首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acute pancreatitis (AP) is an acute inflammatory condition that results from the digestion of pancreatic tissue by its own enzymes released from the acinar cells. The objective of this study was to investigate the effects of resveratrol on oxidative damage, pro-inflammatory cytokines, and tissue injury involved with AP induced in a rat model using sodium taurocholate (n?=?60). There were three treatment groups with 20 rats per group. Groups I and II received 3 % sodium taurocholate solution, while group III underwent the same surgical procedure yet did not receive sodium taurocholate. In addition, group II received 30 mg/kg resveratrol solution. Rats were sacrificed at 2, 6, 12, and 24 h time points following the induction of AP. Blood and pancreatic tissue samples were collected and subjected to biochemical assays, Western blot assays, and histopathologic evaluations. Resveratrol did not reduce trypsin levels and prevent tissue damage. Resveratrol prevented IκB degradation (except for 6 h) and decreased nuclear factor-κB (NF-κB), activator protein-1 (AP-1) (except for 24 h), and levels of TNF-α, IL-6 (except for 24 h), and iNOS in the pancreatic tissue at all time points (P?<?0.05). Serum nitric oxide (NO) levels were reduced as well (P?<?0.05). Thus, we concluded that resveratrol did not reduce trypsin levels and did not prevent tissue injury despite the reduction in oxidative damage and pro-inflammatory cytokine levels detected in this model of AP.  相似文献   

2.
3.
Early brain injury (EBI) after subarachnoid hemorrhage (SAH) generally causes significant and lasting damage. Pentoxifylline (PTX), a nonselective phosphodiesterase inhibitor, has shown anti-inflammatory and neuroprotective properties in several brain injury models, but the role of PTX with respect to EBI following SAH remains uncertain. The purpose of this study was to investigate the effects of PTX on EBI after SAH in rats. Adult male Sprauge–Dawley rats were randomly assigned to the sham and SAH groups. PTX (30 or 60 mg/kg) or an equal volume of the administration vehicle (normal saline) was administrated at 30 min intervals following SAH. Neurological scores, brain edema, and neural cell apoptosis were evaluated. In order to explore other mechanisms, changes in the toll-like receptor 4 (TLR4) and the nuclear factor-κB (NF-κB) signaling pathway, in terms of the levels of apoptosis-associated proteins, were also investigated. We found that administration of PTX (60 mg/kg) notably improved neurological function and decreased brain edema at both 24 and 72 h following SAH. Treatment with PTX (60 mg/kg) significantly inhibited the protein expressions of TLR4, NF-κB, MyD88 and the downstream pro-inflammatory cytokines, such as the tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). PTX also significantly reduced neural cell death and BBB permeability. Our observations may be the first time that PTX has been shown to play a neuroprotective role in EBI after SAH, potentially by suppressing the TLR4/NF-κB inflammation-related pathway in the rat brain.  相似文献   

4.
目的探讨Olig2在cuprizone诱导的急性脱髓鞘动物模型中的表达变化规律。方法应用含0.2%cuprizone饲料饲育小鼠,通过调控饲育时间,造成神经脱髓鞘及髓鞘再生,使用免疫荧光染色和实时定量PCR(qRT-PCR)的方法,观察模型髓鞘脱失后及髓鞘再生2周后Olig2、少突胶质细胞碱性髓鞘蛋白(MBP)及星形胶质细胞神经胶质酸性蛋白(GFAP)的表达变化。结果 Cuprizone饲育6周后,动物胼胝体白质内髓鞘脱失严重,在恢复正常饲料后,髓鞘逐渐恢复正常结构。正常小鼠大脑Olig2低水平表达。髓鞘脱失后Olig2、GFAP表达增高,并可见Olig2+/GFAP+细胞,MBP表达明显降低。髓鞘再生2周后Olig2表达降低,MBP、GFAP表达增高。结论 Olig2基因在cuprizone诱导的脱髓鞘模型中的表达变化,提示Olig2可能参与祖细胞向有活性的星形胶质细胞的分化过程,并与胶质瘢痕的形成有关。  相似文献   

5.
6.

Background

Multiple sclerosis (MS) is a severe neurological disorder, characterized by demyelination of the central nervous system (CNS), and with a prevalence of greater than 2 million people worldwide. In terms of research in MS pathology, the cuprizone toxicity model is widely used. Here we investigated the contribution of genetic differences in response to cuprizone-induced demyelination in two genetically different mouse strains: CD1 and C57BL/6.

Results

We demonstrate that exposure to a diet containing 0.2% cuprizone resulted in less severe demyelination in the midline of the corpus callosum over the fornix in CD1 mice than C57BL/6 mice. With continuous cuprizone feeding, demyelination in CD1 mice was not prominent until after 7 weeks, in contrast to C57BL/6 mice, which showed prominent demyelination after 4 weeks of exposure. Concomitantly, immunohistochemical analysis demonstrated more oligodendrocytes, as well as fewer oligodendrocyte progenitor cells, microglia and astrocytes in cuprizone treated CD1 mice. We also analyzed 4-weeks-cuprizone treated corpus callosum tissue samples and found that cuprizone treated CD1 mice showed a smaller reduction of myelin-associated glycoprotein (MAG) and a smaller increase of Iba1 and NG2.

Conclusions

These observations suggest that CD1 mice are less vulnerable to cuprizone-induced demyelination than C57BL/6 mice and thus genetic background factors appear to influence the susceptibility to cuprizone-induced demyelination.
  相似文献   

7.
8.
In multiple sclerosis (MS), the correlation between lesion load on conventional magnetic resonance imaging (MRI) and clinical disability is weak. This clinico-radiological paradox might partly be due to the low sensitivity of conventional MRI to detect gray matter demyelination. Magnetization transfer ratio (MTR) has previously been shown to detect white matter demyelination in mice. In this study, we investigated whether MTR can detect gray matter demyelination in cuprizone exposed mice. A total of 54 female C57BL/6 mice were split into one control group () and eight cuprizone exposed groups (). The mice were exposed to (w/w) cuprizone for up to six weeks. MTR images were obtained at a 7 Tesla Bruker MR-scanner before cuprizone exposure, weekly for six weeks during cuprizone exposure, and once two weeks after termination of cuprizone exposure. Immunohistochemistry staining for myelin (anti-Proteolopid Protein) and oligodendrocytes (anti-Neurite Outgrowth Inhibitor Protein A) was obtained after each weekly scanning. Rates of MTR change and correlations between MTR values and histological findings were calculated in five brain regions. In the corpus callosum and the deep gray matter a significant rate of MTR value decrease was found, per week () and per week () respectively. The MTR values correlated to myelin loss as evaluated by immunohistochemistry (Corpus callosum: . Deep gray matter: ), but did not correlate to oligodendrocyte density. Significant results were not found in the cerebellum, the olfactory bulb or the cerebral cortex. This study shows that MTR can be used to detect demyelination in the deep gray matter, which is of particular interest for imaging of patients with MS, as deep gray matter demyelination is common in MS, and is not easily detected on conventional clinical MRI.  相似文献   

9.
Resveratrol (3,5,4'-trihydroxystilbene) is a natural polyphenol which is rich in grape seeds and skin. Several studies have revealed that resveratrol possesses neuroprotective effects. In the case of global brain ischemia, there are few reports regarding the protective effect of resveratrol. Therefore, the influence of resveratrol on neuronal damage after transient global brain ischemia remains to be clarified. In the current study, C57BL/6 black mice were subjected to 20 min of transient global brain ischemia and followed by 72 h of reperfusion. Resveratrol (20 or 40 mg/kg, once daily, dissolved in 0.5% carboxymethylcellulose) was administered orally for 7 days before ischemia and daily until the mice were euthanized. The effect of lower or higher dose of resveratrol on neuronal damage, matrix metalloproteinase (MMP) activity and in situ DNA fragmentation (TUNEL) assay in the hippocampus after global ischemia was examined. Neuronal damages were remarkable in CA1 and CA2 pyramidal cell layers after global ischemia. In resveratrol-treated mice (40 mg/kg), neuronal damage was significantly reduced compared with vehicle-treated mice. Mice treated with resveratrol showed reduced MMP-9 activity. Resveratrol also inhibited TUNEL staining. These data suggest that resveratrol, a natural polyphenol, reduces hippocampal neuronal cell damage following transient global ischemia by reducing MMP-9 activity.  相似文献   

10.
11.
Dexmedetomidine has been reported to provide neuroprotection against hypoxia-induced damage. However, the underlying mechanisms remain unclear. We examined whether dexmedetomidine’s neuroprotective effects were mediated by the NF-κB/COX-2 pathways. Adult male C57BL/6 mice were subjected to a 30-min hypoxic treatment followed by recovery to normal conditions. They received dexmedetomidine (16 or 160 μg/kg) or 25 mg/kg atipamezole, an α2-adrenoreceptor antagonist, intraperitoneally before exposure to hypoxia. The whole brain was harvested 6, 18, or 36 h after the hypoxia to determine the histopathological outcome and cleaved caspase-3, Bax/Bcl, NF-κB, and COX-2 levels. Hypoxia treatment induced significant neurotoxicity, including destruction of the tissue structure and upregulation of the protein levels of caspase-3, the ratio of Bax/Bcl-2, NF-κB, and COX-2. Dexmedetomidine pretreatment effectively improved histological outcome and restored levels of caspase-3, the Bax/Bcl-2 ratio, NF-κB, and COX-2. Atipamezole reversed the neuroprotection induced by dexmedetomidine. Neuroprotection was achieved by PDTC and NS-398, inhibitors of NF-κB and COX-2, respectively. Dexmedetomidine use before hypoxia provides neuroprotection. Inhibition of NF-κB/COX-2 pathways activation may contribute to the neuroprotection of dexmedetomidine.  相似文献   

12.
Sevoflurane, the most commonly used inhaled anesthetic in pediatric anesthesia, has been reported to induce cognitive impairment in developing brain in preclinical and clinical settings. However, the mechanism and therapeutic measures of this developmental neurotoxicity need to be further investigated. Resveratrol, a natural polyphenolic agent, has been reported to improve cognitive function in neurological disorders and aging models through anti-inflammatory activity. However, its effect on sevoflurane-induced cognitive impairment in developing mice remains unknown. The present study was designed to investigate the therapeutic potential of resveratrol on sevoflurane-induced cognitive impairment. Six-day-old mice received anesthesia with 3% sevoflurane 2 h daily on postnatal days (P) 6, P7 and P8. About 100 mg/kg resveratrol were intraperitoneally administered for 6 consecutive days to neonatal mice before anesthesia. Sevoflurane exposure significantly suppressed the expression of Sirtuin 1 (SIRT1) and activated microglia in hippocampi. Furthermore, the levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were markedly increased after sevoflurane exposure. Strikingly, resveratrol pretreatment ameliorated sevoflurane-induced SIRT1 inhibition and microglial activation. Of note, resveratrol reversed sevoflurane-induced imbalance of M1/M2 microglia ratio revealed by increasing mRNA level of clusters of differentiation 206 (CD206) and decreasing mRNA levels of clusters of differentiation 86 (CD86) and suppressor of cytokine signaling 3 (SOCS3). Consequently, sevoflurane-induced cognitive impairment in developing mice was ameliorated by resveratrol pretreatment. Taken together, repeated sevoflurane exposure to the developing brain resulted in SIRT1 inhibition, NF-κB acetylation, and microglial activation. Resveratrol pretreatment ameliorated cognitive impairment in developing mice received sevoflurane exposure by modulating SIRT1-NF-κB pathway in microglia. In this regard, our findings open novel directions to explore promising therapeutic targets for preventing the developmental neurotoxicity of sevoflurane.  相似文献   

13.
Considerable evidence has been accumulated to suggests that blocking the inflammatory reaction promotes neuroprotection and shows therapeutic potential for clinical treatment of ischemic brain injury. Consequently, anti-inflammatory therapies are being explored for prevention and treatment of these diseases. Induction of brain tolerance against ischemia by pretreatment with resveratrol has been found to influence expression of different molecules. It remains unclear, however, whether and how resveratrol preconditioning changes expression of inflammatory mediators after subsequent global cerebral ischemia/reperfusion (I/R). Therefore, we investigated the effect of resveratrol pretreatment on NF-κB inflammatory cascade, COX-2, iNOS and JNK levels in experimental I/R. Adult male rats were subjected to 10min of four-vessel occlusion and sacrificed at selected post-ischemic time points. Resveratrol (30mg/kg) pretreatment was injected intraperitoneally 7days prior to I/R induction. We found that resveratrol treatment before insult remarkably reduced astroglial and microglial activation at 7days after I/R. It greatly attenuated I/R-induced NF-κB and JNK activation with decreased COX-2 and iNOS production. In conclusion, the neuroprotection of resveratrol preconditioning may be due in part to the suppression of the inflammatory response via regulation of NF-κB, COX-2 and iNOS induced by I/R. JNK was also suggested to play a protective role through in neuroprotection of resveratrol, which may also be contributing to reduction in neuroinflammation. The study adds to a growing literature that resveratrol can have important anti-inflammatory actions in the brain.  相似文献   

14.
目的:探讨双环己酮草酰二腙(cuprizone)诱导大鼠脑白质脱髓鞘及其病因,证实双环己酮草酰二腙引起脑白质脱髓鞘与细胞凋亡有关。方法:用环己酮草酰二腙制备大鼠脑白质脱髓鞘模型(酮腙组),与安定(安定组)、苯巴比妥(苯巴比妥组)、生理盐水对照组(对照组)比较,应用电镜技术及caspase3免疫组化染色,观察各组第14天、28天、42天时脑组织结构变化及细胞凋亡的信号传导通路。结果:电镜显示,安定组、苯巴比妥组、酮腙14天组和对照组白质结构完整致密,无脱髓鞘现象;酮腙28天组可见髓鞘排列较紊乱,部分结构松解变性,但无典型脱髓鞘改变;酮腙42天组胼胝体压部可见髓鞘肿胀,多部位髓鞘被涡轮状空泡所裂解。caspase3染色:酮腙28天、42天组可见皮层下白质、胼胝体、脑干及小脑白质caspase3阳性染色,与安定组、苯巴比妥组、对照组和酮腙14天组比较差异具有统计学意义(P<0.05);酮腙42天组caspase3阳性染色明显多于28天组,差异具有统计学意义(P<0.05)。结论:环己酮草酰二腙可诱导大鼠脑白质脱髓鞘、空泡样变;病变白质区存在大量caspase3阳性染色,且早于脱髓鞘。提示:caspase蛋白酶级联反应参与了环己酮草酰二腙诱导脑白质脱髓鞘的过程,进一步说明细胞凋亡可能是脑白质脱髓鞘原因之一。  相似文献   

15.
In this study, we investigated the potential of minocycline to influence cuprizone induced demyelination in the grey and white matter. To induce demyelination C57BL/6 mice were fed with cuprizone for up to 6 weeks and were analysed at different timepoints (week 0, 4, 5, 6). Mice treated with minocycline had less demyelination of the cortex and corpus callosum compared with sham treated animals. In the cortex decreased numbers of activated and proliferating microglia were found after 6 weeks of cuprizone feeding, while there were no significant effects for microglial infiltration of the corpus callosum. In addition to the beneficial effects on demyelination, minocycline prevented from motor coordination disturbance as shown in the beam walking test. For astrogliosis and the numbers of OPC and oligodendrocytes no treatment effects were found. In summary, minocycline treatment diminished the course of demyelination in the grey and white matter and prevented disturbances in motor coordination.  相似文献   

16.
17.

Background

Resveratrol is a key component of red wine that has been reported to have anti-carcinogenic and anti-aging properties. Additional studies conducted in vitro and in animal models suggested anti-inflammatory properties. However, data from primary human immune cells and in vivo studies are limited.

Methods

A pilot study was performed including 10 healthy volunteers. Plasma cytokine levels were measured over 48 h after oral application of 5 g resveratrol.To verify the in vivo findings, cytokine release and gene expression in human peripheral blood mononuclear cells (PBMC) and/or monocytes was assessed after treatment with resveratrol or its metabolites and stimulation with several toll-like receptor (TLR)-agonists. Additionally, the impact on intracellular signaling pathways was analyzed using a reporter cell line and Western blotting.

Results

Resveratrol treated individuals showed a significant increase in tumor necrosis factor-α (TNF-α) levels 24 h after treatment compared to baseline. Studies using human PBMC or isolated monocytes confirmed potentiation of TNF-α production with different TLR agonists, while interleukin (IL)-10 was inhibited. Moreover, we observed significantly enhanced nuclear factor ‘kappa-light-chain-enhancer’ of activated B-cells (NF-κB) activation using a reporter cell line and found increased phosphorylation of p105, which is indicative of alternative NF-κB pathway activation.

General significance

By administering resveratrol to healthy humans and utilizing primary immune cells we were able to detect TNF-α enhancing properties of the agent. In parallel, we found enhanced alternative NF-κB activation. We report on a novel pro-inflammatory property of resveratrol which has to be considered in concepts of its biologic activity.  相似文献   

18.
Resveratrol has shown array of biological actions, and is under clinical development for various disease conditions. The etiology of diabetic neuropathy revolves around oxidative stress, AGE formation, lipid peroxidation etc. All these stimulate inflammatory processes and NF-κB cascade is considered as one of the major players of inflammatory response. Activation of NF-κB results in elevated levels of inflammatory mediators. COX-2 and TNF-α activity have also been correlated with inflammatory damage in the pathophysiology of diabetic neuropathy (DN). Therefore we investigated the effect of resveratrol on NF-κB inflammatory cascade, COX-2, TNF-α and IL-6 levels in experimental DN.We found that resveratrol protected against various functional and behavioral deficits in diabetic neuropathy in line with our earlier published reports. In this study we found that the resveratrol treatment decreased the expression of p65 and IκB-α in treated rats. Treatment also ameliorated the elevated levels of TNF-α, IL-6 and COX-2. Resveratrol treatment produced significant decrease in nerve MDA levels in treated animals which may also be contributing to reduction in neuro-inflammation. This study confirms the NF-κB inhibitory activity and anti-inflammatory activity of resveratrol which may contribute to neuroprotection in diabetic neuropathy apart from its antioxidant effect.  相似文献   

19.
Inflammatory damage plays an important role in cerebral ischemic pathogenesis and may represent a target for treatment. Evodiamine (Evo) has been proved to elicit a variety of biological effects through its anti-inflammatory property in the treatment of infectious disease, Alzheimer’s disease and hypoxia-induced inflammatory response. Whether this protective effect applies to cerebral ischemic injury, we therefore investigated the potential neuroprotective role of Evo and the underlying mechanisms. Male Institute of Cancer Research (ICR) mice were subjected to permanent middle cerebral artery occlusion (pMCAO) and randomly divided into five groups: Sham (sham-operated + 1 % DMSO + 0.5 % tween80), pMCAO (pMCAO + 0.9 % saline), Vehicle (pMCAO + 1 % DMSO + 0.5 % tween80), Evo-L (Vehicle + Evo 50 mg/kg) and Evo-H (Vehicle + Evo 100 mg/kg) groups. Evo was administered intragastrically twice daily for 3 days, and once again 30 min before mouse brain ischemia was induced by pMCAO. Neurological deficit, brain water content and infarct size were measured at 24 h after stroke. The expression of pAkt, pGSK3β, NF-κB and claudin-5 in ischemic cerebral cortex was analyzed by western blot and qRT-PCR. Compared with Vehicle group, Evo significantly ameliorated neurological deficit, brain water content and infarct size, upregulated the expression of pAkt, pGSK3β and claudin-5, and downregulated the nuclear accumulation of NF-κB (P < 0.05). Evo protected the brain from ischemic damage caused by pMCAO; this effect may be through upregulation of pAkt, pGSK3β and claudin-5, and downregulation of NF-κB expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号