首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
Transgenic chilli pepper (Capsicum annuum L.) plants tolerant to salinity stress were produced by introducing the wheat Na+/H+ antiporter gene (TaNHX2) via Agrobacterium-mediated transformation. Cotyledonary explants were infected with Agrobacterium tumefaciens strain LBA4404 harboring a binary vector pBin438 that contains a wheat antiporter (TaNHX2) gene driven by the double CaMV 35S promoter and NPT II gene as a selectable marker. PCR and semiquantitative RT-PCR analysis confirmed that the TaNHX2 gene had been integrated and expressed in the T1 generation of transgenic pepper plants as compared to the non-transformed plants. Southern blot analysis further verified the integration and presence of TaNHX2 gene in the genome of chilli pepper plants. Biochemical assays of these transgenic plants revealed enhanced levels of proline, chlorophyll, superoxide dismutase, ascorbate peroxidase, relative water content, and reduced levels of hydrogen peroxide (H2O2), malondialdehyde compared to wild-type plants under salt stress conditions. The present investigation clearly showed that overexpression of the TaNHX2 gene enhanced salt stress tolerance in transgenic chilli pepper plants.  相似文献   

3.
Drought-stressed plants accumulate cyclitols such as myo-inositol, pinitol, quercitol in the cytosol. These solutes (compatible solutes) protect plants from stress effects. Synthetic myo-inositol was used in the investigation of drought stress tolerance in pepper plants. Hydrogen peroxide (H2O2), membrane damage, ascorbate peroxidase (AP), catalase (CAT), proline and calcium increased in plants under drought conditions. Water status, calcium level, glutathione reductase activities increased in myo-inositol treated Capsicum annuum L. (pepper) under drought stress. Exogenous myo-inositol significantly decreased H2O2, membrane damage and proline levels and AP (except for 5 µM) and CAT activity, compared with untreated plants. Myo-inositol can play a role as effective as proline in signal transduction and in regulating concentrations of reactive oxygen species within tolerable ranges and in maintaining cell turgor by binding water molecules. Myo-inositol may become a useful instrument to eliminate the negative effects of drought environments.  相似文献   

4.
Verticillium wilt (Verticillium dahliae) is an economically important disease for many high-value crops. The pathogen is difficult to manage due to the long viability of its resting structures, wide host range, and the inability of fungicides to affect the pathogen once in the plant vascular system. In chile pepper (Capsicum annuum), breeding for resistance to Verticillium wilt is especially challenging due to the limited resistance sources. The dominant Ve locus in tomato (Solanum lycopersicum) contains two closely linked and inversely oriented genes, Ve1 and Ve2. Homologs of Ve1 have been characterized in diverse plant species, and interfamily transfer of Ve1 confers race-specific resistance. Queries in the chile pepper WGS database in NCBI with Ve1 and Ve2 sequences identified one open reading frame (ORF) with homology to the tomato Ve genes. Comparison of the candidate CaVe (Capsicum annuum Ve) gene sequences from susceptible and resistant accessions revealed 16 single nucleotide polymorphisms (SNPs) and several haplotypes. A homozygous haplotype was identified for the susceptible accessions and for resistant accessions. We developed a cleaved amplified polymorphic sequence (CAPS) molecular marker within the coding region of CaVe and screened diverse germplasm that has been previously reported as being resistant to Verticillium wilt in other regions. Based on our phenotyping using the New Mexico V. dahliae isolate, the marker could select resistance accessions with 48% accuracy. This molecular marker is a promising tool towards marker-assisted selection for Verticillium wilt resistance and has the potential to improve the efficacy of chile pepper breeding programs, but does not eliminate the need for a bioassay. Furthermore, this work provides a basis for future research in this important pathosystem.  相似文献   

5.
Whiteflies Bemisia tabaci (Gennadius) and Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) are important pests in pepper (Capsicum annuum L.) and tomato (Solanum lycopersicum L.) crops in many countries. Contrary to what is observed for all other countries, in Uruguay, B. tabaci is mainly found on pepper and rarely on tomato, while T. vaporariorum is exclusively found on tomato. This study tested the oviposition preferences and biotic potential of these two whiteflies reared on both host plants. The developmental time, survival rates, longevity, fecundity and main population parameters were characterized. Both whitefly species showed different preference patterns regarding their host plants. T. vaporariorum preferred tomato instead of pepper to oviposit. Their developmental time is longer on pepper. B. tabaci preferred pepper, but the difference from tomato was not very strong. Pepper affects the biotic expression of T. vaporariorum negatively, while B. tabaci is able to develop equally on both host plants. These results show that the distribution differences of both whiteflies observed on both host plants could have a biological basis.  相似文献   

6.
7.

Key message

Next-generation sequencing enabled a fast discovery of QTLs controlling CMV resistant in pepper. The gene CA02g19570 as a possible candidate gene of qCmr2.1 was identified for resistance to CMV in pepper.

Abstract

Cucumber mosaic virus (CMV) is one of the most important viruses infecting pepper, but the genetic basis of CMV resistance in pepper is elusive. In this study, we identified a candidate gene for CMV resistance QTL, qCmr2.1 through SLAF-seq. Segregation analysis in F2, BC1 and F2:3 populations derived from a cross between two inbred lines ‘PBC688’ (CMV-resistant) and ‘G29’ (CMV-susceptible) suggested quantitative inheritance of resistance to CMV in pepper. Genome-wide comparison of SNP profiles between the CMV-resistant and CMV-susceptible bulks constructed from an F2 population identified two QTLs, designated as qCmr2.1 on chromosome 2 and qCmr11.1 on chromosome 11 for resistance to CMV in PBC688, which were confirmed by InDel marker-based classical QTL mapping in the F2 population. As a major QTL, joint SLAF-seq and traditional QTL analysis delimited qCmr2.1 to a 330 kb genomic region. Two pepper genes, CA02g19570 and CA02g19600, were identified in this region, which are homologous with the genes LOC104113703, LOC104248995, LOC102603934 and LOC101248357, which were predicted to encode N-like protein associated with TMV-resistant in Solanum crops. Quantitative RT-PCR revealed higher expression levels of CA02g19570 in CMV resistance genotypes. The CA02g19600 did not exhibit obvious regularity in expression patterns. Higher relative expression levels of CA02g19570 in PBC688 and F1 were compared with those in G29 during days after inoculation. These results provide support for CA02g19570 as a possible candidate gene of qCmr2.1 for resistance to CMV in pepper.
  相似文献   

8.
Capsicum baccatum L., one of five domesticated species of Capsicum, is a valuable species in chili pepper breeding. In particular, it is a source of disease resistance against anthracnose and powdery mildew. Genetic maps and molecular markers are important to improve the efficiency of crop breeding programs. Recently, using genetic maps several researchers have identified quantitative trait loci (QTLs) for important horticultural traits and have cloned genes of interest. In this study, we constructed a genetic map of C. baccatum in an intraspecific population from a cross between ‘Golden-aji’ and ‘PI594137.’ A total of 395 high-resolution melting markers were developed based on single-nucleotide polymorphisms identified by comparing genome sequences generated through next-generation resequencing of the parents, ‘Golden-aji’ and ‘PI594137.’ The genetic linkage map contained 12 linkage groups, covered a total distance of 1056.2 cM, and had an average distance of 2.67 cM between markers. In addition, the final map was compared to the reference physical map of C. annuum ‘CM334.’ Interestingly, two major reciprocal translocations between chromosomes 3 and 5 and between chromosomes 3 and 9 were found, suggesting that these translocations might act as a genetic barrier between C. annuum and C. baccatum. Translocations between chromosomes 1 and 8 were also observed, as were previously reported in C. chinense, C. frutescens, and wild C. annuum. The synteny of other chromosomes was maintained, on the whole, except for several small inversions. The information on this genetic map will be helpful to analyze QTLs for important traits such as anthracnose resistance in C. baccatum and to study the causes of genetic barriers between C. annuum and C. baccatum.  相似文献   

9.
The green peach aphid, Myzus persicae (Sulzer), is one of the most important aphid pests on pepper. Aphidius matricariae Haliday and Praon volucre (Haliday) are known as biological control agents for aphids in vegetable crops. In this research, age-specific functional responses of these two parasitoids were evaluated on different densities of 2, 4, 8, 16, 32, and 64 green peach aphids. Type of functional response varied from type II to type III for different ages of A. matricariae, but type of functional response was not affected by female age for P. volucre. The functional response of P. volucre was determined as type II in the whole parasitoid lifetime. The searching efficiency (a), b, and handling time (T h ) were estimated using the Rogers equations. The highest searching efficiency (a) and lowest handling time were observed during the first half of lifetime of A. matricariae and P. volucre. Aphidius matricariae and P. volucre caused reasonable mortality of the green peach aphid by parasitism of 52.17 and 47.05 host aphids, respectively, in 24 h. Therefore, they are suggested as suitable candidates for control of M. persicae in pepper greenhouses.  相似文献   

10.

Key message

A novel powdery mildew-resistance gene, designated Pm58, was introgressed directly from Aegilops tauschii to hexaploid wheat, mapped to chromosome 2DS, and confirmed to be effective under field conditions. Selectable KASP? markers were developed for MAS.

Abstract

Powdery mildew caused by Blumeria graminis (DC.) f. sp. tritici (Bgt) remains a significant threat to wheat (Triticum aestivum L.) production. The rapid breakdown of race-specific resistance to Bgt reinforces the need to identify novel sources of resistance. The d-genome species, Aegilops tauschii, is an excellent source of disease resistance that is transferrable to T. aestivum. The powdery mildew-resistant Ae. tauschii accession TA1662 (2n?=?2x?=?DD) was crossed directly with the susceptible hard white wheat line KS05HW14 (2n?=?6x?=?AABBDD) followed by backcrossing to develop a population of 96 BC2F4 introgression lines (ILs). Genotyping-by-sequencing was used to develop a genome-wide genetic map that was anchored to the Ae. tauschii reference genome. A detached-leaf Bgt assay was used to screen BC2F4:6 ILs, and resistance was found to segregate as a single locus (χ?=?2.0, P value?=?0.157). The resistance gene, referred to as Pm58, mapped to chromosome 2DS. Pm58 was evaluated under field conditions in replicated trials in 2015 and 2016. In both years, a single QTL spanning the Pm58 locus was identified that reduced powdery mildew severity and explained 21% of field variation (P value?<?0.01). KASP? assays were developed from closely linked GBS-SNP markers, a refined genetic map was developed, and four markers that cosegregate with Pm58 were identified. This novel source of powdery mildew-resistance and closely linked genetic markers will support efforts to develop wheat varieties with powdery mildew resistance.
  相似文献   

11.
The application of modern biotechnology for improvement of chili pepper productivity requires an efficient in vitro plant regeneration protocol. In this study, a reliable protocol was developed for the in vitro regeneration of four types of chili, Capsicum annuum var. annuum (Jalapeño and Serrano), C. annuum var. glabriusculum/aviculare (Piquin), and C. chinense (Habanero) by direct organogenesis using three different explants (cotyledon, hypocotyls, and embryo) and three induction media. All evaluated culture media promoted the formation of adventitious shoots. When embryos or hypocotyls were used as explants, morphologically normal adventitious shoots developed, while culturing cotyledons resulted in nonelongating rosette-shaped shoots. The highest in vitro regeneration efficiency (14.6 shoots per explant) was achieved when Habanero chili hypocotyls were grown on Murashige and Skoog medium containing 1.7 μM indole-3-acetic acid and 22.2 μM N6-benzyladenine. This regeneration rate is higher than that obtained in previous reports. Regenerated plants were ready to be transferred to the greenhouse 13 wk after the explant culture. An evaluation carried out under greenhouse conditions showed differences in agronomic performance between in vitro regenerated plants and plants developed from seeds with the magnitude of the differences depending on the genotype being studied.  相似文献   

12.
Root-knot nematodes (RKNs) can severely damage crops, including peppers, worldwide. The application of resistance genes identified in the Capsicum annuum genome may represent a safe and economically relevant strategy for controlling RKNs. Among the Me genes (Me1, Me3, Me7, and N) that have been mapped to a cluster on chromosome P9, Me1 confers a heat-stable and broad-spectrum resistance that is difficult for virulent RKNs to overcome. In this study, we developed several closely linked kompetitive allele-specific PCR (KASPar) markers, simple sequence repeat (SSR) markers, sequence characterized amplified region (SCAR) markers, and high-resolution melting (HRM) markers for the mapping of RKN-resistance genes. Analyses of 948 individuals (BC1 and F2 progenies) revealed that Me1 was located between SCAR marker 16880-1-V2 and HRM marker 16830-H-V2, with 13 and 0 recombination events with Me1, respectively. These markers were localized to a 132-kb interval, which included six genes. The development of several PCR-based markers closely linked to Me1 will be useful for the marker-assisted selection of RKN resistance in pepper cultivars. Among these markers, 16830-H-V2 and 16830-CAPS are present in the CA09g16830 gene, which is predicted to be a putative late blight resistance protein homolog R1A-3 gene. This gene appears to be a suitable Me1 candidate gene.  相似文献   

13.
14.
Chili veinal mottle virus (ChiVMV) threatens the agricultural production of peppers (Capsicum annuum) in Asia and Africa. In this study, we evaluated ChiVMV resistance in the four pepper varieties CV3, CV4, CV8, and CV9. Segregation analyses revealed that CV3 and CV8 contain the single dominant resistance gene Cvr1, and CV9 contains the single recessive resistance gene cvr4. SNP markers were developed and used to map the Cvr1 gene in CV3 to the short arm of chromosome 6 where NLR genes are clustered. In CV4 oligogenic resistance loci were detected. A genotyping-by-sequencing (GBS) combined with modified sliding window approach mapped two resistance loci, to chromosomes 6 and 10. The development of SNP markers and the resulting knowledge of genomic positioning will assist in breeding ChiVMV-resistant pepper varieties and in the fine mapping of ChiVMV resistance genes.  相似文献   

15.
The brown planthopper (Nilaparvata lugens Stål; BPH) has become a severe constraint on rice production. Identification and pyramiding BPH-resistance genes is an economical and effective solution to increase the resistance level of rice varieties. All the BPH-resistance genes identified to date have been from indica rice or wild species. The BPH12 gene in the indica rice accession B14 is derived from the wild species Oryza latifolia. Using an F2 population from a cross between the indica cultivar 93-11 and B14, we mapped the BPH12 gene to a 1.9-cM region on chromosome 4, flanked by the markers RM16459 and RM1305. In this population, BPH12 appeared to be partially dominant and explained 73.8% of the phenotypic variance in BPH resistance. A near-isogenic line (NIL) containing the BPH12 locus in the background of the susceptible japonica variety Nipponbare was developed and crossed with a NIL carrying BPH6 to generate a pyramid line (PYL) with both genes. BPH insects showed significant differences in non-preference in comparisons between the lines harboring resistance genes (NILs and PYL) and Nipponbare. BPH growth and development were inhibited and survival rates were lower on the NIL-BPH12 and NIL-BPH6 plants compared to the recurrent parent Nipponbare. PYL-BPH6 + BPH12 exhibited 46.4, 26.8 and 72.1% reductions in population growth rates (PGR) compared to NIL-BPH12, NIL-BPH6 and Nipponbare, respectively. Furthermore, insect survival rates were the lowest on the PYL-BPH6 + BPH12 plants. These results demonstrated that pyramiding different BPH-resistance genes resulted in stronger antixenotic and antibiotic effects on the BPH insects. This gene pyramiding strategy should be of great benefit for the breeding of BPH-resistant japonica rice varieties.  相似文献   

16.

Key message

A new downy mildew resistance gene, Pl 19 , was identified from wild Helianthus annuus accession PI 435414, introduced to confection sunflower, and genetically mapped to linkage group 4 of the sunflower genome.

Abstract

Wild Helianthus annuus accession PI 435414 exhibited resistance to downy mildew, which is one of the most destructive diseases to sunflower production globally. Evaluation of the 140 BC1F2:3 families derived from the cross of CMS CONFSCLB1 and PI 435414 against Plasmopara halstedii race 734 revealed that a single dominant gene controls downy mildew resistance in the population. Bulked segregant analysis conducted in the BC1F2 population with 860 simple sequence repeat (SSR) markers indicated that the resistance derived from wild H. annuus was associated with SSR markers located on linkage group (LG) 4 of the sunflower genome. To map and tag this resistance locus, designated Pl 19 , 140 BC1F2 individuals were used to construct a linkage map of the gene region. Two SSR markers, ORS963 and HT298, were linked to Pl 19 within a distance of 4.7 cM. After screening 27 additional single nucleotide polymorphism (SNP) markers previously mapped to this region, two flanking SNP markers, NSA_003564 and NSA_006089, were identified as surrounding the Pl 19 gene at a distance of 0.6 cM from each side. Genetic analysis indicated that Pl 19 is different from Pl 17 , which had previously been mapped to LG4, but is closely linked to Pl 17 . This new gene is highly effective against the most predominant and virulent races of P. halstedii currently identified in North America and is the first downy mildew resistance gene that has been transferred to confection sunflower. The selected resistant germplasm derived from homozygous BC2F3 progeny provides a novel gene for use in confection sunflower breeding programs.
  相似文献   

17.
Natural root-knot nematode resistance genes are unique resources to control this major pest in pepper (Capsicum annuum). Although four genes (Me1, Me3, Me7 and N) conferring broad-spectrum resistance were mapped to a cluster in a 28-cm interval on chromosome P9, limited markers targeting this region were available. In the present study, the Me-gene cluster was structurally annotated for resistance genes to develop markers targeting the N gene. As a result, the Me-gene cluster (4.07 Mb in size) was found to contain three resistance gene hotspots. In addition, a SSR maker tightly linked to the N gene (0.8 cM away) was developed for marker-assisted selection in pepper.  相似文献   

18.
As observed in other self-incompatible species in the Pyrinae subtribe, loquat (Eriobotrya japonica) demonstrates gametophytic self-incompatibility that is controlled by the S-locus, which encodes a polymorphic stylar ribonuclease (S-RNase). This allows the female reproductive organ (style) to recognize and reject the pollen from individuals with the same S-alleles, but allows the pollen from individuals with different S-alleles to effect fertilization. The S-genotype is therefore an important consideration in breeding strategies and orchard management. In an attempt to optimize the selection of parental lines in loquat production, the S-RNase alleles of 35 loquat cultivars and their 26 progeny, as well as five wild loquat species, were identified and characterized in this study. The best pollinizer cultivar combinations were also explored. A total of 28 S-alleles were detected, 21 of which constituted novel S-RNase alleles. The S-haplotypes S2 and S6 were the most frequent, followed by S 29 , S 31 , S 5 , S 24 , S 28 , S 33 , S 34 , S 32 , and S 15 , while the rare alleles S 1 , S 9 , S 14 , S 16 , S 17 , S 18 , S 19 , S 20 , S 21 , S 22 , S 23 , S 27 , and S 35 were only observed in one of the accessions tested. Moreover, the S-genotypes of five wild loquat species (E. prinoides, E. bengalensis, E. prinoides var. dadunensis, E. deflexa, and E. japonica) are reported here for the first time. The results will not only facilitate the selection of suitable pollinators for optimal orchard management, but could also encourage the crossbreeding of wild loquat species to enhance the genetic diversity of loquat cultivars.  相似文献   

19.
The cytochrome b 6 f complex of oxygenic photosynthesis produces substantial levels of reactive oxygen species (ROS). It has been observed that the ROS production rate by b 6 f is 10–20 fold higher than that observed for the analogous respiratory cytochrome bc1 complex. The types of ROS produced (O2??, 1O2, and, possibly, H2O2) and the site(s) of ROS production within the b 6 f complex have been the subject of some debate. Proposed sources of ROS have included the heme b p , PQ p ?? (possible sources for O2??), the Rieske iron–sulfur cluster (possible source of O2?? and/or 1O2), Chl a (possible source of 1O2), and heme c n (possible source of O2?? and/or H2O2). Our working hypothesis is that amino acid residues proximal to the ROS production sites will be more susceptible to oxidative modification than distant residues. In the current study, we have identified natively oxidized amino acid residues in the subunits of the spinach cytochrome b 6 f complex. The oxidized residues were identified by tandem mass spectrometry using the MassMatrix Program. Our results indicate that numerous residues, principally localized near p-side cofactors and Chl a, were oxidatively modified. We hypothesize that these sites are sources for ROS generation in the spinach cytochrome b 6 f complex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号