首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yolk sac and placenta are required to sustain embryonic development in mammals, yet our understanding of the genes and processes that control morphogenesis of these extraembryonic tissues is still limited. The chato mutation disrupts ZFP568, a Krüppel-Associated-Box (KRAB) domain Zinc finger protein, and causes a unique set of extraembryonic malformations, including ruffling of the yolk sac membrane, defective extraembryonic mesoderm morphogenesis and vasculogenesis, failure to close the ectoplacental cavity, and incomplete placental development. Phenotypic analysis of chato embryos indicated that ZFP568 does not control proliferation or differentiation of extraembryonic lineages but rather regulates the morphogenetic events that shape extraembryonic tissues. Analysis of chimeric embryos showed that Zfp568 function is required in embryonic-derived lineages, including the extraembryonic mesoderm. Depleting Zfp568 affects the ability of extraembryonic mesoderm cells to migrate. However, explanted Zfp568 mutant cells could migrate properly when plated on appropriate extracellular matrix conditions. We show that expression of Fibronectin and Indian Hedgehog are reduced in chato mutant yolk sacs. These data suggest that ZFP568 controls the production of secreted factors required to promote morphogenesis of extraembryonic tissues. Our results support previously undescribed roles of the extraembryonic mesoderm in yolk sac morphogenesis and in the closure of the ectoplacental cavity and identify a novel role of ZFP568 in the development of extraembryonic tissues.  相似文献   

2.
Previously, we discovered that ZFP57 is a maternal-zygotic effect gene, and it maintains DNA methylation genomic imprint at multiple imprinted regions in mouse embryos. Despite these findings, it remains elusive how DNA methyltransferases are targeted to the imprinting control regions to initiate and maintain DNA methylation imprint. To gain insights into these essential processes in genomic imprinting, we examined how ZFP57 maintains genomic DNA methylation imprint in mouse embryonic stem (ES) cells. Here we demonstrate that the loss of ZFP57 in mouse ES cells led to a complete loss of genomic DNA methylation imprint at multiple imprinted regions, similar to its role in mouse embryos. However, reintroduction of ZFP57 into Zfp57-null ES cells did not result in reacquisition of DNA methylation imprint, suggesting that the memory for genomic imprinting had been lost or altered in Zfp57-null ES cells in culture. Interestingly, ZFP57 and DNA methyltransferases could form complexes in the presence of KAP1/TRIM28/TIF1β when co-expressed in COS cells. We also found that the wild-type exogenous ZFP57 but not the mutant ZFP57 lacking the KRAB box that interacts with its co-factor KAP1/TRIM28/TIF1β could substitute for the endogenous ZFP57 in maintaining the DNA methylation imprint in ES cells. These results suggest that ZFP57 may recruit DNA methyltransferases to its target regions to maintain DNA methylation imprint, and this interaction is likely facilitated by KAP1/TRIM28/TIF1β.  相似文献   

3.
In Xenopus and zebrafish embryos, elongation of the anterior-posterior body axis depends on convergent extension, a process that involves polarized cell movements and is regulated by non-canonical Wnt signaling. The mechanisms that control axis elongation of the mouse embryo are much less well understood. Here, we characterize the ENU-induced mouse mutation chato, which causes arrest at midgestation and defects characteristic of convergent extension mutants, including a shortened body axis, mediolaterally extended somites and an open neural tube. The chato mutation disrupts Zfp568, a Krüppel-associated box (KRAB) domain zinc-finger protein. Morphometric analysis revealed that the definitive endoderm of mouse wild-type embryos undergoes cell rearrangements that lead to convergent extension during early somite stages, and that these cell rearrangements fail in chato embryos. Although non-canonical Wnt signaling is important for convergent extension in the mouse notochord and neural plate, the results indicate that chato regulates body axis elongation in all embryonic tissues through a process independent of non-canonical Wnt signaling.  相似文献   

4.
5.
Zinc finger protein 809 (ZFP809) is a member of the Kruppel-associated box-containing zinc finger protein (KRAB-ZFP) family, and is highly expressed in mouse immature cells. ZFP809 is known to inhibit the expression of transduced genes driven by Moloney murine leukemia virus (MoMLV)-typed retroviral vectors by binding to the primer binding site (PBS) located downstream of the MLV-long terminal repeat (LTR) of the vectors and recruiting protein complexes that introduce epigenetic silencing marks such as histone modifications and DNA methylation at the MLV-LTR. However, it remains undetermined what domains of ZFP809 among the KRAB domain at N-terminus and the seven zinc fingers are critical for gene silencing. In this study, we assessed subcellular localization, gene silencing ability, and binding ability to the PBS of a series of truncated and mutated ZFP809 proteins. We revealed the essential role of the KRAB A box for all functions assessed, together with the accessory roles of a subset of zinc fingers. Our data also suggest that interaction between KAP1 and the KRAB A box of ZFP809 is critical in KAP1-dependent control of gene silencing for ZFP809 targets.  相似文献   

6.
7.
Epigenetic phenomena are being increasingly recognized to play key roles in normal mammalian development and disease. This is exemplified by the process of genomic imprinting whereby despite identical DNA sequence, the two parental chromosomes are not equivalent and show either maternal- or paternal-specific expression at a subset of genes in the genome. These patterns are set up by differential DNA methylation marking at the imprinting control regions in male and female germ line. In this review, we discuss the specific mechanisms by which these methyl marks are established and then selectively maintained throughout pre-implantation development. Specifically, we discuss the recent findings of a critical role played by a KRAB zinc-finger protein ZFP57 and its co-factor KAP1/TRIM28 in mediating both processes.  相似文献   

8.
9.
10.
11.
12.
TRIM9 and TRIM67 are neuronally enriched E3 ubiquitin ligases essential for appropriate morphogenesis of cortical and hippocampal neurons and fidelitous responses to the axon guidance cue netrin-1. Deletion of murine Trim9 or Trim67 results in neuroanatomical defects and striking behavioral deficits, particularly in spatial learning and memory. TRIM9 and TRIM67 interact with cytoskeletal and exocytic proteins, but the full interactome is not known. Here we performed the unbiased proximity-dependent biotin identification (BioID) approach to define TRIM9 and TRIM67 protein–protein proximity network in developing cortical neurons and identified putative neuronal TRIM interaction partners. Candidates included cytoskeletal regulators, cytosolic protein transporters, exocytosis and endocytosis regulators, and proteins necessary for synaptic regulation. A subset of high-priority candidates was validated, including Myo16, Coro1A, MAP1B, ExoC1, GRIP1, PRG-1, and KIF1A. For a subset of validated candidates, we utilized total internal reflection fluorescence microscopy to demonstrate dynamic colocalization with TRIM proteins at the axonal periphery, including at the tips of filopodia. Further analysis demonstrated that the RNA interference–based knockdown of the unconventional myosin Myo16 in cortical neurons altered growth cone filopodia density and axonal branching patterns in a TRIM9- and netrin-1–dependent manner. Future analysis of other validated candidates will likely identify novel proteins and mechanisms by which TRIM9 and TRIM67 regulate neuronal form and function.  相似文献   

13.
Of the TRIM/RBCC family proteins taking part in a variety of cellular processes, TRIM50 is a stomach-specific member with no defined biological function. Our biochemical data demonstrated that TRIM50 is specifically expressed in gastric parietal cells and is predominantly localized in the tubulovesicular and canalicular membranes. In cultured cells ectopically expressing GFP-TRIM50, confocal microscopic imaging revealed dynamic movement of TRIM50-associated vesicles in a phosphoinositide 3-kinase-dependent manner. A protein overlay assay detected preferential binding of the PRY-SPRY domain from the TRIM50 C-terminal region to phosphatidylinositol species, suggesting that TRIM50 is involved in vesicular dynamics by sensing the phosphorylated state of phosphoinositol lipids. Trim50 knock-out mice retained normal histology in the gastric mucosa but exhibited impaired secretion of gastric acid. In response to histamine, Trim50 knock-out parietal cells generated deranged canaliculi, swollen microvilli lacking actin filaments, and excess multilamellar membrane complexes. Therefore, TRIM50 seems to play an essential role in tubulovesicular dynamics, promoting the formation of sophisticated canaliculi and microvilli during acid secretion in parietal cells.  相似文献   

14.
The signaling mechanisms that specify, guide and coordinate cell behavior during embryonic morphogenesis are poorly understood. We report that a Xenopus homolog of the Drosophila planar cell polarity gene strabismus (stbm) participates in the regulation of convergent extension, a critical morphogenetic process required for the elongation of dorsal structures in vertebrate embryos. Overexpression of Xstbm, which is expressed broadly in early development and subsequently in the nervous system, causes severely shortened trunk structures; a similar phenotype results from inhibiting Xstbm translation using a morpholino antisense oligo. Experiments with Keller explants further demonstrate that Xstbm can regulate convergent extension in both dorsal mesoderm and neural tissue. The specification of dorsal tissues is not affected. The Xstbm phenotype resembles those obtained with several other molecules with roles in planar polarity signaling, including Dishevelled and Frizzled-7 and -8. Unlike these proteins, however, Stbm has little effect on conventional Wnt/beta-catenin signaling in either frog or fly assays. Thus our results strongly support the emerging hypothesis that a vertebrate analog of the planar polarity pathway governs convergent extension movements.  相似文献   

15.
Reciprocal signals from embryonic and extra-embryonic tissues pattern the embryo in proximal-distal (PD) and anterior-posterior (AP) fashion. Here we have analyzed three gene trap mutations of Sall4, of which one (Sall4-1a) led to a hypomorphic and recessive phenotype, demonstrating that Sall4-1a has yet undescribed extra-embryonic and embryonic functions in regulating PD and AP axis formation. In Sall4-1a mutants the self-maintaining autoregulatory interaction between Bmp4, Nodal and Wnt, which determines the PD axis was disrupted because of defects in the extra-embryonic visceral endoderm. More severely, two distinct Sall4 gene-trap mutants (Sall4-1a,b), resembling null mutants, failed to initiate Bmp4 expression in the extra-embryonic ectoderm and Nodal in the epiblast and were therefore unable to initiate PD axis formation. Tetraploid rescue underlined the extra-embryonic nature of the Sall4-1a phenotype and revealed a further embryonic function in Wnt/beta-catenin signaling to elongate the AP axis during gastrulation. This observation was supported through genetic interaction with beta-catenin mutants, since compound heterozygous mutants recapitulated the defects of Wnt3a mutants in posterior development.  相似文献   

16.
Recent findings shed light on the coordination of two fundamental, yet mechanistically opposing, processes in the early mammalian embryo. During the oocyte-to-embryo transition and early preimplantation development nuclear reprogramming occurs. This resetting of the epigenome in maternal and paternal pronuclei to a ground state is the essential step ensuring totipotency in the zygote, the first embryonic stage. Radical, global DNA demethylation, which occurs actively in the paternal and passively in the maternal genome, is a prominent feature of nuclear reprogramming; yet, this process poses a danger to a subset of methylated sequences that must be preserved for their germline to soma inheritance. Genomic imprinting and its importance were demonstrated three decades ago by a series of experiments generating non-viable mammalian uniparental embryos. Indeed, imprinted loci, gene clusters with parent-of-origin specific gene expression patterns, must retain their differential methylation status acquired during gametogenesis throughout embryogenesis and in adult tissues. It is just recently that the molecular players that protect/maintain imprinting marks during reprogramming in preimplantation embryos have been identified, in particular, an epigenetic modifier complex formed by ZFP57 and TRIM28/KAP1. The interaction of these and other molecules with the newly formed embryonic chromatin and imprinted genes is discussed and highlighted herein.  相似文献   

17.
《Epigenetics》2013,8(9):969-975
Recent findings shed light on the coordination of two fundamental, yet mechanistically opposing, processes in the early mammalian embryo. During the oocyte-to-embryo transition and early preimplantation development nuclear reprogramming occurs. This resetting of the epigenome in maternal and paternal pronuclei to a ground state is the essential step ensuring totipotency in the zygote, the first embryonic stage. Radical, global DNA demethylation, which occurs actively in the paternal and passively in the maternal genome, is a prominent feature of nuclear reprogramming; yet, this process poses a danger to a subset of methylated sequences that must be preserved for their germline to soma inheritance. Genomic imprinting and its importance were demonstrated three decades ago by a series of experiments generating non-viable mammalian uniparental embryos. Indeed, imprinted loci, gene clusters with parent-of-origin specific gene expression patterns, must retain their differential methylation status acquired during gametogenesis throughout embryogenesis and in adult tissues. It is just recently that the molecular players that protect/maintain imprinting marks during reprogramming in preimplantation embryos have been identified, in particular, an epigenetic modifier complex formed by ZFP57 and TRIM28/KAP1. The interaction of these and other molecules with the newly formed embryonic chromatin and imprinted genes is discussed and highlighted herein.  相似文献   

18.
During amphibian development, non-canonical Wnt signals regulate the polarity of intercalating dorsal mesoderm cells during convergent extension. Cells of the overlying posterior neural ectoderm engage in similar morphogenetic cell movements. Important differences have been discerned in the cell behaviors associated with neural and mesodermal cell intercalation, raising the possibility that different mechanisms may control intercalations in these two tissues. In this report, targeted expression of mutants of Xenopus Dishevelled (Xdsh) to neural or mesodermal tissues elicited different defects that were consistent with inhibition of either neural or mesodermal convergent extension. Expression of mutant Xdsh also inhibited elongation of neural tissues in vitro in Keller sandwich explants and in vivo in neural plate grafts. Targeted expression of other Wnt signaling antagonists also inhibited neural convergent extension in whole embryos. In situ hybridization indicated that these defects were not due to changes in cell fate. Examination of embryonic phenotypes after inhibition of convergent extension in different tissues reveals a primary role for mesodermal convergent extension in axial elongation, and a role for neural convergent extension as an equalizing force to produce a straight axis. This study demonstrates that non-canonical Wnt signaling is a common mechanism controlling convergent extension in two very different tissues in the Xenopus embryo and may reflect a general conservation of control mechanisms in vertebrate convergent extension.  相似文献   

19.
Meiosis is a hallmark event in germ cell development that accompanies sequential events executed by numerous molecules. Therefore, characterization of these factors is one of the best strategies to clarify the mechanism of meiosis. Here, we report tripartite motif-containing 41 (TRIM41), a ubiquitin ligase E3, as an essential factor for proper meiotic progression and fertility in male mice. Trim41 knockout (KO) spermatocytes exhibited synaptonemal complex protein 3 (SYCP3) overloading, especially on the X chromosome. Furthermore, mutant mice lacking the RING domain of TRIM41, required for the ubiquitin ligase E3 activity, phenocopied Trim41 KO mice. We then examined the behavior of mutant TRIM41 (ΔRING-TRIM41) and found that ΔRING-TRIM41 accumulated on the chromosome axes with overloaded SYCP3. This result suggested that TRIM41 exerts its function on the chromosome axes. Our study revealed that Trim41 is essential for preventing SYCP3 overloading, suggesting a TRIM41-mediated mechanism for regulating chromosome axis protein dynamics during male meiotic progression.  相似文献   

20.
Nonalcoholic fatty liver disease (NAFLD) has become the most prevalent chronic liver disease worldwide, without any Food and Drug Administration-approved pharmacological intervention in clinic. Trim38, as an important member of the TRIM (tripartite motif-containing) family, was largely reported to be involved in the regulation of innate immune and inflammatory responses. However, the functional roles of TRIM38 in NAFLD remain largely unknown. Here, the expression of TRIM38 was first detected in liver samples of both NAFLD mice model and patients diagnosed with NAFLD. We found that TRIM38 expression was downregulated in NAFLD liver tissues compared with normal liver tissues. Genetic Trim38-KO in vivo showed that TRIM38 depletion deteriorated the high-fat diet and high fat and high cholesterol diet-induced hepatic steatosis and high fat and high cholesterol diet-induced liver inflammation and fibrosis. In particular, we found that the effects of hepatocellular lipid accumulation and inflammation induced by palmitic acid and oleic acid were aggravated by TRIM38 depletion but mitigated by TRIM38 overexpression in vitro. Mechanically, RNA-Seq analysis demonstrated that TRIM38 ameliorated nonalcoholic steatohepatitis progression by attenuating the activation of MAPK signaling pathway. We further found that TRIM38 interacted with transforming growth factor-β-activated kinase 1 binding protein 2 and promoted its protein degradation, thus inhibiting the transforming growth factor-β-activated kinase 1-MAPK signal cascades. In summary, our study revealed that TRIM38 could suppress hepatic steatosis, inflammatory, and fibrosis in NAFLD via promoting transforming growth factor-β-activated kinase 1 binding protein 2 degradation. TRIM38 could be a potential target for NAFLD treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号