adulthood, which may through inducing neuronal apoptosis and decreasing neurogenesis. However, these sevoflurane-induced unfavorable neuronal effects can be mitigated by perinatal n-3 PUFAs supplementation.  相似文献   

3.
4.
The perinatal exposome can modify offspring metabolism and health later in life. Within this concept, maternal exercise during gestation has been reported modifying offspring glucose sensing and homeostasis, while the impact of such exercise during lactation is little-known. We thus aimed at evaluating short- and long-term effects of it on offspring pancreatic function, assuming a link with changes in breast milk composition. Fifteen-week-old primiparous female Wistar rats exercised during lactation at a constant submaximal intensity (TR) or remained sedentary (CT). Male offspring were studied at weaning and at 7 months of age for growth, pancreas weight, glycemia and insulin responses. Milk protein content was determined by the bicinchoninic acid assay (BCA colorimetric method), and lipid content and fatty acid composition by gas chromatography. Mature milk from TR rats contained significantly less saturated (?7 %) and more monounsaturated (+18 %) and polyunsaturated (PUFA +12 %) fatty acids compared to CT rats, with no difference in total lipid and protein concentrations. In offspring from TR vs CT mothers, fasting glycemia was lower, pancreas weight was higher with a lower insulin content (?37 %) at weaning. Such outcomes were correlated with milk PUFA levels and indices of desaturase or elongase activities. These effects were no longer present at 7 months, whereas a more efficient muscle insulin sensitivity was observed. Maternal training during lactation led to a specific milk phenotype that was associated with a short-term impact on glucose homeostasis and pancreatic function of the male offspring.  相似文献   

5.
Dietary n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) reduce adipogenesis and lipogenesis in adult rodents, but it is not clear whether an increased n-3 LCPUFA supply during the perinatal period influences body fat mass in the offspring. This systematic review aimed to evaluate the existing evidence from animal studies, which have addressed this question. Medline was searched for relevant articles. Studies were included if they involved maternal n-3 PUFA or LCPUFA supplementation and measured fat mass in the offspring. The design and quality of each study was assessed. Only four animal studies met our inclusion criteria. Three studies reported a lower fat mass in offspring of n-3 LCPUFA supplemented dams, however only one of these studies confined the intervention to the perinatal period. The dose of n-3 PUFA, the nature of the control treatment, the approaches used and outcomes assessed differed between studies. This review highlights the paucity of robust animal data as to the effect of increased n-3 LCPUFA exposure during the perinatal period alone, on body fat mass in the offspring and calls for further studies.  相似文献   

6.
We investigated the effect of fish oil supplementation for two consecutive generations on insulin sensitivity in rats. After the nursing period (21 days), female rats from the same prole were divided into two groups: (a) control group and (b) fish oil group. Female rats were supplemented with water (control) or fish oil at 1 g/kg body weight as a single bolus for 3 months. After this period, female rats were mated with male Wistar rats fed on a balanced chow diet (not supplemented). Female rats continued to receive supplementation throughout gestation and lactation periods. The same treatment was performed for the next two generations (G1 and G2). At 75 days of age, male offspring from G1 and G2 generations from both groups were used in the experiments. G1 rats did not present any difference with control rats. However, G2 rats presented reduction in glycemia and lipidemia and improvement in in vivo insulin sensitivity (model assessment of insulin resistance, insulin tolerance test) as well as in vitro insulin sensitivity in soleus muscle (glucose uptake and metabolism). This effect was associated with increased insulin-stimulated p38 MAP kinase phosphorylation and lower n-6/n-3 fatty acid ratio, but not with activation of proteins from insulin signaling (IR, IRS-1 and Akt). Global DNA methylation was decreased in liver but not in soleus muscle. These results suggest that long-term fish oil supplementation improves insulin sensitivity in association with increased insulin-stimulated p38 activation and decreased n-6:n-3 ratio in skeletal muscle and decreased global DNA methylation in liver.  相似文献   

7.
Few studies have examined effects of feeding animals a diet deficient in n-6 polyunsaturated fatty acids (PUFAs) but with an adequate amount of n-3 PUFAs. To do this, we fed post-weaning male rats a control n-6 and n-3 PUFA adequate diet and an n-6 deficient diet for 15 weeks, and measured stable lipid and fatty acid concentrations in different organs. The deficient diet contained nutritionally essential linoleic acid (LA,18:2n-6) as 2.3% of total fatty acids (10% of the recommended minimum LA requirement for rodents) but no arachidonic acid (AA, 20:4n-6), and an adequate amount (4.8% of total fatty acids) of α-linolenic acid (18:3n-3). The deficient compared with adequate diet did not significantly affect body weight, but decreased testis weight by 10%. AA concentration was decreased significantly in serum (− 86%), brain (− 27%), liver (− 68%), heart (− 39%), testis (− 25%), and epididymal adipose tissue (− 77%). Eicosapentaenoic (20:5n-3) and docosahexaenoic acid (22:6n-3) concentrations were increased in all but adipose tissue, and the total monounsaturated fatty acid concentration was increased in all organs. The concentration of 20:3n-9, a marker of LA deficiency, was increased by the deficient diet, and serum concentrations of triacylglycerol, total cholesterol and total phospholipid were reduced. In summary, 15 weeks of dietary n-6 PUFA deficiency with n-3 PUFA adequacy significantly reduced n-6 PUFA concentrations in different organs of male rats, while increasing n-3 PUFA and monounsaturated fatty acid concentrations. This rat model could be used to study metabolic, functional and behavioral effects of dietary n-6 PUFA deficiency.  相似文献   

8.
9.
Differential effects of n-3 and n-6 polyunsaturated fatty acids (PUFAs) have been demonstrated on adipose tissue physiology. Facing to the widely recognized beneficial effects of n-3 PUFAs, the n-6 PUFA effects remain controversial. Thus, we further analyzed the linoleic acid (LA) influence on adipocyte functions. To this aim, we treated by LA supplementation at three distinct doses (1, 2.5, or 5 % of energy intake) rats with essential fatty acids deficiency (EFAD). PUFA composition was determined in blood and white adipose tissue (WAT), while lipolytic and lipogenic activities were measured in isolated adipocytes. EFAD rats exhibited reduced WAT mass and increased EFAD biomarkers. WAT mass was completely recovered after supplementation, irrespective of LA dose. However, neither body mass nor EFAD biomarkers returned to control with 1 % LA, while LA abundance doubled in adipocytes from rats supplemented with 5 % LA. Regarding lipolysis, 2.5 % LA normalized the EFAD-induced alterations. A trend to decrease the maximal stimulation of lipolysis was observed with 1 and 5 % LA. Regarding lipogenesis, the lower and higher LA doses increased basal activity and hampered insulin to further stimulate glucose incorporation into lipids whereas 2.5 % LA normalized the basal or insulin-stimulated levels. Our results show that dietary linoleate at 2.5 % restored anatomical, biochemical, and functional disturbances induced by EFAD. At higher dose, LA tended to reduce triacylglycerol breakdown, to increase triacylglycerol assembly, and to provoke insulin resistance. Therefore, LA influence on adipocyte functions does not appear to follow a typical dose–response relationship, adding further complexity to the definition of its dietary requirement.  相似文献   

10.
Changes in dietary macronutrient composition and/or central nervous system neuronal activity can underlie obesity and disturbed fuel homeostasis. We examined whether switching rats from a diet with high carbohydrate content (HC; i.e., regular chow) to diets with either high fat (HF) or high fat/high protein content at the expense of carbohydrates (LC-HF-HP) causes differential effects on body weight and glucose homeostasis that depend on the integrity of brain melanocortin (MC) signaling. In vehicle-treated rats, switching from HC to either HF or LC-HF-HP feeding caused similar reductions in food intake without alterations in body weight. A reduced caloric intake (-16% in HF and LC-HF-HP groups) required to maintain or increase body weight underlay these effects. Chronic third cerebroventricular infusion of the MC receptor antagonist SHU9119 (0.5 nmol/day) produced obesity and hyperphagia with an increased food efficiency again observed during HF (+19%) and LC-HF-HP (+33%) feeding. In this case, however, HF feeding exaggerated SHU9119-induced hyperphagia and weight gain relative to HC and LC-HF-HP feeding. Relative to vehicle-treated controls, SHU9119 treatment increased plasma insulin (2.8-4 fold), leptin (7.7-15 fold), and adiponectin levels (2.4-3.7 fold), but diet effects were only observed on plasma adiponectin (HC and LC-HF-HP相似文献   

11.
-Di(2-ethylhexyl) phthalate (DEHP), a typical endocrine-disrupting chemical (EDC), is widely used as plasticizer. DEHP exposure in humans is virtually ubiquitous, and those undergoing certain medical procedures can be especially high. In this study, we investigated whether developmental DEHP exposure disrupted glucose homeostasis in the rat and whether this was associated with the early impairment in endocrine pancreas. Pregnant Wistar rats were administered DEHP (1.25 and 6.25 mg·kg(-1)·day(-1)) or corn oil throughout gestation and lactation by oral gavage. Body weight, glucose and insulin tolerance, and β-cell morphometry and function were examined in offspring during the growth. In this study, developmental DEHP exposure led to abnormal β-cell ultrastructure, reduced β-cell mass, and pancreatic insulin content as well as alterations in the expression of genes involved in pancreas development and β-cell function in offspring at weaning. At adulthood, female DEHP-exposed offspring exhibited elevated blood glucose, reduced serum insulin, impaired glucose tolerance, and insulin secretion. Male DEHP-exposed offspring had increased serum insulin, although there were no significant differences in blood glucose at fasting and during glucose tolerance test. In addition, both male and female DEHP-exposed offspring had significantly lower birth weight and maintained relatively lower body weight up to 27 wk of age. These results suggest that developmental exposure to DEHP gives rise to β-cell dysfunction and the whole body glucometabolic abnormalities in the rat. DEHP exposure in critical periods of development can be a potential risk factor, at least in part, for developing diabetes.  相似文献   

12.
Diabetes of the mother during pregnancy induces alterations in the fetus, resulting in impaired glucose homeostasis in the offspring. In youngsters of severely diabetic mothers, during glucose infusion, hyperinsulinemia is associated with hyperresponsiveness of the beta-cells and insulin resistance. In order to normalize maternal metabolism, isolated islets from neonatal rats were transplanted into the vena porta of severely hyperglycemic (Streptozotocin) rats at day 15 of gestation. Strict glycemic control of the mothers was achieved throughout further gestation and lactation. In the adult offspring of these transplanted rats insulin levels during glucose infusion were significantly lower than in the offspring of sham-transplanted diabetic mothers and were not different from controls. The work confirms that the diabetic state of the mother during late gestation (the period of development of the endocrine pancreas and of the insulin-receptor system) is the inducing factor for the abnormal glucose homeostasis in the offspring, and normalisation of the hyperglycemia eliminates these long-term consequences.  相似文献   

13.
Maternal diabetes impairs fetoplacental development and programs metabolic diseases in the offspring. We have previously reported that female offspring of pregnant rats with mild diabetes develop gestational diabetes mellitus (GDM) when they become pregnant. Here, we studied the effects of supplementation with polyunsaturated fatty acids (PUFAs) in pregnant mild diabetic rats (F0) by feeding a 6% safflower-oil-enriched diet from day 1 to 14 followed by a 6% chia-oil-enriched diet from day 14 of pregnancy to term. We analyzed maternal metabolic parameters and placental signaling at term in pregnant offspring (F1). The offspring of both PUFAs-treated and untreated mild diabetic rats developed GDM. Although gestational hyperglycemia was not prevented by dietary PUFAs treatment in F0, triglyceridemia and cholesterolemia in F1 mothers were normalized by F0 PUFAs dietary treatment. In the placenta of F1 GDM rats, PPARγ levels were reduced and lipoperoxidation was increased, changes that were prevented by the maternal diets enriched in PUFAs in the F0 generation. Moreover, fetal overgrowth and placental activation of mTOR signaling pathways were reduced in F1 GDM rats whose mothers were treated with PUFAs diets. These results suggest that F0 PUFAs dietary treatment in pregnancies with mild diabetes improves maternal dyslipidemia, fetal overgrowth and placental signaling in female offspring when they become pregnant. We speculate that an increased PUFAs intake in pregnancies complicated by diabetes may prove effective to ameliorate metabolic programming in the offspring, thereby improving the health of future generations.  相似文献   

14.
Conjugated linoleic acids (CLAs) and n-3 polyunsaturated fatty acids (PUFAs) improve insulin sensitivity in insulin-resistant rodents. However, the effects of these fatty acids on insulin secretion are not known but are of importance to completely understand their influence on glucose homeostasis. We therefore examined islet function after dietary supplementation consisting of 1% CLAs in combination with 1% n-3 enriched PUFAs for 12 wk to mice on a normal diet and to insulin-resistant mice fed a high-fat diet (58% fat). In the mice fed a normal diet, CLA/PUFA supplementation resulted in insulin resistance associated with low plasma adiponectin levels and low body fat content. Intravenous and oral glucose tolerance tests revealed a marked increase in insulin secretion, which nevertheless was insufficient to counteract the insulin resistance, resulting in glucose intolerance. In freshly isolated islets from mice fed the normal diet, both basal and glucose-stimulated insulin secretion were adaptively augmented by CLA/PUFA, and at a high glucose concentration this was accompanied by elevated glucose oxidation. In contrast, in high-fat-fed mice, CLA/PUFA did not significantly affect insulin secretion, insulin resistance, or glucose tolerance. It is concluded that dietary supplementation of CLA/PUFA in mice fed the normal diet augments insulin secretion, partly because of increased islet glucose oxidation, but that this augmentation is insufficient to counterbalance the induction of insulin resistance, resulting in glucose intolerance. Furthermore, the high-fat diet partly prevents the deleterious effects of CLA/PUFA, but this dietary supplementation was not able to counteract high-fat-diet-induced insulin resistance.  相似文献   

15.
Neonate male rats whose mothers were nicotine-treated during lactation have higher adiposity, hyperleptinemia, and adrenal dysfunction. At adulthood, they still present higher adiposity and hyperleptinemia, but there was no report about their adrenal function. Also, there was no report of this developmental plasticity on females. Here, we evaluated the adrenal function and leptin content in adipocytes and muscle of male and female adult offspring whose mothers were nicotine-treated during lactation. On the 2nd postnatal day (PN2), dams were subcutaneously implanted with osmotic minipumps releasing nicotine (NIC-6?mg/kg/day) or saline for 14 days (12 litters/group and 2 rats/litter). Male and female offspring were killed on PN180. Significant data were p<0.05. Male NIC offspring presented higher adrenal catecholamine content (+?89%) and TH expression (+?38%), lower "in vitro" catecholamine release (-?19%), and higher adrenergic β3 receptor (ADRB3, +?59%) content in visceral adipose tissue (VAT). Serum corticosterone was higher (+?77%) in male NIC group, coherent with the increase of both CRH and ACTH immunostaining in hypothalamus and pituitary, respectively. Leptin content was higher in VAT (+?23%), which may justify the observed hyperleptinemia. Female NIC offspring presented lower ADRB3 content in VAT (-?39%) and lower leptin content in subcutaneous adipose tissue (SAT) (-?46%), but higher leptin content in soleus muscle (+?22%), although leptinemia was normal. We evidenced a sex dimorphism in the model of maternal nicotine exposure during lactation. The adrenal function in adult offspring was primed only in male offspring while the female offspring displayed relevant alterations in leptin content on muscle and adipocytes.  相似文献   

16.
Zidovudine (AZT) lowers the perinatal transmission of HIV but can impair mitochondrial function by depleting mitochondrial DNA (mtDNA). AZT therapy and perinatal nutritional deprivation affect the body fat distribution, which influences glucose tolerance. We sought to model intrauterine exposure to AZT in humans to determine whether it interacts with low-protein diet (LPD) to impact on birth weight and glucose homeostasis in the offspring. Pregnant dams and their offspring were given AZT, an LPD, or AZT and an LPD (LPD + AZT). AZT reduced mtDNA copy number in liver and birth weight in the offspring and increased their fasting glucose and insulin (P = 0.021, 0.03, 0.001, and 0.011 respectively) at 6-8 wk of age. LPD decreased litter size and birth weight (P = 0.01 and 0.012). In the LPD + AZT group, birth weight and litter size were reduced compared with untreated controls, and fasting blood glucose and insulin were raised. There was a significant interaction between LPD and AZT on fasting insulin levels (P = 0.025). Islet size was not significantly affected, but the mean beta-cell area/islet was reduced in the LPD + AZT group compared with controls (P < 0.05). Early exposure to AZT interacts with LPD to impair fetal development in this model. This combination appeared to impair the supply of insulin and, hence, glucose homeostasis, perhaps as a result of impaired mitochondrial function. Although it is not certain that this can be extrapolated to humans, maternal nutritional deprivation combined with AIDS therapy could influence both birth weight and onset of diabetes.  相似文献   

17.
Diabetes during pregnancy results in congenital malformations and long-term postnatal diseases. Experimental models are still needed to investigate the mechanism responsible for these alterations. Thus, by the administration of different doses of streptozotocin (STZ) (0, 25, 30, or 35 mg/kg body weight, intravenous) at the onset of pregnancy in rats, the present study sought an appropriate animal model for this pathology. At day 6 of pregnancy, plasma glucose was progressively higher with an increasing STZ dose, and in rats receiving the 35-mg dose, 2 subgroups were detected: some animals had plasma glucose levels above controls but below 200 mg/dL (mildly diabetic, MD), whereas others had levels above 400 mg/dL (severely diabetic, SD). At day 20 of pregnancy, the MD rats had normal glycemia, but after an oral glucose load (2 g/kg body weight), plasma glucose increased more and insulin increased less than in controls. The SD rats maintained their hyperglycemia and had a greatly impaired oral glucose tolerance. At day 20, fetuses of SD dams were fewer, weighed less, and had enhanced plasma glucose and triglycerides and decreased insulin, whereas those from MD dams did not differ from controls. At birth, newborns from MD dams had higher body weight, plasma insulin, and liver triglycerides as well as total body lipid concentrations than controls, and on day 21, remained macrosomic and showed higher plasma glucose and liver triglyceride concentrations. At 70 days of age, offspring of MD dams had impaired oral glucose tolerance but normal plasma insulin change in the case of females, whereas plasma insulin increased less in males. These alterations were manifest more in those offspring from dams that had > 50% macrosomic newborns than in those from dams that had < 50% macrosomic newborns. In conclusion, whereas our MD rats mimic the changes taking place in gestational diabetic women and show the long-term risk of macrosomia, the SD rats are more similar to uncontrolled diabetics. Thus these two rat models, obtained with moderate amounts of STZ, could be used to study the pathophysiological consequences of these different diabetic conditions.  相似文献   

18.
To investigate the effects of omega-3 fatty acid deficiency on phosphatidylinositol signaling in brain, myo-inositol (mI) concentrations were determined in the prefrontal cortex (PFC) of omega-3 fatty acid deficient rats by in vivo proton magnetic resonance spectroscopy ((1)H-MRS). To generate graded deficits in PFC docosahexaenoic acid (22:6n-3) (DHA) composition, perinatal and postweaning alpha-linolenic acid (18:3n-3) (ALA) deficiency models were used. Adult male rats were scanned in a 7T Bruker Biospec system and a (1)H-MRS spectrum acquired from the bilateral medial PFC. Rats were then challenged with SKF83959, a selective agonist at phosphoinositide (PI)-coupled dopamine D(1) receptors. Postmortem PFC fatty acid composition was determined by gas chromatography. Relative to controls, PFC DHA composition was significantly reduced in adult postweaning (-27%) and perinatal (-65%) ALA-deficiency groups. Basal PFC mI concentrations were significantly reduced in the perinatal deficiency group (-21%, P = 0.001), but not in the postweaning deficiency group (-1%, P = 0.86). Among all rats, DHA composition was positively correlated with mI concentrations and the mI/creatine (Cr) ratio. SKF83959 challenge significantly increased mI concentrations only in the perinatal deficiency group (+16%, P = 0.02). These data demonstrate that perinatal deficits in cortical DHA accrual significantly and selectively reduce mI concentrations and augment receptor-generated mI synthesis.  相似文献   

19.
n-3 polyunsaturated fatty acids (n-3 PUFA) might regulate metabolism by lowering endocannabinoid levels. We examined time-dependent changes in adipose tissue levels of endocannabinoids as well as in parameters of glucose homeostasis induced by n-3 PUFA in dietary-obese mice, and compared these results with the effect of n-3 PUFA intervention in type 2 diabetic (T2DM) subjects. Male C57BL/6J mice were fed for 8, 16 or 24?weeks a high-fat diet alone (cHF) or supplemented with n-3 PUFA (cHF?+?F). Overweight/obese, T2DM patients on metformin therapy were given for 24?weeks corn oil (Placebo; 5?g/day) or n-3 PUFA concentrate as above (Omega-3; 5?g/day). Endocannabinoids were measured by liquid chromatography-tandem mass-spectrometry. Compared to cHF-fed controls, the cHF?+?F mice consistently reduced 2-arachidonoylglycerol (up to ~2-fold at week 24) and anandamide (~2-fold) in adipose tissue, while the levels of endocannabinoid-related anti-inflammatory molecules N-eicosapentaenoyl ethanolamine (EPEA) and N-docosahexaenoyl ethanolamine (DHEA) increased more than ~10-fold and ~8-fold, respectively. At week 24, the cHF?+?F mice improved glucose tolerance and fasting blood glucose, the latter being positively correlated with adipose 2-arachidonoylglycerol levels only in obese cHF-fed controls, like fasting insulin and HOMA-IR. In the patients, n-3 PUFA failed to reduce 2-arachidonoylglycerol and anandamide levels in adipose tissue and serum, but they increased both adipose tissue and serum levels of EPEA and DHEA. In conclusion, the inability of n-3 PUFA to reduce adipose tissue and serum levels of classical endocannabinoids might contribute to a lack of beneficial effects of these lipids on glucose homeostasis in T2DM patients.  相似文献   

20.
We previously created a novel F-DIO rat strain derived by crossing rats selectively bred for the diet-induced obesity (DIO) phenotype with obesity-resistant Fischer F344 rats. The offspring retained the DIO phenotype through 3 backcrosses with F344 rats but also had exaggerated insulin responses to oral glucose before they became obese on a 31% fat high-energy (HE) diet. Here, we demonstrate that chow-fed rats from the subsequent randomly bred progeny required 57% lower glucose infusions to maintain euglycemia during a hyperinsulinemic clamp in association with 45% less insulin-induced hepatic glucose output inhibition and 80% lower insulin-induced glucose uptake than F344 rats. The DIO phenotype and exaggerated insulin response to oral glucose in the nonobese, chow-fed state persisted in the F6 generation. Also, compared with F344 rats, chow-fed F-DIO rats had 68% higher arcuate nucleus proopiomelanocortin mRNA expression which, unlike the increase in F344 rats, was decreased by 26% on HE diet. Further, F-DIO lateral hypothalamic orexin expression was 18% lower than in F344 rats and was increased rather than decreased by HE diet intake. Finally, both maternal obesity and 30% caloric restriction during the third week of gestation produced F-DIO offspring which were heavier and had higher leptin and insulin levels than lean F-DIO dam offspring. Third-gestational week dexamethasone also produced offspring with higher leptin and insulin levels but with lower body weight. Thus F-DIO rats represent a novel and potentially useful model for the study of DIO, insulin resistance, and perinatal factors that influence the development and persistence of obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号