首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Semi-conservative DNA synthesis reactions catalyzed by the bacteriophage T4 DNA polymerase holoenzyme are initiated by a strand displacement mechanism requiring gp32, the T4 single-stranded DNA (ssDNA)-binding protein, to sequester the displaced strand. After initiation, DNA helicase acquisition by the nascent replication fork leads to a dramatic increase in the rate and processivity of leading strand DNA synthesis. In vitro studies have established that either of two T4-encoded DNA helicases, gp41 or dda, is capable of stimulating strand displacement synthesis. The acquisition of either helicase by the nascent replication fork is modulated by other protein components of the fork including gp32 and, in the case of the gp41 helicase, its mediator/loading protein gp59. Here, we examine the relationships between gp32 and the gp41/gp59 and dda helicase systems, respectively, during T4 replication using altered forms of gp32 defective in either protein-protein or protein-ssDNA interactions. We show that optimal stimulation of DNA synthesis by gp41/gp59 helicase requires gp32-gp59 interactions and is strongly dependent on the stability of ssDNA binding by gp32. Fluorescence assays demonstrate that gp59 binds stoichiometrically to forked DNA molecules; however, gp59-forked DNA complexes are destabilized via protein-protein interactions with the C-terminal "A-domain" fragment of gp32. These and previously published results suggest a model in which a mobile gp59-gp32 cluster bound to lagging strand ssDNA is the target for gp41 helicase assembly. In contrast, stimulation of DNA synthesis by dda helicase requires direct gp32-dda protein-protein interactions and is relatively unaffected by mutations in gp32 that destabilize its ssDNA binding activity. The latter data support a model in which protein-protein interactions with gp32 maintain dda in a proper active state for translocation at the replication fork. The relationship between dda and gp32 proteins in T4 replication appears similar to the relationship observed between the UL9 helicase and ICP8 ssDNA-binding protein in herpesvirus replication.  相似文献   

2.
Efficient DNA replication involves coordinated interactions among DNA polymerase, multiple factors, and the DNA. From bacteriophage T4 to eukaryotes, these factors include a helicase to unwind the DNA ahead of the replication fork, a single-stranded binding protein (SSB) to bind to the ssDNA on the lagging strand, and a helicase loader that associates with the fork, helicase, and SSB. The previously reported structure of the helicase loader in the T4 system, gene product (gp)59, has revealed an N-terminal domain, which shares structural homology with the high mobility group (HMG) proteins from eukaryotic organisms. Modeling of this structure with fork DNA has suggested that the HMG-like domain could bind to the duplex DNA ahead of the fork, whereas the C-terminal portion of gp59 would provide the docking sites for helicase (T4 gp41), SSB (T4 gp32), and the ssDNA fork arms. To test this model, we have used random and targeted mutagenesis to generate mutations throughout gp59. We have assayed the ability of the mutant proteins to bind to fork, primed fork, and ssDNAs, to interact with SSB, to stimulate helicase activity, and to function in leading and lagging strand DNA synthesis. Our results provide strong biochemical support for the role of the N-terminal gp59 HMG motif in fork binding and the interaction of the C-terminal portion of gp59 with helicase and SSB. Our results also suggest that processive replication may involve the switching of gp59 between its interactions with helicase and SSB.  相似文献   

3.
The bacteriophage T4 59 protein (gp59) plays a vital role in recombination and replication by promoting the assembly of the gene 41 helicase (gp41) onto DNA, thus enabling replication as well as strand exchange in recombination. Loading of the helicase onto gp32 (the T4 single strand binding protein)-coated single-stranded DNA requires gp59 to remove gp32 and replace it with gp41. Cross-linking studies between gp32 and gp59 reveal an interaction between Cys-166 of gp32 and Cys-42 of gp59. Since Cys-166 lies in the DNA binding core domain of gp32, this interaction may affect the association of gp32 with DNA. In the presence of gp32 or DNA, gp59 is capable of forming a multimer consisting of at least five gp59 subunits. Kinetics studies suggest that gp59 and gp41 exist in a one-to-one ratio, predicting that gp59 is capable of forming a hexamer (Raney, K. D., Carver, T. E., and Benkovic, S. J. (1996) J. Biol. Chem. 271, 14074-14081). The C-terminal A-domain of gp32 is needed for gp59 oligomer formation. Cross-linking has established that gp59 can interact with gp32-A (a truncated form of gp32 lacking the A-domain) but cannot form higher species. The results support a model in which gp59 binds to gp32 on a replication fork, destabilizing the gp32-single-stranded DNA interaction concomitant with the oligomerization of gp59 that results in a switching of gp41 for gp32 at the replication fork.  相似文献   

4.
We compare the activities of the wild-type (gp41WT) and mutant (gp41delta C20) forms of the bacteriophage T4 replication helicase. In the gp41delta C20 mutant the helicase subunits have been genetically truncated to remove the 20 residue C-terminal tail peptide domains present in the wild-type enzyme. Here, we examine the interactions of these helicase forms with the T4 gp59 helicase loader and the gp32 single-stranded DNA binding proteins, both of which are physically and functionally coupled with the helicase in the T4 DNA replication complex. We show that the wild-type and mutant forms of the helicase do not differ in their ability to assemble into dimers and hexamers, nor in their interactions with gp61 (the T4 primase). However they do differ in their gp59-stimulated unwinding activities and in their abilities to translocate along a ssDNA strand that has been coated with gp32. We demonstrate that functional coupling between gp59 and gp41 involves direct interactions between the C-terminal tail peptides of the helicase subunits and the loading protein, and measure the energetics and kinetics of these interactions. This work helps to define a gp41-gp59 assembly pathway that involves an initial interaction between the C-terminal tails of the helicases and the gp59 loader proteins, followed by a conformational change of the helicase subunits that exposes new interaction surfaces, which can then be trapped by the gp59 protein. Our results suggest that the gp41-gp59 complex is then poised to bind ssDNA portions of the replication fork. We suggest that one of the important functions of gp59 may be to aid in the exposure of the ssDNA binding sites of the helicase subunits, which are otherwise masked and regulated by interactions with the helicase carboxy-terminal tail peptides.  相似文献   

5.
The bacteriophage T4 59 protein (gp59) plays an essential role in recombination and replication by mediating the assembly of the gene 41 helicase (gp41) onto DNA. gp59 is required to displace the gp32 single-stranded binding protein on the lagging strand to expose a site for helicase binding. To gain a better understanding of the mechanism of helicase assembly, the architecture and stoichiometry of the gp41-gp59 complex were investigated. Both the N and C termini of gp41 were found to lie close to or in the gp41-gp41 subunit interface and interact with gp59. The site of interaction of gp41 on gp59 is proximal to Cys-215 of gp59. Binding of gp41 to gp59 stimulates a conformational change in the protein resulting in hexamer formation of gp59, and gp59 likewise stimulates oligomer formation of gp41. The gp59 subunits in this complex are arranged in a head to head orientation, such that Cys-42 of one subunit is in close proximity to Cys-42 on an adjacent subunit, and Cys-215 on one subunit is close to Cys-215 on a neighboring subunit. As the helicase is loaded onto DNA, a conformational change in the gp41-gp59 complex occurs, which may serve to displace gp32 from the lagging strand and load the hexameric helicase in its place.  相似文献   

6.
In the bacteriophage T4 DNA replication system, T4 gene 59 protein binds preferentially to fork DNA and accelerates the loading of the T4 41 helicase. 59 protein also binds the T4 32 single-stranded DNA-binding protein that coats the lagging strand template. Here we explore the function of the strong affinity between the 32 and 59 proteins at the replication fork. We show that, in contrast to the 59 helicase loader, 32 protein does not bind forked DNA more tightly than linear DNA. 32 protein displays a strong binding polarity on fork DNA, binding with much higher affinity to the 5' single-stranded lagging strand template arm of a model fork, than to the 3' single-stranded leading strand arm. 59 protein promotes the binding of 32 protein on forks too short for cooperative binding by 32 protein. We show that 32 protein is required for helicase-dependent leading strand DNA synthesis when the helicase is loaded by 59 protein. However, 32 protein is not required for leading strand synthesis when helicase is loaded, less efficiently, without 59 protein. Leading strand synthesis by wild type T4 polymerase is strongly inhibited when 59 protein is present without 32 protein. Because 59 protein can load the helicase on forks without 32 protein, our results are best explained by a model in which 59 helicase loader at the fork prevents the coupling of the leading strand polymerase and the helicase, unless the position of 59 protein is shifted by its association with 32 protein.  相似文献   

7.
Single-molecule fluorescence resonance energy transfer and functional assays have been used to study the initiation and regulation of the bacteriophage T4 DNA replication system. Previous work has demonstrated that a complex of the helicase loading protein (gp59) and the DNA polymerase (gp43) on forked DNA totally inhibits the polymerase and exonuclease activities of gp43 by a molecular locking mechanism (Xi, J., Zhuang, Z., Zhang, Z., Selzer, T., Spiering, M. M., Hammes, G. G., and Benkovic, S. J. (2005) Biochemistry 44, 2305-2318). We now show that this complex is "unlocked" by the addition of the helicase (gp41) with restoration of the DNA polymerase activity. Gp59 retains its ability to load the helicase while forming a gp59-gp43 complex at a DNA fork in the presence of the single-stranded DNA binding protein (gp32). Upon the addition of gp41 and MgATP, gp59 dissociates from the complex, and the DNA-bound gp41 is capable of recruiting the primase (gp61) to form a functional primosome and, subsequently, a fully active replisome. Functional assays of leading- and lagging-strand synthesis on an active replication fork show that the absence of gp59 has no effect on the coupling of leading- and lagging-strand synthesis or on the size of the Okazaki DNA fragments. We conclude that gp59 acts in a manner similar to the clamp loader to ensure proper assembly of the replisome and does not remain as a replisome component during active replication.  相似文献   

8.
H Xu  Y Wang  J S Bleuit  S W Morrical 《Biochemistry》2001,40(25):7651-7661
The gene 59 protein (gp59) of bacteriophage T4 performs a vital function in phage DNA replication by directing the assembly of gp41, the DNA helicase component of the T4 primosome, onto lagging strand ssDNA at nascent replication forks. The helicase assembly activity of gp59 is required for optimum efficiency of helicase acquisition by the replication fork during strand displacement DNA synthesis and is essential for helicase and primosome assembly during T4 recombination-dependent DNA replication transactions. Of central importance is the ability of gp59 to load the gp41 helicase onto ssDNA previously coated with cooperatively bound molecules of gp32, the T4 ssDNA binding protein. Gp59 heteroassociations with ssDNA, gp32, and gp41 all appear to be essential for this loading reaction. Previous studies demonstrated that a tripartite complex containing gp59 and gp32 simultaneously cooccupying ssDNA is an essential intermediate in gp59-dependent helicase loading; however, the biochemical and structural parameters of gp59-gp32 complexes with or without ssDNA are currently unknown. To better understand gp59-gp32 interactions, we performed fluorescence anisotropy and analytical ultracentrifugation experiments employing native or rhodamine-labeled gp59 species in combination with altered forms of gp32, allowing us to determine their binding parameters, shape parameters, and other hydrodynamic properties. Two truncated forms of gp32 were used: gp32-B, which lacks the N-terminal B-domain required for cooperative binding to ssDNA and for stable self-association, and A-domain fragment, which is the C-terminal peptide of gp32 lacking ssDNA binding ability. Results indicate that gp59 binds with high affinity to either gp32 derivative to form a 1:1 heterodimer. In both cases, heterodimer formation is accompanied by a conformational change in gp59 which correlates with decreased gp59-DNA binding affinity. Hydrodynamic modeling suggests an asymmetric prolate ellipsoid shape for gp59, consistent with its X-ray crystallographic structure, and this asymmetry appears to increase upon binding of gp32 derivatives. Implications of our findings for the structure and function of gp59 and gp59-gp32 complexes in T4 replication are discussed.  相似文献   

9.
The bacteriophage T4 replication complex is composed of eight proteins that function together to replicate DNA. This replisome can be broken down into four basic units: a primosome composed of gp41, gp61, and gp59; a leading strand holoenzyme composed of gp43, gp44/62, and gp45; a lagging strand holoenzyme; and a single strand binding protein polymer. These units interact further to form the complete replisome. The leading and lagging strand polymerases are physically linked in the presence of DNA or an active replisome. The region of interaction was mapped to an extension of the finger domain, such that Cys-507 of one subunit is in close proximity to Cys-507 of a second subunit. The leading strand polymerase and the primosome also associate, such that gp59 mediates the contact between the two complexes. Binding of gp43 to the primosome complex causes displacement of gp32 from the gp59.gp61.gp41 primosome complex. The resultant species is a complex of proteins that may allow coordinated leading and lagging strand synthesis, helicase DNA unwinding activity, and polymerase nucleotide incorporation.  相似文献   

10.
A DNA replication system was developed that could generate rolling-circle DNA molecules in vitro in amounts that permitted kinetic analyses of the movement of the replication forks. Two artificial primer-template DNA substrates were used to study DNA synthesis catalyzed by the DNA polymerase III holoenzyme in the presence of either the preprimosomal proteins (the primosomal proteins minus the DNA G primase) and the Escherichia coli single-stranded DNA binding protein or the DNA B helicase alone. Helicase activities have recently been demonstrated to be associated with the primosome, a mobile multiprotein priming apparatus that requires seven E. coli proteins (replication factor Y (protein n'), proteins n and n', and the products of the dnaB, dnaC, dnaG, and dnaT genes) for assembly, and with the DNA B protein. Consistent with a rolling-circle mechanism in which a helicase activity permitted extensive (-) strand DNA synthesis on a (+) single-stranded, circular DNA template, the major DNA products formed were multigenome-length, single-stranded, linear molecules. The replication forks assembled with either the preprimosome or the DNA B helicase moved at the same rate (approximately 730 nucleotides/s) at 30 degrees C and possessed apparent processivities in the range of 50,000-150,000 nucleotides. The single-stranded DNA binding protein was not required to maintain this high rate of movement in the case of leading strand DNA synthesis catalyzed by the DNA polymerase III holoenzyme and the DNA B helicase.  相似文献   

11.
The T4 gp59 protein is the major accessory protein of the phage's replicative DNA helicase, gp41. gp59 helps load gp41 at DNA replication forks by promoting its assembly onto single-stranded (ss) DNA covered with cooperatively bound molecules of gp32, the T4 single-strand DNA binding protein (ssb). A gp59-gp32-ssDNA ternary complex is an obligatory intermediate in this helicase loading mechanism. Here, we characterize the properties of gp59-gp32-ssDNA complexes and reveal some of the biochemical interactions that occur within them. Our results indicate the following: (i) gp59 is able to co-occupy ssDNA pre-saturated with either gp32 or gp32-A (a truncated gp32 species lacking interactions with gp59); (ii) gp59 destabilizes both gp32-ssDNA and (gp32-A)-ssDNA interactions; (iii) interactions of gp59 with the A-domain of gp32 alter the ssDNA-binding properties of gp59; and (iv) gp59 organizes gp32-ssDNA versus (gp32-A)-ssDNA into morphologically distinct complexes. Our results support a model in which gp59-gp32 interactions are non-essential for the co-occupancy of both proteins on ssDNA but are essential for the formation of structures competent for helicase assembly. The data argue that specific "cross-talk" between gp59 and gp32, involving conformational changes in both, is a key feature of the gp41 helicase assembly pathway.  相似文献   

12.
Bacteriophage T4 initiates origin-dependent replication via an R-loop mechanism in vivo. During in vitro reactions, the phage-encoded gp59 stimulates loading of the replicative helicase, gp41, onto branched intermediates, including origin R-loops. However, although gp59 is essential for recombination-dependent replication from D-loops, it does not appear to be required for origin-dependent replication in vivo. In this study, we have analyzed the origin-replicative intermediates formed during infections that are deficient in gp59 and other phage replication proteins. During infections lacking gp59, the initial replication forks from two different T4 origins actively replicated both leading- and lagging-strands. However, the retrograde replication forks from both origins were abnormal in the gp59-deficient infections. The lagging-strand from the initial fork was elongated as a new leading-strand in the retrograde direction without lagging-strand synthesis, whereas in the wild-type, leading- and lagging-strand synthesis appeared to be coupled. These results imply that gp59 inhibits the polymerase holoenzyme in vivo until the helicase-primase (gp41-gp61) complex is loaded, and we thereby refer to gp59 as a gatekeeper. We also found that all origin-replicative intermediates were absent in infections deficient in the helicase gp41 or the single-strand-binding protein gp32, regardless of whether gp59 was present or absent. These results argue that replication from the origin in vivo is dependent on both the helicase and single-strand-binding protein and demonstrate that the strong replication defect of gene 41 and 32 single mutants is not caused by gp59 inhibition of the polymerase.  相似文献   

13.
The Gp59 protein of bacteriophage T4 promotes DNA replication by loading the replicative helicase, Gp41, onto replication forks and recombination intermediates. Gp59 also blocks DNA synthesis by Gp43 polymerase until Gp41 is loaded, ensuring that synthesis is tightly coupled to unwinding. The distinct polymerase blocking and helicase loading activities of Gp59 likely involve different binding interactions with DNA and protein partners. Here, we investigate how interactions of Gp59 with DNA and Gp32, the T4 single-stranded DNA (ssDNA)-binding protein, are related to these activities. A previously characterized mutant, Gp59-I87A, exhibits markedly reduced affinity for ssDNA and pseudo-fork DNA substrates. We demonstrate that on Gp32-covered ssDNA, the DNA binding defect of Gp59-I87A is not detrimental to helicase loading and translocation. In contrast, on pseudo-fork DNA the I87A mutation is detrimental to helicase loading and unwinding in the presence or absence of Gp32. Other results indicate that Gp32 binding to lagging strand ssDNA relieves the blockage of Gp43 polymerase activity by Gp59, whereas the inhibition of Gp43 exonuclease activity is maintained. Our findings suggest that Gp59-Gp32 and Gp59-DNA interactions perform separate but complementary roles in T4 DNA metabolism; Gp59-Gp32 interactions are needed to load Gp41 onto D-loops, and other nucleoprotein structures containing clusters of Gp32. Gp59-DNA interactions are needed to load Gp41 onto nascent or collapsed replication forks lacking clusters of Gp32 and to coordinate bidirectional replication from T4 origins. The dual functionalities of Gp59 allow it to promote the initiation or re-start of DNA replication from a wide variety of recombination and replication intermediates.  相似文献   

14.
Processive strand-displacement DNA synthesis with the T4 replication system requires functional "coupling" between the DNA polymerase (gp43) and the helicase (gp41). To define the physical basis of this functional coupling, we have used analytical ultracentrifugation to show that gp43 is a monomeric species at physiological protein concentrations and that gp41 and gp43 do not physically interact in the absence of DNA, suggesting that the functional coupling between gp41 and gp43 depends significantly on interactions modulated by the replication fork DNA. Results from strand-displacement DNA synthesis show that a minimal gp41-gp43 replication complex can perform strand-displacement synthesis at approximately 90 nts/s in a solution containing poly(ethylene glycol) to drive helicase loading. In contrast, neither the Klenow fragment of Escherichia coli DNA polymerase I nor the T7 DNA polymerase, both of which are nonprocessive polymerases, can carry out strand-displacement DNA synthesis with gp41, suggesting that the functional helicase-polymerase coupling may require the homologous system. However, we show that a heterologous helicase-polymerase pair can work if the polymerase is processive. Strand-displacement DNA synthesis using the gp41 helicase with the T4 DNA polymerase holoenzyme or the phage T7 DNA polymerase-thioredoxin complex, both of which are processive, proceeds at the rate of approximately 250 nts/s. However, replication fork assembly is less efficient with the heterologous helicase-polymerase pair. Therefore, a processive (homologous or heterologous) "trailing" DNA polymerase is sufficient to improve gp41 processivity and unwinding activity in the elongation stage of the helicase reaction, and specific T4 helicase-polymerase coupling becomes significant only in the assembly (or initiation) stage.  相似文献   

15.
PriA helicase and SSB interact physically and functionally   总被引:5,自引:2,他引:3  
PriA helicase is the major DNA replication restart initiator in Escherichia coli and acts to reload the replicative helicase DnaB back onto the chromosome at repaired replication forks and D-loops formed by recombination. We have discovered that PriA-catalysed unwinding of branched DNA substrates is stimulated specifically by contact with the single-strand DNA binding protein of E.coli, SSB. This stimulation requires binding of SSB to the initial DNA substrate and is effected via a physical interaction between PriA and the C-terminus of SSB. Stimulation of PriA by the SSB C-terminus may act to ensure that efficient PriA-catalysed reloading of DnaB occurs only onto the lagging strand template of repaired forks and D-loops. Correlation between the DNA repair and recombination defects of strains harbouring an SSB C-terminal mutation with inhibition of this SSB–PriA interaction in vitro suggests that SSB plays a critical role in facilitating PriA-directed replication restart. Taken together with previous data, these findings indicate that protein–protein interactions involving SSB may coordinate replication fork reloading from start to finish.  相似文献   

16.
The DNA polymerase encoded by bacteriophage T7 has low processivity. Escherichia coli thioredoxin binds to a segment of 76 residues in the thumb subdomain of the polymerase and increases the processivity. The binding of thioredoxin leads to the formation of two basic loops, loops A and B, located within the thioredoxin-binding domain (TBD). Both loops interact with the acidic C terminus of the T7 helicase. A relatively weak electrostatic mode involves the C-terminal tail of the helicase and the TBD, whereas a high affinity interaction that does not involve the C-terminal tail occurs when the polymerase is in a polymerization mode. T7 gene 2.5 single-stranded DNA-binding protein (gp2.5) also has an acidic C-terminal tail. gp2.5 also has two modes of interaction with the polymerase, but both involve the C-terminal tail of gp2.5. An electrostatic interaction requires the basic residues in loops A and B, and gp2.5 binds to both loops with similar affinity as measured by surface plasmon resonance. When the polymerase is in a polymerization mode, the C terminus of gene 2.5 protein interacts with the polymerase in regions outside the TBD. gp2.5 increases the processivity of the polymerase-helicase complex during leading strand synthesis. When loop B of the TBD is altered, abortive DNA products are observed during leading strand synthesis. Loop B appears to play an important role in communication with the helicase and gp2.5, whereas loop A plays a stabilizing role in these interactions.  相似文献   

17.
The gene 4 protein of bacteriophage T7 plays a central role in DNA replication by providing both helicase and primase activities. The C-terminal helicase domain is not only responsible for DNA-dependent dTTP hydrolysis, translocation, and DNA unwinding, but it also interacts with T7 DNA polymerase to coordinate helicase and polymerase activities. The C-terminal 17 residues of gene 4 protein are critical for its interaction with the T7 DNA polymerase/thioredoxin complex. This C terminus is highly acidic; replacement of these residues with uncharged residues leads to a loss of interaction with T7 DNA polymerase/thioredoxin and an increase in oligomerization of the gene 4 protein. Such an alteration on the C terminus results in a reduced efficiency in strand displacement DNA synthesis catalyzed by gene 4 protein and T7 DNA polymerase/thioredoxin. Replacement of the C-terminal amino acid, phenylalanine, with non-aromatic residues also leads to a loss of interaction of gene 4 protein with T7 DNA polymerase/thioredoxin. However, neither of these modifications of the C terminus affects helicase and primase activities. A chimeric gene 4 protein containing the acidic C terminus of the T7 gene 2.5 single-stranded DNA-binding protein is more active in strand displacement synthesis. Gene 4 hexamers containing even one subunit of a defective C terminus are defective in their interaction with T7 DNA polymerase.  相似文献   

18.
The initiation of DNA synthesis on forked DNA templates is a vital process in the replication and maintenance of cellular chromosomes. Two proteins that promote replisome assembly on DNA forks have so far been identified. In phage T4 development the gene 59 protein (gp59) assembles replisomes at D-loops, the sites of homologous strand exchange. Bacterial PriA protein plays an analogous function, most probably restarting replication after replication fork arrest with the aid of homologous recombination proteins, and PriA is also required for phage Mu replication by transposition. Gp59 and PriA exhibit similar DNA fork binding activities, but PriA also has a 3' to 5' helicase activity that can promote duplex opening for replisome assembly. The helicase activity allows PriA's repertoire of templates to be more diverse than that of gp59. It may give PriA the versatility to restart DNA replication without recombination on arrested replication forks that lack appropriate duplex openings.  相似文献   

19.
Mammalian DNA helicase.   总被引:8,自引:5,他引:3       下载免费PDF全文
A forked DNA was constructed to serve as a substrate for DNA helicases. It contains features closely resembling a natural replication fork. The DNA was prepared in large amounts and was used to assay displacement activity during isolation from calf thymus DNA polymerases alpha holoenzyme. One form of DNA polymerase alpha holoenzyme is possibly involved leading strand replication at the replication fork and possesses DNA dependent ATPase activity (Ottiger, H.-P. and Hübscher, U. (1984) Proc. Natl. Acad. Sci. USA 81, 3993-3997). The enzyme can be separated from DNA polymerase alpha by velocity sedimentation in conditions of very low ionic strength and then be purified by chromatography on Sephacryl S-200 and ATP-agarose. At all stages of purification, DNA dependent ATPase and displacement activity profiles were virtually superimposable. The DNA dependent ATPase can displace a hybridized DNA fragment with a short single-stranded tail at its 3'hydroxyl end only in the presence of ATP, and this displacement relies on ATP hydrolysis. Furthermore, homogeneous single-stranded binding proteins from calf thymus as well as from other tissues cannot perform this displacement reaction. By all this token the DNA dependent ATPase appears to be a DNA helicase. It is suggested that this DNA helicase might act in concert with DNA polymerase alpha at the leading strand, possibly pushing the replication fork ahead of the polymerase.  相似文献   

20.
A DNA helicase from calf thymus, called DNA helicase F, copurified with replication protein A through several steps of purification including DEAE-Sephacel, hydroxyapatite and single stranded DNA cellulose. It is finally separated from replication protein A on FPLC Mono Q where the DNA helicase elutes after replication protein A. Characterization of the DNA helicase F by affinity labeling with [alpha 32P]ATP indicated that the enzyme has a catalytic subunit of 72 kDa. Gel filtration experiments suggested that DNA helicase F can exist both in a monomeric and an oligomeric form. The enzyme unwinds DNA in the 5'-->3' direction in relation to the strand it binds. All eight deoxyribonucleoside- and ribonucleosidetriphosphates could serve as an energy source. Testing a variety of DNA/DNA substrates demonstrated that the DNA helicase F preferentially unwinds very short substrates and is slightly stimulated by a single stranded 3'-tail. However, replication protein A allowed the DNA helicase to unwind much longer DNA substrates of up to 400 bases, indicating that the copurification of replication protein A with the DNA helicase F might be of functional relevance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号