首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human adipose tissue is a great source of adult mesenchymal stem cells (MSCs) which are recognized from their ability to self‐renew and differentiation into multiple lineages. MSCs have promised a vast therapeutic potential in treatment many diseases including tissue injury and immune disorders. However, their regenerative potential profoundly depends on patients’ age. Age‐related deterioration of MSC is associated with cellular senescence mainly caused by increased DNA methylation status, accumulation of oxidative stress factors and mitochondria dysfunction. We found that DNA methyltransferase (DNMT) inhibitor i.e. 5‐Azacytidine (5‐AZA) reversed the aged phenotype of MSCs. Proliferation rate of cells cultured with 5‐AZA was increased while the accumulation of oxidative stress factors and DNA methylation status were decreased. Simultaneously the mRNA levels of TET proteins involved in demethylation process were elevated in those cells. Moreover, cells treated with 5‐AZA displayed reduced reactive oxygen species (ROS) accumulation, ameliorated superoxide dismutase activity and increased BCL‐2/BAX ratio in comparison to control group. Our results indicates that, treating MSCs with 5‐AZA can be justified therapeutic intervention, that can slow‐down and even reverse aged‐ related degenerative changes in those cells.  相似文献   

2.
Regenerative medicine is an evolving interdisciplinary topic of research involving numerous technological methods that utilize stem cells to repair damaged tissues. Particularly, mesenchymal stem cells (MSCs) are a great tool in regenerative medicine because of their lack of tumorogenicity, immunogenicity and ability to perform immunomodulatory as well as anti-inflammatory functions. Numerous studies have investigated the role of MSCs in tissue repair and modulation of allogeneic immune responses. MSCs derived from different sources hold unique regenerative potential as they are self-renewing and can differentiate into chondrocytes, osteoblasts, adipocytes, cardiomyocytes, hepatocytes, endothelial and neuronal cells, among which neuronal-like cells have gained special interest. MSCs also have the ability to secrete multiple bioactive molecules capable of stimulating recovery of injured cells and inhibiting inflammation. In this review we focus on neural differentiation potential of MSCs isolated from different sources and how certain growth factors/small molecules can be used to derive neuronal phenotypes from MSCs. We also discuss the efficacy of MSCs when transplanted in vivo and how they can generate certain neurons and lead to relief or recovery of the diseased condition. Furthermore, we have tried to evaluate the appropriate merits of different sources of MSCs with respect to their propensity towards neurological differentiation as well as their effectiveness in preclinical studies.  相似文献   

3.
Oxidative stress is observed during aging and in numerous age-related diseases. Dietary restriction (DR) is a regimen that protects against disease and extends life span in multiple species. However, it is unknown how DR mediates its protective effects. One prominent and consistent effect of DR in a number of systems is the ability to reduce oxidative stress and damage. The purpose of this review is to comprehensively examine the hypothesis that dietary restriction reduces oxidative stress in rodents by decreasing reactive oxygen species (ROS) production and increasing antioxidant enzyme activity, leading to an overall reduction of oxidative damage to macromolecules. The literature reveals that the effects of DR on oxidative stress are complex and likely influenced by a variety of factors, including sex, species, tissue examined, types of ROS and antioxidant enzymes examined, and duration of DR. Here we present a comprehensive review of the existing literature on the effect of DR on mitochondrial ROS generation, antioxidant enzymes, and oxidative damage. In a majority of studies, dietary restriction had little effect on mitochondrial ROS production or antioxidant activity. On the other hand, DR decreased oxidative damage in the majority of cases. Although the effects of DR on endogenous antioxidants are mixed, we find that glutathione levels are the most likely antioxidant to be increased by dietary restriction, which supports the emerging redox-stress hypothesis of aging.  相似文献   

4.
Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated β-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.  相似文献   

5.
Engraft cells are often exposed to oxidative stress and inflammation; therefore, any factor that can provide the stem cells resistance to these stresses may yield better efficacy in stem cell therapy. Studies indicate that histone deacetylase (HDACs) inhibitors alleviate damage induced by oxidative stress. In this study, we investigated whether regulation of reactive oxygen species (ROS) occurs through the HDAC inhibitor trichostatin A (TSA) in human bone marrow‐mesenchymal stem cells (hBM‐MSCs). Intracellular ROS levels increased following exposure to hydrogen peroxide (H2O2), and were suppressed by TSA treatment. Levels of the antioxidant enzyme superoxide dismutase 2 (SOD2) increased following treatment with 200 nM TSA and to a lesser level at 1–5 μM TSA. Cell protective effects against oxidative stress were significantly increased in TSA‐MSCs after treatment with low doses of TSA (50–500 nM) and decreased with high doses of TSA (5–10 μM). Consistent results were obtained with immunoblot analysis for caspase3. Investigation of Forkhead box O1 (FOXO1), superoxide dismutase 2 (SOD2), and p53 levels to determine intracellular signaling by TSA in oxidative stress‐induced MSCs demonstrated that expression of phosphorylated‐FOXO1 and phosphorylated‐SOD2 decreased in H2O2‐treated MSCs while levels of p53 increased. These effects were reversed by the treatment of 200 nM TSA. These results suggest that the main function of ROS modulation by TSA is activated through SOD2 and FOXO1. Thus, optimal treatment with TSA may protect hBM‐MSCs against oxidative stress. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Mesenchymal Stem Cells (MSCs) are non-hematopoietic and multipotent stem cells, which have been considered in regenerative medicine. These cells are easily separated from different sources, such as bone marrow (BM), umbilical cord (UC), adipose tissue (AT), and etc. MSCs have the differentiation capability into chondrocytes, osteocytes, and adipocytes; This differentiation potential along with the paracrine properties have made them a key choice for tissue repair. MSCs also have various advantages over other stem cells, which is why they have been extensively studied in recent years. The effectiveness of MSCs-based therapies depend on several factors, including differentiation status at the time of use, concentration per injection, delivery method, the used vehicle, and the nature and extent of the damage. Although, MSCs have emerged promising sources for regenerative medicine, there are potential risks regarding their safety in their clinical use, including tumorigenesis, lack of availability, aging, and sensitivity to toxic environments. In this study, we aimed to discuss how MSCs may be useful in treating defects and diseases. To this aim, we will review recent advances of MSCs action mechanisms in regenerative medicine, as well as the most recent clinical trials. We will also have a brief overview of MSCs resources, differences between their sources, culture conditions, extraction methods, and clinical application of MSCs in various fields of regenerative medicine.  相似文献   

7.
为揭示细胞珠蛋白对肝星状细胞氧化损伤的保护作用及相关机制,通过siRNA干扰内源性细胞珠蛋白基因,利用重组细胞珠蛋白作用于完全活化的人肝星状细胞系LX-2及大鼠原代肝星状细胞,并在LX-2细胞内过表达细胞珠蛋白,考察在过氧化氢及铁过载两种不同作用机制的氧化反应模型中细胞的增殖性及细胞内超氧化物水平。结果表明内源性细胞珠蛋白对于两种氧化反应导致的肝星状细胞损伤都具有显著性的保护作用,证明其在活化肝星状细胞内的表达上调是其应对氧化应激的保护性措施;重组细胞珠蛋白不仅能保护完全活化的LX-2细胞免受氧化应激损伤,并且能抑制未完全活化的原代肝星状细胞过度增殖以及保护其被过度损伤;重组细胞珠蛋白对细胞内的活性氧清除效果不理想,可能与其进出细胞缺乏相应的主动运输机制有关。进一步在LX-2细胞内过表达细胞珠蛋白对无论是铁过载或是过氧化氢引起的氧化反应均能发挥较好的保护性作用。为加速肝纤维化药物新靶点开发提供了理论依据。  相似文献   

8.
Stem cells were characterized by their stemness: self-renewal and pluripotency. Mesenchymal stem cells (MSCs) are a unique type of adult stem cells that have been proven to be involved in tissue repair, immunoloregulation and tumorigenesis. Irradiation is a well-known factor that leads to functional obstacle in stem cells. However, the mechanism of stemness maintenance in human MSCs exposed to irradiation remains unknown. We demonstrated that irradiation could induce reactive oxygen species (ROS) accumulation that resulted in DNA damage and stemness injury in MSCs. Autophagy induced by starvation or rapamycin can reduce ROS accumulation-associated DNA damage and maintain stemness in MSCs. Further, inhibition of autophagy leads to augment of ROS accumulation and DNA damage, which results in the loss of stemness in MSCs. Our results indicate that autophagy may have an important role in protecting stemness of MSCs from irradiation injury.  相似文献   

9.
A major cause of aging and numerous diseases is thought to be cumulative oxidative stress, resulting from the production of reactive oxygen species (ROS) during respiration. Calorie restriction (CR), the most robust intervention to extend life span and ameliorate various diseases in mammals, reduces oxidative stress and damage. However, the underlying mechanism is unknown. Here, we show that the protective effects of CR on oxidative stress and damage are diminished in mice lacking SIRT3, a mitochondrial deacetylase. SIRT3 reduces cellular ROS levels dependent on superoxide dismutase 2 (SOD2), a major mitochondrial antioxidant enzyme. SIRT3 deacetylates two critical lysine residues on SOD2 and promotes its antioxidative activity. Importantly, the ability of SOD2 to reduce cellular ROS and promote oxidative stress resistance is greatly enhanced by SIRT3. Our studies identify a defense program that CR provokes to reduce oxidative stress and suggest approaches to combat aging and oxidative stress-related diseases.  相似文献   

10.
Multipotent mesenchymal stromal cells (MSCs) are stromal precursors with the capacity to differentiate in osteo-, adipo-, and chondrodirections and participate in repair, regeneration, and immune response. Those abilities, especially immunosuppression, make MSCs a perspective tool for cell therapy and regenerative medicine. Short-term hypoxic stress can occur in damaged tissues and negatively affect MSC capacities to modulate functions of activated peripheral blood mononuclear cells (PBMCs). In the present paper, we evaluated the impact of short-term hypoxic stress (<1% oxygen) on immunosuppressive potential of tissue oxygen (5%) adapted MSCs. At a tissue oxygen level, we detected an increase of the ratio of innate immune cells (natural killers, NK) and a decrease in the ratio of adaptive immune cells (HLA-DR+ Т-cells) within floating PBMCs in the presence of MSCs. Additionally, inhibition of T-cell proliferation was observed. Within adhered PBMCs, the ratio of monocytes was higher and the ratio of NK T cells was lower. Short-term hypoxic stress did not affect MSC immunosuppression toward lymphocytes in suspension. Nevertheless, a decrease in percent of monocytes and NK T cells within adhered PBMCs was detected. Thus, hypoxic stress did not influence immunosuppressive activity of MSCs toward floating PBMCs. Attenuation of monocyte adhesion to MSCs upon cell-to-cell interaction may negatively impact the formation of MSCeducated macrophage phenotype with anti-inflammatory activity. In vivo, it may provoke the slowdown of “response to injury” during inflammation.  相似文献   

11.
The cell therapy of damaged tissue, which is linked to hypoxia condition might fail, in large part due to the emergence of oxidative stress (OS) and/or mitochondrial dysfunctions. Thus, the invigoration of stem cells against oxidative stress could be a reliable strategy to improve the cell therapy outcome. Of various antioxidants, mito-Tempo (mito-T) is one of the potent antioxidants that could target and neutralize the mitochondrial oxidative stress. In this study, for the induction of hypoxia and oxidative stress in mitochondria of the mesenchymal stem cells (MSCs) isolated from human adipose tissue, antimycin A (AMA) was used and then several parameters were analyzed, including cell viability and cell cycle arrest of MSCs exposed to AMA, mito-T, antioxidant potential, redox homeostasis, and signaling pathways in MSCs under oxidative stress. Based on our findings, the treated MSCs were found to impose a high resistance to the OS-induced apoptosis, which correlated with the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway required to manage OS. Upon exposure of the MSCs to high oxidative stress conditions using AMA, the cells failed to scavenge. The use of mito-T was found to alleviate the damage induced by oxidative stress through both direct functions of the free radical scavenging and the interplay in terms of cell signaling pathways including the upregulation of the Nrf2 pathway. These findings may pave the way in the stem cell therapy for the hypoxia-mediated tissue damage.  相似文献   

12.
Mesenchymal stem cells (MSCs) are a heterogeneous population of stem/progenitor cells with pluripotent capacity to differentiate into mesodermal and non‐mesodermal cell lineages, including osteocytes, adipocytes, chondrocytes, myocytes, cardiomyocytes, fibroblasts, myofibroblasts, epithelial cells, and neurons. MSCs reside primarily in the bone marrow, but also exist in other sites such as adipose tissue, peripheral blood, cord blood, liver, and fetal tissues. When stimulated by specific signals, these cells can be released from their niche in the bone marrow into circulation and recruited to the target tissues where they undergo in situ differentiation and contribute to tissue regeneration and homeostasis. Several characteristics of MSCs, such as the potential to differentiate into multiple lineages and the ability to be expanded ex vivo while retaining their original lineage differentiation commitment, make these cells very interesting targets for potential therapeutic use in regenerative medicine and tissue engineering. The feasibility for transplantation of primary or engineered MSCs as cell‐based therapy has been demonstrated. In this review, we summarize the current knowledge on the signals that control trafficking and differentiation of MSCs. J. Cell. Biochem. 106: 984–991, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
14.
Mesenchymal stem cells (MSCs) are multipotent stem cells with marked potential for regenerative medicine because of their strong immunosuppressive and regenerative abilities. The therapeutic effects of MSCs are based in part on their secretion of biologically active factors in extracellular vesicles known as exosomes. Exosomes have a diameter of 30-100 nm and mediate intercellular communication and material exchange. MSC-derived exosomes (MSC-Exos) have potential for cell-free therapy for diseases of, for instance, the kidney, liver, heart, nervous system, and musculoskeletal system. Hence, MSC-Exos are an alternative to MSC-based therapy for regenerative medicine. We review MSC-Exos and their therapeutic potential for a variety of diseases and injuries.  相似文献   

15.
Stem cells are pluripotent cells, having a property of differentiating into various types of cells of human body. Several studies have developed mesenchymal stem cells (MSCs) from various human tissues, peripheral blood and body fluids. These cells are then characterized by cellular and molecular markers to understand their specific phenotypes. Dental pulp stem cells (DPSCs) are having a MSCs phenotype and they are differentiated into neuron, cardiomyocytes, chondrocytes, osteoblasts, liver cells and β cells of islet of pancreas. Thus, DPSCs have shown great potentiality to use in regenerative medicine for treatment of various human diseases including dental related problems. These cells can also be developed into induced pluripotent stem cells by incorporation of pluripotency markers and use for regenerative therapies of various diseases. The DPSCs are derived from various dental tissues such as human exfoliated deciduous teeth, apical papilla, periodontal ligament and dental follicle tissue. This review will overview the information about isolation, cellular and molecular characterization and differentiation of DPSCs into various types of human cells and thus these cells have important applications in regenerative therapies for various diseases. This review will be most useful for postgraduate dental students as well as scientists working in the field of oral pathology and oral medicine.  相似文献   

16.
The purpose of our study was to investigate underlying basic mechanisms of hypothermia-induced cardioprotection during oxidative stress in a cardiomyocyte cell culture model. For hypothermic treatment we cooled H9c2 cardiomyocytes to 20 °C, maintained 20 min at 20 °C during which short-term oxidative damage was inflicted with 2 mM H2O2, followed by rewarming to 37 °C. Later on, we analyzed lactate dehydrogenase (LDH), caspase-3 cleavage, reactive oxygen species (ROS), mitochondrial activity, intracellular ATP production, cytoprotective signal molecules as well as DNA damage. Hypothermia decreased H2O2 damage in cardiomyocytes as demonstrated in a lower LDH release, less caspase-3 cleavage and less M30 CytoDeath staining. After rewarming H2O2 damaged cells demonstrated a significantly higher reduction rate of intracellular ROS compared to normothermic H2O2 damaged cardiomyocytes. This was in line with a significantly greater mitochondrial dehydrogenase activity and higher intracellular ATP content in cooled and rewarmed cells. Moreover, hypothermia preserved cell viability by up-regulation of the anti-apoptotic protein Bcl-2 and a reduction of p53 phosphorylation. DNA damage, proven by PARP-1 cleavage and H2AX phosphorylation, was significantly reduced by hypothermia. In conclusion, we could demonstrate that hypothermia protects cardiomyocytes during oxidative stress by preventing apoptosis via inhibiting mitochondrial dysfunction and DNA damage.  相似文献   

17.
Mesenchymal stem cells (MSCs) are earmarked as perfect candidates for cell therapy and tissue engineering due to their capacity to differentiate into different cell types. However, their potential for application in regenerative medicine declines when the levels of the reactive oxygen and nitrogen species (RONS) increase from the physiological levels, a phenomenon which is at least inevitable in ex vivo cultures and air-exposed damaged tissues. Increased levels of RONS can alter the patterns of osteogenic and adipogenic differentiation and inhibit proliferation, as well. Besides, oxidative stress enhances senescence and cell death, thus lowering the success rates of the MSC engraftment. Hence, in this review, we have selected some representatives of antioxidants and newly emerged nano antioxidants in three main categories, including chemical compounds, biometabolites, and protein precursors/proteins, which are proved to be effective in the treatment of MSCs. We will focus on how antioxidants can be applied to optimize the clinical usage of the MSCs and their associated signaling pathways. We have also reviewed several paralleled properties of some antioxidants and nano antioxidants which can be simultaneously used in real-time imaging, scaffolding techniques, and other applications in addition to their primary antioxidative function.  相似文献   

18.
Mesenchymal stem cells: characteristics and clinical applications   总被引:23,自引:0,他引:23  
Mesenchymal stem cells (MSCs) are bone marrow populating cells, different from hematopoietic stem cells, which possess an extensive proliferative potential and ability to differentiate into various cell types, including: osteocytes, adipocytes, chondrocytes, myocytes, cardiomyocytes and neurons. MSCs play a key role in the maintenance of bone marrow homeostasis and regulate the maturation of both hematopoietic and non-hematopoietic cells. The cells are characterized by the expression of numerous surface antigens, but none of them appears to be exclusively expressed on MSCs. Apart from bone marrow, MSCs are located in other tissues, like: adipose tissue, peripheral blood, cord blood, liver and fetal tissues. MSCs have been shown to be powerful tools in gene therapies, and can be effectively transduced with viral vectors containing a therapeutic gene, as well as with cDNA for specific proteins, expression of which is desired in a patient. Due to such characteristics, the number of clinical trials based on the use of MSCs increase. These cells have been successfully employed in graft versus host disease (GvHD) treatment, heart regeneration after infarct, cartilage and bone repair, skin wounds healing, neuronal regeneration and many others. Of special importance is their use in the treatment of osteogenesis imperfecta (OI), which appeared to be the only reasonable therapeutic strategy. MSCs seem to represent a future powerful tool in regenerative medicine, therefore they are particularly important in medical research.  相似文献   

19.
Experimental data indicate that moderate uncoupling oxidative phosphorylation induces reduction in production of reactive oxygen species (ROS) and promotes an increase in survival of neurons and cardiomyocytes under hypoxia and re-oxygenation conditions. Uncoupling proteins (UCP) are expressed by cardiomyocytes and neurons. These proteins are involved in the thermogenesis, inhibit ROS generation by mitochondria, reduce deltaphi, elevate respiration rate of these organelles. It was established that UCP contributed to the elevation of cardiomyocyte and neuron tolerance of an impact of hypoxia and re-oxygenation. They also promote cell resistance to oxidative stress. Experimental data indicate the important role of the UCP in the neuroprotective and cardioprotective effects of ischemic preconditioning. At the same time, real contribution of the UCP in preconditioning is still to be verified.  相似文献   

20.
In recent decades, mesenchymal stromal cells (MSCs) biomedical utilizing has attracted worldwide growing attention. After the first report of the human MSCs obtaining from the bone marrow (BM) tissue, these cells were isolated from wide types of the other tissues, ranging from adipose tissue to dental pulp. Their specific characteristics, comprising self-renewality, multipotency, and availability accompanied by their immunomodulatory properties and little ethical concern denote their importance in the context of regenerative medicine. Considering preclinical studies, MSCs can modify immune reactions during tissue repair and restoration, providing suitable milieu for tissue recovery; on the other hand, they can be differentiated into comprehensive types of the body cells, such as osteoblast, chondrocyte, hepatocyte, cardiomyocyte, fibroblast, and neural cells. Though a large number of studies have investigated MSCs capacities in regenerative medicine in varied animal models, the oncogenic capability of unregulated MSCs differentiation must be more assessed to enable their application in the clinic. In the current review, we provide a brief overview of MSCs sources, isolation, and expansion as well as immunomodulatory activities. More important, we try to collect and discuss recent preclinical and clinical research and evaluate current challenges in the context of the MSC-based cell therapy for regenerative medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号