首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
为获得不依赖油水界面激活的黑曲霉脂肪酶 (ANL) 突变体,在生物信息学分析基础上,对黑曲霉脂肪酶盖子结构域两侧铰链区的氨基酸残基进行了置换突变,获得两个黑曲霉脂肪酶突变体 (ANL-Ser84Gly和ANL-Asp99Pro)。对不同浓度对硝基苯丁酸酯的水解活性检测结果表明:ANL-Ser84Gly的催化活性仍依赖油水界面,而ANL-Asp99Pro的催化活性不再依赖油水界面。底物特异性检测结果表明:较ANL而言,ANL-Ser84Gly的比活力显著降低,其水解对硝基苯棕榈酸酯、对硝基苯豆蔻酸酯、对硝基  相似文献   

2.
比较黑曲霉脂肪酶与黑曲霉酯酶的3-D结构发现二者在盖子结构域存在显著差异。根据已解析的酯酶的3-D结构信息,运用重叠延伸PCR技术,对黑曲霉脂肪酶的4个位点进行突变,以期获得开盖型黑曲霉脂肪酶。4个突变位点分别为形成黑曲霉脂肪酶盖子结构的α-螺旋与酯酶对应区域的α-螺旋相互置换;Ser84突变为Gly;Asp99突变为Pro;Lys108突变为Glu。4个重组质粒导入毕赤酵母GS115菌株进行异源表达后,仅pPCI9K-anl-D99P和pPCI9K-anl-K108E实现了活性表达。  相似文献   

3.
Aspergillus niger lipase (ANL) is an important biocatalyst in the food processing industry. However, there is no report of its detailed three‐dimensional structure because of difficulties in crystallization. In this article, based on experimental data and bioinformational analysis results, the structural features of ANL were simulated. Firstly, two recombinant ANLs expressed in Pichia pastoris were purified to homogeneity and their corresponding secondary structure compositions were determined by circular dichroism spectra. Secondly, the primary structure, the secondary structure and the three‐dimensional structure of ANL were modeled by comparison with homologous lipases with known three‐dimensional structures using the BioEdit software, lipase engineering database ( http://www.led.uni‐stuttgart.de/ ), PSIPRED server and SwissModel server. The predicted molecular structure of ANL presented typical features of the α/β hydrolase fold including positioning of the putative catalytic triad residues and the GXSXG signature motif. Comparison of the predicted three‐dimensional structure of ANL with the X‐ray three‐dimensional structure of A. niger feruloyl esterase showed that the functional difference of interfacial activation between lipase and esterase was concerned with the difference in position of the lid. Our three‐dimensional model of ANL helps to modify lipase structure by protein engineering, which will further expand the scope of application of ANL. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

4.
To expand the functionality of lipase B from Candida antarctica (CALB) we have used directed evolution to create CALB mutants with improved resistance towards irreversible thermal inactivation. Two mutants, 23G5 and 195F1, were generated with over a 20-fold increase in half-life at 70 degrees C compared with the wild-type CALB (WT-CALB). The increase in half-life was attributed to a lower propensity of the mutants to aggregate in the unfolded state and to an improved refolding. The first generation mutant, 23G5, obtained by error-prone PCR, had two amino acid mutations, V210I and A281E. The second generation mutant, 195F1, derived from 23G5 by error-prone PCR, had one additional mutation, V221D. Amino acid substitutions at positions 221 and 281 were determined to be critical for lipase stability, while the residue at position 210 had only a marginal effect. The catalytic efficiency of the mutants with p-nitrophenyl butyrate and 6,8-difluoro-4-methylumbelliferyl octanoate was also found to be superior to that of WT-CALB.  相似文献   

5.
The incubation of porcine pancreatic lipase (449 amino acids) with chymotrypsin led to the preferential cleavage of the Phe-335-Ala-336 bond [Bousset-Risso et al. (1985) FEBS Lett. 182, 323-326]. Up to now it has not been possible to isolate the fragment (1-335) whereas fragment (336-449) was purified. This fragment does not display any activity towards the specific substrates of lipase, triacylglycerols, either in the aggregate form or monomeric solution, but like lipase it hydrolyzes p-nitrophenyl acetate. The biphasic kinetics of the release of p-nitrophenol by the fragment with different concentrations of p-nitrophenyl acetate ([S] greater than [E]) are very similar to those of lipase and other esterases. The initial burst is equal to 1 mol p-nitrophenol/mol fragment (when [S] = infinity). Ethoxyformic anhydride only reacts with 1 mol histidine out of the 2 mol that the fragment contained. The activity of the fragment towards p-nitrophenyl acetate hydrolysis is inhibited after ethoxyformic anhydride reaction as in the case of lipase. The results presented led to the hypothesis that in the area (336-449) a part of the active-site structure of the lipase molecule is included. It would seem that fragment (336-449) is a functional domain of lipase.  相似文献   

6.
Although it has been widely used as a feed supplement to reduce manure phosphorus pollution of swine and poultry, Aspergillus niger PhyA phytase is unable to withstand heat inactivation during feed pelleting. Crystal structure comparisons with its close homolog, the thermostable Aspergillus fumigatus phytase (Afp), suggest associations of thermostability with several key residues (E35, S42, R168, and R248) that form a hydrogen bond network in the E35-to-S42 region and ionic interactions between R168 and D161 and between R248 and D244. In this study, loss-of-function mutations (E35A, R168A, and R248A) were introduced singularly or in combination into seven mutants of Afp. All seven mutants displayed decreases in thermostability, with the highest loss (25% [P<0.05]) in the triple mutant (E35A R168A R248A). Subsequently, a set of corresponding substitutions were introduced into nine mutants of PhyA to strengthen the hydrogen bonding and ionic interactions. While four mutants showed improved thermostability, the best response came from the quadruple mutant (A58E P65S Q191R T271R), which retained 20% greater (P<0.05) activity after being heated at 80 degrees C for 10 min and had a 7 degrees C higher melting temperature than that of wild-type PhyA. This study demonstrates the functional importance of the hydrogen bond network and ionic interaction in supporting the high thermostability of Afp and the feasibility of adopting these structural units to improve the thermostability of a homologous PhyA phytase.  相似文献   

7.
The crystal structure of an extracellular triglyceride lipase (from a fungus Rhizomucor miehei) inhibited irreversibly by diethyl p-nitrophenyl phosphate (E600) was solved by X-ray crystallographic methods and refined to a resolution of 2.65 A. The crystals are isomorphous with those of n-hexylphosphonate ethyl ester/lipase complex [Brzozowski, A. M., Derewenda, U., Derewenda, Z. S., Dodson, G. G., Lawson, D. M., Turkenburg, J. P., Bjorkling, F., Huge-Jensen, B., Patkar, S. A., & Thim, L. (1991) Nature 351, 491-494], where the conformational change was originally observed. The higher resolution of the present study allowed for a detailed analysis of the stereochemistry of the change observed in the inhibited enzyme. The movement of a 15 amino acid long "lid" (residues 82-96) is a hinge-type rigid-body motion which transports some of the atoms of a short alpha-helix (residues 85-91) by over 12 A. There are two hinge regions (residues 83-84 and 91-95) within which pronounced transitions of secondary structure between alpha and beta conformations are caused by dramatic changes of specific conformational dihedral angles (phi and psi). As a result of this change a hydrophobic area of ca. 800 A2 (8% of the total molecule surface) becomes exposed. Other triglyceride lipases are also known to have "lids" similar to the one observed in the R. miehei enzyme, and it is possible that the general stereochemistry of lipase activation at the oil-water interfaces inferred from the present X-ray study is likely to apply to the entire family of lipases.  相似文献   

8.
Some properties of G84R and L99M mutants of HspB1 associated with peripheral distal neuropathies were investigated. Homooligomers formed by these mutants are larger than those of the wild type HspB1. Large oligomers of G84R and L99M mutants have compromised stability and tend to dissociate at low protein concentration. G84R and L99M mutations promote phosphorylation-dependent dissociation of HspB1 oligomers without affecting kinetics of HspB1 phosphorylation by MAPKAP2 kinase. Both mutants weakly interact with HspB6 forming small heterooligomers and being unable to form large heterooligomers characteristic for the wild type HspB1. G84R and L99M mutants possess lower chaperone-like activity than the wild type HspB1 with several model substrates. We suggest that G84R mutation affects mobility and accessibility of the N-terminal domain thus modifying interdimer contacts in HspB1 oligomers. The L99M mutation is located within the hydrophobic core of the α-crystallin domain close to the key R140 residue, and could affect the dimer stability.  相似文献   

9.
The mutation Glu108-->Val (E108V) in T4 lysozyme was previously isolated as a second-site revertant that specifically compensated for the loss of function associated with the destabilizing substitution Leu99-->Gly (L99G). Surprisingly, the two sites are 11 A apart, with Leu99 in the core and Glu108 on the surface of the protein. In order to better understand this result we have carried out a detailed thermodynamic, enzymatic and structural analysis of these mutant lysozymes as well as a related variant with the substitution Leu99-->Ala. It was found that E108V does increase the stability of L99G, but it also increases the stability of both the wild-type protein and L99A by essentially equal amounts. The effects of E108V on enzymatic activity are more complicated. The mutation slightly reduces the maximal rate of cell wall hydrolysis of wild-type, L99G and L99A. At the same time, L99G is an unstable protein and rapidly loses activity during the course of the assay, especially at temperatures above 20 degrees C. Thus, even though the double mutant L99G/E108V has a slightly lower maximal rate than L99G, over a period of 20-30 minutes it hydrolyzes more substrate. This decrease in the rate of thermal inactivation appears to be the basis of the action of E108V as a second-site revertant of L99G. Mutant L99A creates a cavity of volume 149 A(3). Instead of enlarging this cavity, mutant L99G results in a 4-5 A displacement of part of helix F (residues 108-113), creating a solvent-accessible declivity. In the double mutant, L99G/E108V, this helix returns to a position akin to wild-type, resulting in a cavity of volume 203 A(3). Whether the mutation Glu108-->Val is incorporated into either wild-type lysozyme, or L99A or L99G, it results in a decrease in crystallographic thermal factors, especially in the helices that include residues 99 and 108. This increase in rigidity, which appears to be due to a combination of increased hydrophobic stabilization plus a restriction of conformational fluctuation, provides a structural basis for the increase in thermostability.  相似文献   

10.
Shih TW  Pan TM 《Biotechnology letters》2011,33(9):1841-1846
Error-prone PCR was used to create more thermoactive and/or thermostable variants of thermoalkalophilic lipases. A variant of the α6 helix (lid domain), with an 189E to V substitution at residue 189, lost its thermostability but exhibited higher activity than that of its wild-type predecessor (r03Lip). Site-saturation mutagenesis was used to explore the sequence-function relationship. Five other mutants also lost thermostability (20–40%) but exhibited enhanced thermoactivity (6.3–79-fold). The mutant E189I showed the highest activity retaining 50% activity after maintaining it at 65°C for 24 h. In comparison to r03Lip, the mutant E189I had a higher affinity for p-nitrophenyl palmitate and p-nitrophenyl stearate (61 and 56% decreased Km) and catalytic efficiency (42-fold and 18-fold increased kcat/Km). The mutant lipase retained its tolerance to n-hexane, but had an improved transesterification activity. The results suggest that residue Glu189 plays a significant role in the thermostability and activity of this thermoalkalophilic lipase.  相似文献   

11.
Five key amino acid residues from human pancreatic lipase (HPL) are mutated in some pancreatic lipase-related proteins 2 (PLRP2) that are not reactivated by colipase in the presence of bile salts. One of these residues (Y403) is involved in a direct interaction between the HPL C-terminal domain and colipase. The other four residues (R256, D257, Y267, and K268) are involved in the interactions stabilizing the open conformation of the lid domain, which also interacts with colipase. Here we produced and characterized three HPL mutants: HPL Y403N, an HPL four-site mutant (R256G, D257G, Y267F, and K268E), and an HPL five-site mutant (R256G, D257G, Y267F, K268E, and Y403N), in which the HPL amino acids were replaced by those present in human PLRP2. Colipase reactivated both the HPL Y403N mutant and HPL, and Y403 is therefore not essential for lipase-colipase interactions. Both the HPL four-site and five-site mutants showed low activity on trioctanoin, were inhibited by bile salts (sodium taurodeoxycholate, NaTDC) and were not reactivated by colipase. The interfacial binding of the HPL four-site mutant to a trioctanoin emulsion was suppressed in the presence of 4 mM NaTDC and was not restored by addition of colipase. Protein blotting/protein overlay immunoassay revealed that the HPL four-site mutant-colipase interactions are not abolished, and therefore, the absence of reactivation of the HPL four-site mutant is probably due to a lid domain conformation that prevents the interfacial binding of the lipase-colipase complex. The effects of colipase were also studied with HPL(-lid), an HPL mutant showing an 18-residue deletion within the lid domain, which therefore has only one colipase interaction site. HPL(-lid) showed a low activity on trioctanoin, was inhibited by bile salts, and recovered its lipase activity in the presence of colipase. Reactivation of HPL(-lid) by colipase was associated with a strong interfacial binding of the mutant to a trioctanoin emulsion. The lid domain is therefore not essential for either the interfacial binding of HPL or the lipase-colipase interactions.  相似文献   

12.
A gene coding for cold-active lipase from the psychrotrophic Gram-negative bacterium Psychrobacter cryohalolentis K5T isolated from a Siberian cryopeg has been cloned and expressed in Escherichia coli. The recombinant protein Lip1Pc with a 6× histidine tag at its C-terminus was purified by nickel affinity chromatography. With p-nitrophenyl dodecanoate (C12) as a substrate, the purified recombinant protein displayed maximum lipolytic activity at 25°C and pH 8.0. Increasing the temperature above 40°C and addition of various metal ions and organic solvents inhibited the enzymatic activity of Lip1Pc. Most nonionic detergents, such as Triton X-100 and Tween 20, slightly increased the lipase activity, while SDS completely inhibited it. To investigate the functional significance of the Lip1Pc N-terminal domain, we constructed five deletion mutants of this protein. The ND1 and ND2 mutants displayed specific activity reduced by 30–35%, while other truncated proteins were completely inactive. Both mutants demonstrated increased activity towards p-nitrophenyl decanoate (C10) and impaired utilization of C16 substrate. Although optimum reaction temperature of ND2 lowered to 20°C, it displayed enhanced stability by 44% after incubation at 40°C. The results prove that the N-terminal domain of Lip1Pc has a fundamental impact on the activity and stability of the protein.  相似文献   

13.
The key to enzyme function is the maintenance of an appropriate balance between molecular stability and structural flexibility. The lid domain which is very important for “interfacial activation” is the most flexible part in the lipase structure. In this work, rational design was applied to explore the relationship between lid rigidity and lipase activity by introducing a disulfide bond in the hinge region of the lid, in the hope of improving the thermostability of R. chinensis lipase through stabilization of the lid domain without interfering with its catalytic performance. A disulfide bridge between F95C and F214C was introduced into the lipase from R. chinensis in the hinge region of the lid according to the prediction of the “Disulfide by Design” algorithm. The disulfide variant showed substantially improved thermostability with an eleven-fold increase in the t 1/2 value at 60°C and a 7°C increase of T m compared with the parent enzyme, probably contributed by the stabilization of the geometric structure of the lid region. The additional disulfide bond did not interfere with the catalytic rate (k cat) and the catalytic efficiency towards the short-chain fatty acid substrate, however, the catalytic efficiency of the disulfide variant towards pNPP decreased by 1.5-fold probably due to the block of the hydrophobic substrate channel by the disulfide bond. Furthermore, in the synthesis of fatty acid methyl esters, the maximum conversion rate by RCLCYS reached 95% which was 9% higher than that by RCL. This is the first report on improving the thermostability of the lipase from R. chinensis by introduction of a disulfide bond in the lid hinge region without compromising the catalytic rate.  相似文献   

14.
To expand the functionality of lipase from Rhizopus arrhizus (RAL) we have used error-prone PCR and DNA shuffling methods to create RAL mutants with improved thermostability and the optimum temperature. One desirable mutant with three amino acids substitution was obtained. The mutated lipase was purified and characterized. The optimum temperature of the mutant lipase was higher by 10 °C than that of the wild-type RAL (WT-RAL). In addition, the thermostability characteristic of the mutant was also improved as the result of directed evolution. The half-life (T1/2) at 50 °C of the mutant exceeded those of WT-RAL by 12-fold. To confirm which substitution contributed to enhance thermostability and the optimum temperature for lipase activity, three chimeric lipases: chimeric lipase 1(CL-1; A9T), chimeric lipase 2 (CL-2; E190V) and chimeric lipase 3 (CL-3; M225I) from the WT-RAL gene were constructed. Each of the chimeric enzymes was purified and characterized. Amino acid substitution at position 190 was determined to be critical for lipase thermostability and the optimum temperature, while the residue at position 9 and 225 had only marginal effect. The mutational effect is interpreted according to a simulated three-dimensional structure for the mutant lipase.  相似文献   

15.
Thermostability can be increased by introducing prolines at suitable sites in target proteins. Two single (G138P, G247D) mutants and one double (G138P/G247D) mutant of xylose isomerase from Streptomyces diastaticus No.7, strain M1033 have been constructed by site-directed mutagenesis. With respect to the wild-type enzyme, G138P showed about a 100% increase in thermostability, and G247D showed an increased catalytic activity. Significantly, the double mutant, G138P/G247D displayed even higher activity than G247D and better heat stability than G138P. Its half life was about 2.5-fold greater than the wild-type enzyme, using xylose as a substrate. Molecular modelling suggested that the introduction of a proline residue in the turn of a random coil may cause the surrounding conformation to be tightened by reducing the backbone flexibility. The change in thermostability can, therefore, be explained based on changes in the molecular rigidity. Furthermore, the improvements in the properties of the double mutant indicated that the advantages of two single mutants can be combined effectively.  相似文献   

16.
Three amino acid residues (His119, Glu164, and Glu338) in the active site of Thermus caldophilus GK24 beta- glycosidase (Tca beta-glycosidase), a family 1 glycosyl hydrolase, were mutated by site-directed mutagenesis. To verify the key catalytic residues, Glu164 and Glu338 were changed to Gly and Gln, respectively. The E164G mutation resulted in drastic reductions of both beta-galactosidase and beta-glucosidase activities, and the E338Q mutation caused complete loss of activity, confirming that the two residues are essential for the reaction process of glycosidic linkage hydrolysis. To investigate the role of His119 in substrate binding and enzyme activity, the residue was substituted with Gly. The H119G mutant showed 53-fold reduced activity on 5 mM p-nitrophenyl beta-Dgalactopyranoside, when compared with the wild type; however, both the wild-type and mutant enzymes showed similar activity on 5 mM p-nitrophenyl beta-D-glucopyranoside at 75degreeC. Kinetic analysis with p-nitrophenyl beta-D-galactopyranoside revealed that the kcat value of the H119G mutant was 76.3-fold lower than that of the wild type, but the Km of the mutant was 15.3-fold higher than that of the wild type owing to the much lower affinity of the mutant. Thus, the catalytic efficiency (kcat/Km) of the mutant decreased to 0.08% to that of the wild type. The kcat value of the H119G mutant for p-nitrophenyl beta- D-glucopyranoside was 5.1-fold higher than that of the wild type, but the catalytic efficiency of the mutant was 2.5% of that of the wild type. The H119G mutation gave rise to changes in optima pH (from 5.5-6.5 to 5.5) and temperature (from 90 degrees C to 80-85 degrees C). This difference of temperature optima originated in the decrease of H119G's thermostability. These results indicate that His119 is a crucial residue in beta- galactosidase and beta-glucosidase activities and also influences the enzyme's substrate binding affinity and thermostability.  相似文献   

17.
DNA改组技术在水蛭素实验进化中的应用   总被引:2,自引:0,他引:2  
蛋白质的改造是生物工程的重大研究课题.由于结构和功能预测的不精确性,而使按照三维结构信息进行定位诱变往往达不到预期的目的.近年来,另一条改造蛋白质的途径有较大的发展,即在实验室条件下模拟生物分子的自然进化,通过变异和靶功能的选择来获得改进性能的蛋白质[1],此过程称为生物分子实验定向进化.DNA改组(DNAshuffling)是一种改造基因和蛋白质的有效实验进化技术[2].它是在体外进行基因随机片段的重组,从而增加基因的多样性,促使有利变异与不利变异分离,通过选择使有利变异得到优化组合[3].DNA改组包含3个步骤:基因的随机片段化,自身引发PCR和重组合PCR.经过DNA改组的突变体库有可能选择到性能更优的突变体.为进行亲和淘选,需将突变体展示在噬菌体的表面[4].  相似文献   

18.
Bacillus thermocatenulatus lipase 2 (BTL2) is a promising industrial enzyme used in biodiesel production. Although BTL2 has high thermostability and good resistance to organic solvents, the activity of BTL2 is suboptimal for industrial processes. To improve BTL2 activity, we engineered BTL2 lipase by modulating hydrophobicity of its lid domain. Through site‐directed mutagenesis, we constructed three mutants, namely Y225F+S232A, S232A+T236V and Q185L, to cover all uncharged hydrophilic amino acids within the lid domain. Activities of these mutants were characterized. Our findings suggest that one mutant (Y225F+S232A) showed ~35% activity increase in catalyzing heterogeneous hydrolytic reactions relevant for industrial applications. A mathematical framework was established to account for different molecular events that contribute to the observed apparent catalytic activities. Increases in hydrophobicity of lid domains were associated with increased interfacial adsorption of lipases and lower molecular enzymatic activities. The measured apparent activities of lipases include contributions from both events. Lid hydrophobicity can thus result in different changes in lipase activities depending on the mutation site. Our work demonstrates the feasibility of increasing BTL2 activity by modulating the hydrophobicity of lid domains and provides some guidelines for further improving BTL2 activity.  相似文献   

19.
【背景】南极假丝酵母脂肪酶B (Candida antarctica lipase B,CALB)具有优异的酯合成活性,是在非水相催化中应用极为广泛的工业用酶。【目的】在保留CALB优秀催化性能的基础上,提高CALB的热稳定性。【方法】采用预测软件PoPMuSiC和FoldX计算CALB潜在热稳定性突变位点,并根据氨基酸残基的空间位置进一步筛选。利用重叠延伸PCR技术在基因calb中引入10个单点突变,于毕赤酵母GS115中表达。【结果】点突变A146G、A151P、L278M均能有效提高CALB的热稳定性。在单点突变的基础上,组合突变体A146G-L278M和A146G-L278M-A151P的热稳定性得到进一步提高。与野生型相比,突变体A146G-L278M和A146G-L278M-A151P的最适反应温度均提高了5°C,T_m值分别提高了3.3°C和4.2°C。此外,合成己酸乙酯的酶促反应动力学分析表明,相比于野生型,突变体A146G-L278M和A146G-L278M-A151P对己酸和乙醇均具有更高的亲和力,且对己酸的催化效率k_(catA)/K_(m A)是野生型的4.1倍。通过分子动力学模拟,从分子水平阐明了突变体A146G-L278M和A146G-L278M-A151P热稳定性提高的机制。【结论】本研究采用的理性设计策略对提高CALB的热稳定性是行之有效的,该策略可作为其他工业用酶提高热稳定性的参考。  相似文献   

20.
To increase the thermostability of Rhizomucor miehei lipase, the software Disulfide by Design was used to engineer a novel disulfide bond between residues 96 and 106, and the corresponding double cysteine mutants were constructed. The R. miehei lipase mutant could be expressed by Pichia pastoris in a free secreted form or could be displayed on the cell surface. The new disulfide bond spontaneously formed in the mutant R. miehei lipase. Thermostability was examined by measuring of hydrolysis activity using 4-nitrophenyl caprylate as a substrate. The engineered disulfide bond contributed to thermostability in the free form of the R. miehei lipase variant. The variant displayed on the yeast cell surface had significantly increased residual hydrolytic activity in aqueous solution after incubation at 60°C for 5 h and increased synthetic activity in organic solvent at 60°C. These results indicated that yeast surface display might improve the stability of R. miehei lipase, as well as amplifying the thermostability through the engineered disulfide bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号