首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lipases from Mucor miehei (MML) and Candida antarctica (CAL) are able to catalyze the monobenzoylation of the primary hydroxy group of 1,2- 1,4- or 1,5-diols with vinyl benzoate in an organic solvent, the reaction proceeding with high regioselectivity and moderate enantioselectivity. The lipase-catalyzed debenzoylation of 1,2-propanediol dibenzoate by alcoholysis with 1-octanol most satisfactorily occurred with Pseudomonas cepacia lipase absorbed onto celite that allowed also to prepare (R)-1-benzoyloxy-2-methylpropan-3-ol from 2-methyl-1,3-propanediol dibenzoate, a result complementary to MML-catalyzed benzoylation of 2-methyl-1,3-propanediol that affords the (S)-monobenzoate.  相似文献   

2.
3.
Kinetics of lipase-catalyzed hydrolysis of esters were modeled using reactant activities for aqueous-organic, biphasic systems. By using thermodynamic activities of the substrates in ordinary rate equations, the kinetic parameters were corrected for the contribution of substrate-solvent interactions and a uniform quantification of the substrates for lipase attached to the interface can be achieved. The kinetic parameters, on the basis of their thermodynamic activities, should be constant in different systems, provided that the solvents do not interfere with the binding of the substrates to the enzyme nor affect the catalytic mechanism. Experimental and computational methods on how to obtain the thermodynamic activities of the substrates are presented. Initial rates were determined for Pseudomonas cepacia lipase (PcL)-catalyzed hydrolysis of decyl chloroacetate in dynamic emulsions with various solvents. The thermodynamic equilibrium and corrected kinetic constants for this reaction appeared to be similar in various systems. The kinetics of PcL in an isooctane-aqueous biphasic system could be adequately described with the rate equation for a ping-pong mechanism. The observed inhibitory effect of decanol appeared to be a consequence of this mechanism, allowing the backreaction of the decanol with the chloroacetyl-enzyme complex. The kinetic performance of PcL in systems with toluene, dibutyl ether, and methyl isobutyl ketone could be less well described. The possible causes for this and for the remaining differences in corrected kinetic parameters are discussed. (c) 1995 John Wiley & Sons, Inc.  相似文献   

4.
The first straightforward lipase-catalyzed enantioselective access to enantiomerically enriched tiaprofenic acid as a versatile method in chiral separation of racemates is demonstrated. The latter was directly monitored by enantioselective HPLC using a 3,5-dimethylphenylcarbamate derivative of cellulose-based chiral stationary phase namely Chiralpak IB (the immobilized version of Chiralcel OD). Non-standard HPLC organic solvents were used as diluent to dissolve the "difficult to dissolve" enzyme substrate (the acid) and as eluent for the simultaneous enantioselective HPLC baseline separation of both substrate and product in one run without any further derivatization. The existence of a non-standard HPLC organic solvent (e.g., methyl tert-butyl ether) in the mobile phase composition is mandatory to accomplish the simultaneous enantioselective HPLC baseline separation of both substrate and product.  相似文献   

5.
The performance of lipases from Candida rugosa and wheat germ have been investigated in three reaction media using three acetate hydrolyses as model reactions (ethyl acetate, allyl acetate, and prenyl acetate). The effect of substrate properties and water content were studied for each system (organic solvent, biphasic system, and reverse micelles). Not unexpectedly, the effect of water content is distinct for each system, and the optimal water content for enzyme activity is not always the same as that for productivity. A theoretical model has been used to simulate and predict enzyme performance in reverse micelles, and a proposed partitioning model for biphasic systems agrees well with experimental results. While the highest activities observed were in the micellar system, productivity in microemulsions is limited by low enzyme concentrations. Biphasic systems, however, support relatively good activity and productivity. The addition of water to dry organic solvents, combined with the dispersion of lyophilized enzyme powders in the solvent, resulted in significant enzyme aggregation, which not surprisingly limits the applicability of the "anhydrous" enzyme suspension approach. (c) 1995 John Wiley & Sons, Inc.  相似文献   

6.
Enzymatic ester hydrolysis and ammoniolysis were performed as competitive reactions in methyl isobutyl ketone without a separate aqueous phase. The reaction system contained solid ammonium bicarbonate, which dissolved as water, ammonia, and carbon dioxide. During the reaction an organic liquid phase, a vapor phase, and at least one solid phase are present. The overall equilibrium composition of this multiphase system is a complex function of the reaction equilibria and several phase equilibria. To gain a quantitative understanding of this system a mathematical model was developed and evaluated. The model is based on the mass balances for a closed batch system and straightforward relations for the reaction equilibria and the solubility equilibria of ammonium bicarbonate, the fatty acid ammonium salt, water, ammonia, and carbon dioxide. For butyl butyrate as a model ester and Candida antarctica lipase B as the biocatalyst this equilibrium model describes the experiments satisfactorily. The model predicts that high equilibrium yields of butyric acid can be achieved only in the absence of ammoniolysis or in the presence of a separate water phase. However, high yields of butyramide should be possible if the water concentration is fixed at a low level and a more suited source of ammonia is applied.  相似文献   

7.
Lipase-catalyzed polymerization of caprolactone (CL) in toluene with methoxy-poly(ethylene glycol) (MPEG) and water as initiators was characterized in detail for mechanistic insight. (1)H NMR analysis of polycaprolactone chains (PCL), dicaprolactone, degree of esterification of MPEG, and fractions of PCL chains initiated by MPEG and water were used to follow the reactions. The data were analyzed with the kinetic scheme involving formation of the acylenzyme and its consequent reaction with MPEG, water, or PCL to yield the MPEG- or water-initiated PCL chains, or increase in PCL length. A limit for MPEG initiator esterification in lipase-catalyzed CL polymerization was observed and was explained by preferential reaction of PCL propagation over MPEG esterification at long reaction times and low MPEG concentrations. Slower monomer conversion in concentrated monomer solutions was explained by decreased partitioning of PCL between the solvent and the enzyme. This effect resulted in inhibition of the lipase by the reaction product, PCL chains, and/or insufficient diffusion of monomer to the enzyme active site. High monomer/initiators ratio in these solutions did not yield longer polymer chains due to decreased monomer conversion and the corresponding decrease in product yields; lower yields were also observed for chain initiation by MPEG and water. A shift in the reaction rate-limiting step from formation of acylenzyme in dilute CL solutions to its deacylation in concentrated CL solutions yielded higher PCL polydispersity due to increased initiation by water. Enhanced intramolecular cyclization was also observed. Endgroup composition of PCL chains was influenced by the concentration of monomer, ratio of initiators (MPEG and water), and reaction time, yielding PCL chains initiated exclusively by MPEG at "infinite reaction times."  相似文献   

8.
9.
The thermodynamics of the lipase-catalyzed esterification of glycerol with n-octanoic acid have been investigated with acetonitrile, benzene, and toluene as solvents and in the neat reaction mixture (no organic solvent added). This esterification reaction leads to five products: 1-monooctanoyl glycerol, 2-monooctanoyl glycerol, 1,2-dioctanoyl glycerol, 1,3-dioctanoyl glycerol and 1,2,3-trioctanoyl glycerol. This, in turn leads to a total of 12 reactions. Values of the equilibrium constants for these reactions have been measured (HPLC, GC, and LC/MS) at 37°C in the above mentioned media. The equilibrium constants range from 0.9 to 20.7, 0.20 to 8.0, 0.23 to 10.0, and 0.57 to 2.2 in acetonitrile, benzene, toluene, and neat media, respectively. Relative standard molar Gibbs free energies of formation ΔfGm0 of 1-monooctanoyl glycerol, 2-monooctanoyl glycerol, 1,2-dioctanoyl glycerol, 1,3-dioctanoyl glycerol and 1,2,3-trioctanoyl glycerol in the organic solvents and in the neat reaction mixture have been calculated and used to compactly summarize the thermodynamics of these reactions. The results show an approximate correlation with the permittivities of the solvents.  相似文献   

10.
Eightfold higher yields and three times faster reaction rates were achieved by means of using a mixture solvent system composed of 90% acetone and 10% [BMIM]BF4 in the lipase-catalyzed regioselective synthesis of polymerizable ester of nucleoside drugs.  相似文献   

11.
Catalysis in organic solvents and the mapping of protein surfaces using multiple solvent crystal structures are two rapidly developing areas of research. Recent advances include the study of protein folding and stability in different solvents, and the demonstration that it is possible to qualitatively rank the affinities of protein binding sites for a given organic solvent using the multiple solvent crystal structures method.  相似文献   

12.
Summary For the esterification of 2-(4-ethylphenoxy)propionic acid catalyzed by lipase MY (Candida rugosa) in isopropyl ether containing a suitable amount of water, the enantioselectivity for the reaction has become higher as the reaction temperature increasing. In contrast, the reverse trend of the temperature effect has been observed for lipase AY (Candida rugosa). A model for these temperature dependence has been proposed.  相似文献   

13.
Antibody-antigen binding in organic solvents   总被引:2,自引:0,他引:2  
We describe, for the first time, the action of antibodies in anhydrous organic solvents. It has been demonstrated that the binding of a hapten, 4-aminobiphenyl, to the immobilized monoclonal antibody 2E11 is strong and specific not only in water but also in a variety of non-aqueous media. Further, the strength of interaction between antibody and hapten has been related to the hydrophobicity of the solvent: the more hydrophobic the solvent, the weaker the protein-ligand interaction.  相似文献   

14.
Lipase-catalyzed condensation in an organic solvent is useful for the syntheses of esters. To reasonably design and optimize the reaction conditions, knowledge of the reaction equilibrium is required. The interaction of water with other reactants and the quantitative predictions for adsorption of water by a desiccant are discussed. The solvent effects on the reaction equilibrium are also elucidated in mixtures of nitrile and tert-alcohol.  相似文献   

15.
Horseradish peroxidase has been found to vigorously act as a catalyst in a number of water-immiscible organic solvents. The rates of peroxidase-catalyzed oxidation of p-anisidine with H(2)O(2) in toluene, benzene, ethyl and butyl acetates, and ether are in the range of 10-25% of that in water (pH 7.0) at the same reactant concentrations. Per oxidase was coupled with cholesterol oxidase (which was also found to be catalytically active in organic media), and the bienzymic system was successfully used for accurate, reliable, and reproducible determination of cholesterol in toluene.  相似文献   

16.
17.
Lipase-catalyzed condensation in an organic solvent is useful for the syntheses of esters. To reasonably design and optimize the reaction conditions, knowledge of the reaction equilibrium is required. The interaction of water with other reactants and the quantitative predictions for adsorption of water by a desiccant are discussed. The solvent effects on the reaction equilibrium are also elucidated in mixtures of nitrile and tert-alcohol.  相似文献   

18.
Substituent effects on the enantioselectivity for the lipase-catalyzed esterifications in organic solvents were studied by use of 2-(4-substituted phenoxy)propionic acids as the substrates with various substituents of H, F, Cl, CF(3), CH(3), CH(3)CH(2), and CH(3)O. The distinction in the behavior of their enantioselectivity was primarily responsible for the size effects of the substituents, although the substituents are far away from the stereocenter of the substrates. For the similar substituents in size, CH(3) and CF(3), however, their electronic effects played an important role in controlling the enantioselectivity. This variation of the enantioselectivity due to the electronic effects is also supported by the discussion based on the value of the Michaelis constant (K(m)) obtained. In addition, by raising the reaction temperature with enough water added to isopropyl ether as the reaction medium, the enantioselectivity is found to be dramatically enhanced for the substrate bearing CH(3)O group due to the strong electron-donating effect.  相似文献   

19.
Summary A facile system was developed for the quantitative determination of lipase regioselectivities in organic solvents towards the 1(3)-position of glycerides. It was utilized for the measurement of the regioselectivities displayed by lipase preparations fromMucor miehei (Lipozyme),Pseudomonas fluorescens andRhizopus delemar. It was shown that the lipases fromMucor miehei andPseudomonas fluorescens do in fact not display the high 1(3)-specifities reported in the literature for these enzymes.  相似文献   

20.
Enzyme thermoinactivation in anhydrous organic solvents   总被引:3,自引:0,他引:3  
Three unrelated enzymes (ribonuclease, chymotrypsin, and lysozyme) display markedly enhanced thermostability in anhydrous organic solvents compared to that in aqueous solution. At 110-145 degrees C in nonaqueous media all three enzymes inactivate due to heat-induced protein aggregation, as determined by gel filtration chromatography. Using bovine pancreatic ribonuclease A as a model, it has been established that enzymes are much more thermostable in hydrophobic solvents (shown to be essentially inert with respect to their interaction with the protein) than in hydrophilic ones (shown to strip water from the enzyme). The heat-induced aggregates of ribonuclease were characterized as both physically associated and chemically crosslinked protein agglomerates, with the latter being in part due to transamidation and intermolecular disulfide interchange reactions. The thermal denaturation of ribonuclease in neat organic solvents has been examined by means of differential scanning calorimetry. In hydrophobic solvents, the enzyme exhibits greatly enhanced thermal denaturation temperatures (T(m) values as high as 124 degrees C) compared to aqueous solution. The thermostability of ribonuclease towards heat-induced denaturation and aggregation decreases as the water content of the protein powder increases. The experimental data obtained suggest that enzymes are extremely thermostable in anhydrous organic solvents due to their conformational rigidity in the dehydrated state and their resistance to nearly all the covalent reactions causing irreversible thermoinactivation of enzymes in aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号