首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously reported that IL-β-induced miR-146a and miR-146b expression negatively regulates IL-8 and RANTES release in human alveolar A549 epithelial cells. To determine the intracellular pathways that regulate this response, we demonstrate IL-1β-induced activation of the nuclear factor (NF)-κB, extracellular regulated kinase (ERK)-1/2, c-jun N-terminal kinase (JNK)-1/2 and p38 mitogen activated kinase (MAP) kinase pathways. Subsequent pharmacological studies show that IL-1β-induced miR-146a, IL-8 and RANTES production was regulated via NF-κB and JNK-1/2 whilst miR-146b expression was mediated via MEK-1/2 and JNK-1/2. These divergent intracellular pathways likely explain the differential expression and biological action of the miR-146 isoforms.  相似文献   

2.
目的: 探讨miR-520a-3p调控宫颈癌细胞因子分泌的分子机制。方法: 通过TargetScanHuman分析miR-520a-3p与NF-κB复合体亚基RELA的匹配情况,然后通过荧光素酶报告系统检测miR-520a-3p是否靶向NF-κB复合体亚基RELA;使用LPS刺激宫颈癌HELA细胞后,将miR-520a-3p mimics与转染试剂混合后滴入HELA细胞中,此为过表达组;将miR-520a-3p inhibitor与转染试剂混合后滴入HELA细胞中,此为敲低组,通过酶联免疫吸附试验检测过表达组和敲低组GCSF, GM-CSF, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12 p40, IL-12 p70, IL-13, IL-17, IFN-γ, MCP-1, MCP-5, RANTES, TNFα的表达水平。每次实验重复3次。结果: miR-520a-3p靶向RELA的3’UTR;LPS激活NF-kB信号通路后,宫颈癌HELA细胞分泌的细胞因子GCSF, GM-CSF, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12 p40, IL-12 p70, IL-13, IL-17, IFN-γ, MCP-1, MCP-5, RANTES, TNFα的蛋白表达水平上升(P<0.05);过表达组中NF-κB复合体亚基RELA的蛋白表达水平下降,宫颈癌HELA细胞分泌的上述细胞因子的蛋白表达水平下降(P<0.05);敲低组中NF-κB复合体亚基RELA的蛋白表达水平上升,宫颈癌HELA细胞分泌的上述细胞因子的蛋白表达水平上升(P<0.05)。结论: miR-520a-3p通过靶向NF-κB信号通路的关键分子RELA抑制宫颈癌HELA细胞的细胞因子分泌。  相似文献   

3.
4.
5.
6.
MicroRNAs (miRNAs) participate in the pathological process of liver ischemia/reperfusion (I/R) injury. MiR-449b-5p is the target miRNA of high mobility group box 1 (HMGB1). Its role and molecular mechanism in liver I/R injury remain unidentified. In this study, we found a protective effect of miR-449b-5p against hepatic I/R injury. HMGB1 expression significantly increased, whereas miR-449b-5p dramatically decreased in patients after liver transplant and in L02 cells exposed to hypoxia/reoxygenation (H/R). A dual-luciferase reporter assay confirmed the direct interaction between miR-449b-5p and the 3′ untranslated region of HMGB1 messenger RNA. We also found that overexpression of miR-449b-5p significantly promoted cell viability and inhibited cell apoptosis of L02 cells exposed to H/R. Moreover, miR-449b-5p repressed HMGB1 protein expression and nuclear factor-κB (NF-κB) pathway activation in these L02 cells. In an in vivo rat model of hepatic I/R injury, overexpression of miR-449b-5p significantly decreased alanine aminotransferase and aspartate aminotransferase and inhibited the HMGB1/NF-κB pathway. Our study thus suggests that miR-449b-5p alleviated hepatic I/R injury by targeting HMGB1 and deactivating the NF-κB pathway, which may provide a novel and promising therapeutic target for hepatic I/R injury.  相似文献   

7.
8.
Recurrent miscarriage (RM) occurs in approximately 1% of all couples trying to conceive. Most of the research about recurrent miscarriage mainly focuses on immunology. However, the roles of microRNAs plays (miRNAs) in RM remain elusive. Here, the function of miR-155-5p in regulating survival of human decidua stromal cells through NF-κB signaling was explored in RM. The quantitative real-time polymerase chain reaction (qRT-PCR) results showed that miR-155-5p was downregulated in both decidua tissues and serum from RM patients. While, the ELISA assay revealed that the overexpression of miR-155-5p reduced the inflammatory cytokines secretion including IL-6, IFN-γ, TNF-α and IL-10 in decidua stromal cells. The results of cell counting Kit8 (CCK-8) and immunofluorescence experiments suggested that transfection of miR-155-5p into decidua stromal cells can promote the growth and proliferation of cells. In addition, overexpression of miR-155-5p can also inhibit the apoptosis of decidua stromal cells. The western blot assay results demonstrated that the miR-155-5p exerted effect mainly through activating NF-κB signaling pathway in RM. In conclusion, the miRNA-155-5p can not only promote the growth and proliferation but also inhibit the apoptosis of decidua stromal cells depending on inhibiting NF-κB signaling pathway in recurrent miscarriage.  相似文献   

9.
10.
目的:探讨幽门螺杆菌(H.pylori)感染引起人胃上皮细胞microRNA-146a(miR-146a)上调的分子机制。方法:分别用H.pylori重组蛋白、全菌蛋白、培养上清、感染相关炎性因子(IL-8、TNF-α、IL-1β)以及TLR配体刺激人胃上皮细胞,检测细胞miR-146a的表达;通过生物信息学软件预测和荧光素酶实验鉴定miR-146a启动子,分析诱导表达的相关信号通路。结果:除H.pylori感染相关炎性因子IL-8、TNF-α、IL-1β能够明显诱导miR-146a表达上调(P〈0.01)外,其他刺激因素均不能诱导miR-146a的显著表达;当采用RNAi技术将IL-8、TNF-α、IL-1β分别沉默,检测H.pylori诱导miR-146a表达时,各沉默组与对照组均无显著差异。软件预测显示miR-146a启动子序列中含有多个NF-κB结合位点;H.pylori能够显著增加miR-146a启动子荧光素酶报告载体的相对荧光素酶值;当启动子序列中的NF-κB结合位点发生突变,其相对荧光素酶比值显著降低(P〈0.05)。结论:H.pylori感染相关炎性因子IL-8、TNF-α、IL-1β能够诱导miR-146a表达明显上调;NF-κB信号通路在H.pylori感染诱导miR-146a的表达中发挥关键作用。  相似文献   

11.
Activation of Kupffer cells (KCs) by gut-derived lipopolysaccharide (LPS) and Toll-Like Receptors 4 (TLR4)-LPS-mediated increase in TNFα production has a central role in the pathogenesis of alcoholic liver disease. Micro-RNA (miR)-125b, miR-146a, and miR-155 can regulate inflammatory responses to LPS. Here we evaluated the involvement of miRs in alcohol-induced macrophage activation. Chronic alcohol treatment in vitro resulted in a time-dependent increase in miR-155 but not miR-125b or miR-146a levels in RAW 264.7 macrophages. Furthermore, alcohol pretreatment augmented LPS-induced miR-155 expression in macrophages. We found a linear correlation between alcohol-induced increase in miR-155 and TNFα induction. In a mouse model of alcoholic liver disease, we found a significant increase in both miR-155 levels and TNFα production in isolated KCs when compared with pair-fed controls. The mechanistic role of miR-155 in TNFα regulation was indicated by decreased TNFα levels in alcohol-treated macrophages after inhibition of miR-155 and by increased TNFα production after miR-155 overexpression, respectively. We found that miR-155 affected TNFα mRNA stability because miR-155 inhibition decreased whereas miR-155 overexpression increased TNFα mRNA half-life. Using the NF-κB inhibitors, MG-132 or Bay11-7082, we demonstrated that NF-κB activation mediated the up-regulation of miR-155 by alcohol in KCs. In conclusion, our novel data demonstrate that chronic alcohol consumption increases miR-155 in macrophages via NF-κB and the increased miR-155 contributes to alcohol-induced elevation in TNFα production via increased mRNA stability.  相似文献   

12.
13.
Notoginsenoside R1 (NGR1) is a neoteric phytoestrogen extracted from Panax notoginseng, and possesses comprehensive pharmacological functions in multitudinous ailments. But, whether NGR1 is utilized in neonatal pneumonia is not clear. This research study aspired to disclose the protective activity of NGR1 in neonatal pneumonia. WI-38 cells were co-stimulated with NGR1 and lipopolysaccharide (LPS, 10 ng/mL), CCK-8 and flow cytometry assays were implemented for cell viability and apoptosis assessment. Real-time quantitative plymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), and Western blot analysis were executed for inflammatory cytokine determination. MicroRNA-181a (miR-181a) expression was evaluated through RT-qPCR, simultaneously, the impact of miR-181a was estimated in NGR1 and LPS co-managed cells. Dual luciferase report assay was performed to disclose the relation between miR-181a and Toll-like receptor 4 (TLR4). The nuclear factor-κB (NF-κB) and TAK1/JNK pathways were ultimately appraised. We found that NGR1 decreased cell viability, evoked apoptosis and impeded interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) expression and secretions in LPS-managed WI-38 cells. MiR-181a expression was enhanced by NGR1, and miR-181a inhibition inverted the impacts of NGR1 in LPS-managed WI-38 cells. Besides, TLR4 was predicted to be a firsthand direct target of miR-181a. Furthermore, NGR1 hindered NF-κB and TAK1/JNK pathways through modulating TLR4. These discoveries disclosed the fact that NGR1 protected WI-38 cells against LPS-triggered injury via adjusting the miR-181a/TLR4 and NF-κB and TAK1/JNK pathways.  相似文献   

14.
Compelling evidence shows that deregulated microRNAs (miRNAs) are important regulators in the progression of melanoma. miR-145-5p has been suggested to exhibit antitumorigenic activity in melanoma. However, the molecular mechanism underlying the biological activity of miR-145-5p in melanoma remains to be further understood. Herein, quantitative real-time polymerase chain reaction was used to examine the miR-145-5p expression in malignant melanoma tissues and cells. The interaction between miR-145-5p and toll-like receptor 4 (TLR4) was explored by bioinformatics analyses, luciferase reporter assay, and Western blot. The effects of miR-145-5p or combined with TLR4 on cell proliferation, colony formation, migration, and invasion abilities were investigated by (4,5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, colony formation, wound healing, and transwell assays, respectively. The melanoma xenograft tumor models were established to determine the biological activity of miR-145-5p in melanoma in vivo. In addition, the changes of the nuclear factor kappa B (NF-κB) pathway were analyzed by detecting the NF-κB activity and the NF-κB p65 protein level. We observed that the miR-145-5p expression was underexpressed in melanoma tissues and cells. miR-145-5p suppressed the TLR4 expression by binding to its 3′untranslated region in melanoma cells. Moreover, TLR4 overexpression abolished the inhibition of cell proliferation, colony formation, migration, and invasion abilities induced by miR-145-5p in melanoma cells. Meanwhile, miR-145-5p was confirmed to restrain melanoma tumor growth in vivo by targeting TLR4. Furthermore, miR-145-5p overexpression inactivated the NF-κB pathway in melanoma in vitro and in vivo, which was reversed by TLR4 overexpression. We concluded that miR-145-5p hindered the occurrence and metastasis of melanoma cells in vitro and in vivo by targeting TLR4 via inactivation of the NF-κB pathway.  相似文献   

15.
DNA damage responses (DDR) invoke senescence or apoptosis depending on stimulus intensity and the degree of activation of the p53-p21(Cip1/Waf1) axis; but the functional impact of NF-κB signaling on these different outcomes in normal vs. human cancer cells remains poorly understood. We investigated the NF-κB-dependent effects and mechanism underlying reactive oxygen species (ROS)-mediated DDR outcomes of normal human lung fibroblasts (HDFs) and A549 human lung cancer epithelial cells. To activate DDR, ROS accumulation was induced by different doses of H(2)O(2). The effect of ROS induction caused a G2 or G2-M phase cell cycle arrest of both human cell types. However, ROS-mediated DDR eventually culminated in different end points with HDFs undergoing premature senescence and A549 cancer cells succumbing to apoptosis. NF-κB p65/RelA nuclear translocation and Ser536 phosphorylation were induced in response to H(2)O(2)-mediated ROS accumulation. Importantly, blocking the activities of canonical NF-κB subunits with an IκBα super-repressor or suppressing canonical NF-κB signaling by IKKβ knock-down accelerated HDF premature senescence by up-regulating the p53-p21(Cip1/Waf1) axis; but inhibiting the canonical NF-κB pathway exacerbated H(2)O(2)-induced A549 cell apoptosis. HDF premature aging occurred in conjunction with γ-H2AX chromatin deposition, senescence-associated heterochromatic foci and beta-galactosidase staining. p53 knock-down abrogated H(2)O(2)-induced premature senescence of vector control- and IκBαSR-expressing HDFs functionally linking canonical NF-κB-dependent control of p53 levels to ROS-induced HDF senescence. We conclude that IKKβ-driven canonical NF-κB signaling has different functional roles for the outcome of ROS responses in the contexts of normal vs. human tumor cells by respectively protecting them against DDR-dependent premature senescence and apoptosis.  相似文献   

16.
17.
18.
Dendritic cells (DCs) play critical roles in cross-priming to induce the CTL response against infection; however, the molecular mechanisms for the regulation of DC cross-priming need to be investigated further, which may help to improve the potency of DC vaccines through engineering modifications. Our previous studies showed that β2 integrin CD11b could control TLR-triggered NK cell cytotoxicity and macrophage inflammatory responses. CD11b is also abundantly expressed in DCs, but it is unknown whether CD11b participates in the regulation of DC cross-priming for the CTL response. Also, because microRNAs (miRNAs) are important regulators of the immune response, it remains unclear whether miRNAs are regulated by CD11b in DCs. In this study, we showed that CD11b deficiency upregulated TLR9-triggered, but not TLR4-triggered, IL-12p70 production in DCs, subsequently promoting DC cross-priming of the CTL response. Further experiments showed that CD11b selectively promoted TLR9-triggered miR-146a upregulation in DCs by sustaining late-phase NF-κB activation. Additionally, Notch1, a known positive regulator of IL-12p70 production in DCs, was confirmed to be directly targeted by miR-146a. miR-146a upregulation and Notch1 repression were determined to be responsible for the reduced IL-12p70 production in TLR9-triggered wild-type DCs compared with that in CD11b-deficient DCs. Therefore, CD11b and downstream miR-146a may be new negative regulators for DC cross-priming by suppressing Notch1 expression and IL-12p70 production. Our data indicate a new mechanism for the regulation of DC cross-priming through integrins and miRNAs.  相似文献   

19.
20.
Yang C  Yang Z  Zhang M  Dong Q  Wang X  Lan A  Zeng F  Chen P  Wang C  Feng J 《PloS one》2011,6(7):e21971
Hydrogen sulfide (H(2)S) has been shown to protect against oxidative stress injury and inflammation in various hypoxia-induced insult models. However, it remains unknown whether H(2)S protects human skin keratinocytes (HaCaT cells) against chemical hypoxia-induced damage. In the current study, HaCaT cells were treated with cobalt chloride (CoCl(2)), a well known hypoxia mimetic agent, to establish a chemical hypoxia-induced cell injury model. Our findings showed that pretreatment of HaCaT cells with NaHS (a donor of H(2)S) for 30 min before exposure to CoCl(2) for 24 h significantly attenuated CoCl(2)-induced injuries and inflammatory responses, evidenced by increases in cell viability and GSH level and decreases in ROS generation and secretions of IL-1β, IL-6 and IL-8. In addition, pretreatment with NaHS markedly reduced CoCl(2)-induced COX-2 overexpression and PGE(2) secretion as well as intranuclear NF-κB p65 subunit accumulation (the central step of NF-κB activation). Similar to the protective effect of H(2)S, both NS-398 (a selective COX-2 inhibitor) and PDTC (a selective NF-κB inhibitor) depressed not only CoCl(2)-induced cytotoxicity, but also the secretions of IL-1β, IL-6 and IL-8. Importantly, PDTC obviously attenuated overexpression of COX-2 induced by CoCl(2). Notably, NAC, a ROS scavenger, conferred a similar protective effect of H(2)S against CoCl(2)-induced insults and inflammatory responses. Taken together, the findings of the present study have demonstrated for the first time that H(2)S protects HaCaT cells against CoCl(2)-induced injuries and inflammatory responses through inhibition of ROS-activated NF-κB/COX-2 pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号