共查询到20条相似文献,搜索用时 15 毫秒
1.
S. Singh Robert L. Bowden 《Molecular breeding : new strategies in plant improvement》2011,28(2):137-142
Wheat (Triticum aestivum) gene Lr12 provides adult-plant race-specific resistance to leaf rust caused by Puccinia triticina. It is completely linked or identical to Lr31, which confers seedling resistance only when the complementary gene Lr27 is also present. F2 and F2-derived F3 families were developed from a cross between the susceptible variety Thatcher and TcLr12, an isoline carrying Lr12. Of 230 F3 families, 55 were homozygous resistant, 115 were segregating for resistance, and 60 were susceptible to P. triticina, fitting a monogenic 1:2:1 segregation ratio. Lr12 was mapped on chromosome arm 4BL and was flanked by markers Xgwm251 and Xgwm149 at distances of 0.9 and 1.9 cM, respectively. Using linked markers and wheat deletion stocks, Lr12 was located in deletion bin 4BL-5, FL = 0.86–1.0, comprising the terminal 14% of 4BL. The markers will be useful for following
Lr12/Lr31 in crosses and for further mapping studies. 相似文献
2.
Vallence?Nsabiyera Naeela?Qureshi Harbans?S.?Bariana Debbie?Wong Kerrie?L.?Forrest Mathew?J.?Hayden Urmil?K.?Bansal
Leaf rust of wheat, caused by Puccinia triticina, is an important disease throughout the world. The adult plant leaf rust resistance gene Lr48 reported in CSP44 was previously mapped in chromosome 2B, but the marker–gene association was weak. In this study, we confirmed the location of Lr48 to be in the short arm of chromosome 2B and identified closely linked markers suitable for use in breeding. The CSP44/WL711 recombinant inbred line (RIL) population (90 lines) showed monogenic segregation for Lr48. Twelve resistant and 12 susceptible RILs were used for selective genotyping using an iSelect 90K Infinium SNP assay. Closely linked SNPs were converted into Kompetitive allele-specific primers (KASP) and tested on the parental lines. KASP markers giving clear clusters for alternate genotypes were assayed on the entire RIL population. SNP markers IWB31002, IWB39832, IWB34324, IWB72894 and IWB36920 co-segregated with Lr48 and the marker IWB70147 was mapped 0.3 cM proximal to this gene. Closely linked KASP markers were tested on a set of Australian and Nordic wheat genotypes. The amplification of SNP alleles alternate to those linked with Lr48 in the majority of the Australian and Nordic wheat genotypes demonstrated the usefulness of these markers for marker-assisted pyramiding of Lr48 with other rust resistance genes. 相似文献
3.
Microsatellite mapping of adult-plant leaf rust resistance gene <Emphasis Type="Italic">Lr22a</Emphasis> in wheat 总被引:1,自引:0,他引:1
Hiebert CW Thomas JB Somers DJ McCallum BD Fox SL 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2007,115(6):877-884
This study was conducted to identify microsatellite markers (SSR) linked to the adult-plant leaf rust resistance gene Lr22a and examine their cross-applicability for marker-assisted selection in different genetic backgrounds. Lr22a was previously introgressed from Aegilops tauschii Coss. to wheat (Triticum aestivum L.) and located to chromosome 2DS. Comparing SSR alleles from the donor of Lr22a to two backcross lines and their recurrent parents showed that between two and five SSR markers were co-introgressed with Lr22a and the size range of the Ae. tauschii introgression was 9-20 cM. An F(2) population from the cross of 98B34-T4B x 98B26-N1C01 confirmed linkage between the introgressed markers and Lr22a on chromosome 2DS. The closest marker, GWM296, was 2.9 cM from Lr22a. One hundred and eighteen cultivars and breeding lines of different geographical origins were tested with GWM296. In total 14 alleles were amplified, however, only those lines predicted or known to carry Lr22a had the unique Ae. tauschii allele at GWM296 with fragments of 121 and 131 bp. Thus, GWM296 is useful for selecting Lr22a in diverse genetic backgrounds. Genotypes carrying Lr22a showed strong resistance to leaf rust in the field from 2002 to 2006. Lr22a is an ideal candidate to be included in a stack of leaf rust resistance genes because of its strong adult-plant resistance, low frequency of commercial deployment, and the availability of a unique marker. 相似文献
4.
Colin W. Hiebert Julian B. Thomas Daryl J. Somers Brent D. McCallum Stephen L. Fox 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2007,115(6):885-886
This study was conducted to identify microsatellite markers (SSR) linked to the adult-plant leaf rust resistance gene Lr22a and examine their cross-applicability for marker-assisted selection in different genetic backgrounds. Lr22a was previously introgressed from Aegilops tauschii Coss. to wheat (Triticum aestivum L.) and located to chromosome 2DS. Comparing SSR alleles from the donor of Lr22a to two backcross lines and their recurrent parents showed that between two and five SSR markers were co-introgressed with
Lr22a and the size range of the Ae. tauschii introgression was 9–20 cM. An F2 population from the cross of 98B34-T4B × 98B26-N1C01 confirmed linkage between the introgressed markers and Lr22a on chromosome 2DS. The closest marker, GWM296, was 2.9 cM from Lr22a. One hundred and eighteen cultivars and breeding lines of different geographical origins were tested with GWM296. In total
14 alleles were amplified, however, only those lines predicted or known to carry Lr22a had the unique Ae. tauschii allele at GWM296 with fragments of 121 and 131 bp. Thus, GWM296 is useful for selecting Lr22a in diverse genetic backgrounds. Genotypes carrying Lr22a showed strong resistance to leaf rust in the field from 2002 to 2006. Lr22a is an ideal candidate to be included in a stack of leaf rust resistance genes because of its strong adult-plant resistance,
low frequency of commercial deployment, and the availability of a unique marker.
An erratum to this article can be found at 相似文献
5.
Sybil A. Herrera-Foessel Evans S. Lagudah Julio Huerta-Espino Matthew J. Hayden Harbans S. Bariana Davinder Singh Ravi P. Singh 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2011,122(1):239-249
The common wheat genotype ‘RL6077’ was believed to carry the gene Lr34/Yr18 that confers slow-rusting adult plant resistance (APR) to leaf rust and stripe rust but located to a different chromosome
through inter-chromosomal reciprocal translocation. However, haplotyping using the cloned Lr34/Yr18 diagnostic marker and the complete sequencing of the gene indicated Lr34/Yr18 is absent in RL6077. We crossed RL6077 with the susceptible parent ‘Avocet’ and developed F3, F4 and F6 populations from photoperiod-insensitive F3 lines that were segregating for resistance to leaf rust and stripe rust. The populations were characterized for leaf rust
resistance at two Mexican sites, Cd. Obregon during the 2008–2009 and 2009–2010 crop seasons, and El Batan during 2009, and
for stripe rust resistance at Toluca, a third Mexican site, during 2009. The F3 population was also evaluated for stripe rust resistance at Cobbitty, Australia, during 2009. Most lines had correlated responses
to leaf rust and stripe rust, indicating that either the same gene, or closely linked genes, confers resistance to both diseases.
Molecular mapping using microsatellites led to the identification of five markers (Xgwm165, Xgwm192, Xcfd71, Xbarc98 and Xcfd23) on chromosome 4DL that are associated with this gene(s), with the closest markers being located at 0.4 cM. In a parallel
study in Canada using a Thatcher × RL6077 F3 population, the same leaf rust resistance gene was designated as Lr67 and mapped to the same chromosomal region. The pleiotropic, or closely linked, gene derived from RL6077 that conferred stripe
rust resistance in this study was designated as Yr46. The slow-rusting gene(s) Lr67/Yr46 can be utilized in combination with other slow-rusting genes to develop high levels of durable APR to leaf rust and stripe
rust in wheat. 相似文献
6.
Marker-assisted selection for leaf rust resistance genes Lr19 and Lr24 in wheat (Triticum aestivum L.) 总被引:2,自引:0,他引:2
Leaf rust caused by Puccinia recondita f.sp. tritici is a wheat disease of worldwide importance. Wheat genotypes known to carry specific rust resistance genes and segregating lines that originated from various cross combinations and derived from distinct F2 lineage, so as to represent a diverse genetic background, were included in the present study for validation of molecular markers for Lr19 and Lr24. STS markers detected the presence of the leaf rust resistance gene Lr19 in a Thatcher NIL (Tc*Lrl9) and Inia66//CMH81A575 and of the gene Lr24 in the genotypes Arkan, Blue Boy II, Agent and CI 17907. Validation of molecular markers for Lr19 and Lr24 in parental lines, followed by successful detection of these genes in F3 lines from various cross combinations, was carried out. The molecular test corresponded well with the host-pathogen interaction test response of these lines. 相似文献
7.
Kuraparthy V Chhuneja P Dhaliwal HS Kaur S Bowden RL Gill BS 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2007,114(8):1379-1389
Leaf rust and stripe rust are important foliar diseases of wheat worldwide. Leaf rust and stripe rust resistant introgression
lines were developed by induced homoeologous chromosome pairing between wheat chromosome 5D and 5Mg of Aegilops geniculata (UgMg). Characterization of rust resistant BC2F5 and BC3F6 homozygous progenies using genomic in situ hybridization with Aegilops comosa (M) DNA as probe identified three different types of introgressions; two cytologically visible and one invisible (termed
cryptic alien introgression). All three types of introgression lines showed similar and complete resistance to the most prevalent
pathotypes of leaf rust and stripe rust in Kansas (USA) and Punjab (India). Diagnostic polymorphisms between the alien segment
and recipient parent were identified using physically mapped RFLP probes. Molecular mapping revealed that cryptic alien introgression
conferring resistance to leaf rust and stripe rust comprised less than 5% of the 5DS arm and was designated T5DL·5DS-5MgS(0.95). Genetic mapping with an F2 population of Wichita × T5DL·5DS-5MgS(0.95) demonstrated the monogenic and dominant inheritance of resistance to both diseases. Two diagnostic RFLP markers, previously
mapped on chromosome arm 5DS, co-segregated with the rust resistance in the F2 population. The unique map location of the resistant introgression on chromosome T5DL·5DS-5MgS(0.95) suggested that the leaf rust and stripe rust resistance genes were new and were designated Lr57 and Yr40. This is the first documentation of a successful transfer and characterization of cryptic alien introgression from Ae. geniculata conferring resistance to both leaf rust and stripe rust in wheat. 相似文献
8.
Rusts are the most important biotic constraints limiting wheat productivity worldwide. Deployment of cultivars with broad spectrum rust resistance is the only environmentally viable option to combat these diseases. Identification and introgression of novel sources of resistance is a continuous process to combat the ever evolving pathogens. The germplasm of nonprogenitor Aegilops species with substantial amount of variability has been exploited to a limited extent. In the present investigation introgression, inheritance and molecular mapping of a leaf rust resistance gene of Ae. caudata (CC) acc. pau3556 in cultivated wheat were undertaken. An F(2) population derived from the cross of Triticum aestivum cv. WL711 - Ae. caudata introgression line T291-2 with wheat cultivar PBW343 segregated for a single dominant leaf rust resistance gene at the seedling and adult plant stages. Progeny testing in F(3) confirmed the introgression of a single gene for leaf rust resistance. Bulked segregant analysis using polymorphic D-genome-specific SSR markers and the cosegregation of the 5DS anchored markers (Xcfd18, Xcfd78, Xfd81 and Xcfd189) with the rust resistance in the F(2) population mapped the leaf rust resistance gene (LrAC) on the short arm of wheat chromosome 5D. Genetic complementation and the linked molecular markers revealed that LrAC is a novel homoeoallele of an orthologue Lr57 already introgressed from the 5M chromosome of Ae. geniculata on 5DS of wheat. 相似文献
9.
Ling HQ Zhu Y Keller B 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2003,106(5):875-882
Leaf rust is the most common disease in wheat production. There are more than 45 specific resistance genes described and used in wheat breeding to control epidemics of leaf rust, but none of them has been cloned. The leaf rust disease resistance gene 1 ( Lr1) is a good model gene for isolation by map-based cloning because it is a single, dominant gene which is located in the distal region of chromosome 5DL of wheat. As the first step towards the isolation of this gene we constructed a high-resolution genetic map in the region of the Lr1 locus by saturation mapping of two large segregating F(2) populations (Thatcher Lr1 x Thatcher, Thatcher Lr1 x Frisal). The resistance gene Lr1 was delimited in a 0.16-cM region between the RFLP markers ABC718 and PSR567 (0.12 cM from ABC718 and 0.04 cM from PSR567). A genomic BAC library of Aegilops tauschii (D genome) was screened using the RFLP markers ABC718 and PSR567. Five positive BAC clones were identified by ABC718 and four clones by PSR567. Two NBS-LRR type of resistance gene analogs, which encode proteins highly homologous to the bacterial blight disease resistance protein Xa1 of rice, were identified on BAC clones isolated with PSR567. Polymorphic BAC end probes were isolated from both ends of a 105-kb large BAC clone identified by ABC718. The end probes were mapped at the same locus as ABC718, and no recombination event was found within 105 kb around ABC718 in our analysis of more than 4,000 gametes. 相似文献
10.
Leaf rust, caused by Puccinia triticina, is one of the most damaging diseases of wheat worldwide. Lr16 is a widely deployed leaf rust resistance gene effective at the seedling stage. Although virulence to Lr16 exists in the Canadian P. triticina population, Lr16 provides a level of partial resistance in the field. The primary objective of this study was to identify markers linked to Lr16 that are suitable for marker-assisted selection (MAS). Lr16 was tagged with microsatellite markers on the distal end of chromosome 2BS in three mapping populations. Seven microsatellite loci mapped within 10 cM of Lr16, with the map distances varying among populations. Xwmc764 was the closest microsatellite locus to Lr16, and mapped 1, 9, and 3 cM away in the RL4452/AC Domain, BW278/AC Foremost, and HY644/McKenzie mapping populations, respectively. Lr16 was the terminal locus mapped in all three populations. Xwmc764, Xgwm210, and Xwmc661 were the most suitable markers for selection of Lr16 because they had simple PCR profiles, numerous alleles, high polymorphism information content (PIC), and were tightly linked to Lr16. Twenty-eight spring wheat lines were evaluated for leaf rust reaction with the P. triticina virulence phenotypes MBDS, MBRJ, and MGBJ, and analyzed with five microsatellite markers tightly linked to Lr16. There was good agreement between leaf rust infection type (IT) data and the microsatellite allele data. Microsatellite markers were useful for postulating Lr16 in wheat lines with multiple leaf rust resistance genes. 相似文献
11.
Jyoti Singla Linda Lüthi Thomas Wicker Urmil Bansal Simon G. Krattinger Beat Keller 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2017,130(1):1-12
Key message
Here, we describe a strategy to improve broad-spectrum leaf rust resistance by marker-assisted combination of two partial resistance genes. One of them represents a novel partial adult plant resistance gene, named Lr75.Abstract
Leaf rust caused by the fungal pathogen Puccinia triticina is a damaging disease of wheat (Triticum aestivum L.). The combination of several, additively-acting partial disease resistance genes has been proposed as a suitable strategy to breed wheat cultivars with high levels of durable field resistance. The Swiss winter wheat cultivar ‘Forno’ continues to show near-immunity to leaf rust since its release in the 1980s. This resistance is conferred by the presence of at least six quantitative trait loci (QTL), one of which is associated with the morphological trait leaf tip necrosis. Here, we used a marker-informed strategy to introgress two ‘Forno’ QTLs into the leaf rust-susceptible Swiss winter wheat cultivar ‘Arina’. The resulting backcross line ‘ArinaLrFor’ showed markedly increased leaf rust resistance in multiple locations over several years. One of the introgressed QTLs, QLr.sfr-1BS, is located on chromosome 1BS. We developed chromosome 1B-specific microsatellite markers by exploiting the Illumina survey sequences of wheat cv. ‘Chinese Spring’ and mapped QLr.sfr-1BS to a 4.3 cM interval flanked by the SSR markers gwm604 and swm271. QLr.sfr-1BS does not share a genetic location with any of the described leaf rust resistance genes present on chromosome 1B. Therefore, QLr.sfr-1BS is novel and was designated as Lr75. We conclude that marker-assisted combination of partial resistance genes is a feasible strategy to increase broad-spectrum leaf rust resistance. The identification of Lr75 adds a novel and highly useful gene to the small set of known partial, adult plant leaf rust resistance genes.12.
Ling HQ Qiu J Singh RP Keller B 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2004,109(6):1133-1138
Aegilops tauschii (goat grass) is the progenitor of the D genome in hexaploid bread wheat. We have screened more than 200 Ae. tauschii accessions for resistance against leaf rust (Puccinia triticina) isolates, which are avirulent on the leaf rust resistance gene Lr1. Approximately 3.5% of the Ae. tauschii accessions displayed the same low infection type as the tester line Thatcher Lr1. The accession Tr.t. 213, which showed resistance after artificial infection with Lr1 isolates both in Mexico and in Switzerland, was chosen for further analysis. Genetic analysis showed that the resistance in this accession is controlled by a single dominant gene, which mapped at the same chromosomal position as Lr1 in wheat. It was delimited in a 1.3-cM region between the restriction fragment length polymorphism (RFLP) markers ABC718 and PSR567 on chromosome 5DL of Ae. tauschii. The gene was more tightly linked to PSR567 (0.47 cM) than to ABC718 (0.79 cM). These results indicate that the resistance gene in Ae. tauschii accession Tr.t. 213 is an ortholog of the leaf rust resistance gene Lr1 of bread wheat, suggesting that Lr1 originally evolved in diploid goat grass and was introgressed into the wheat D genome during or after domestication of hexaploid wheat. Compared to hexaploid wheat, higher marker polymorphism and recombination frequencies were observed in the region of the Lr1 ortholog in Ae. tauschii. The identification of Lr1Ae, the orthologous gene of wheat Lr1, in Ae. tauschii will allow map-based cloning of Lr1 from this genetically simpler, diploid genome.Hong-Qing Ling and Jiwen Qiu have contributed equally to this work 相似文献
13.
Australian cultivar Sunco carries three adult plant stripe rust resistance genes. One of these genes corresponded to Yr18 in chromosome 7DS; the second, YrCK, was mapped on chromosome 2D. Here, we describe the characterization of the third adult plant resistance (APR) gene from Sunco. Sunco/2*Avocet S-derived lines SA65 (resistant) and SA67 (susceptible) were crossed and a recombinant inbred line F6 population was generated. Monogenic segregation among SA65/SA67-derived RIL population was demonstrated and the resistance locus was designated YrSA3. Selective genotyping using an iSelect 90 K Infinium SNP array and SSR markers located YrSA3 on chromosome 3D. Development of KASP markers for SNP loci showing association with YrSA3 allowed construction of a genetic map harboring the resistance gene. Ten KASP markers (KASP_8306, KASP_9142, KASP_10438, KASP_16434, KASP_17207, KASP_20836, KASP_23518, KASP_23615, KASP_57983 and KASP_63653), one SSR marker (gwm114b) and Lr24/Sr24 were mapped 1.8 cM distal to YrSA3. Comparison of marker data indicated that the previously named seedling stripe rust resistance gene Yr45 was located proximal to YrSA3, and therefore the latter was formally designated Yr71. Two recombinants carrying Lr24/Sr24 and Yr71 in combination were identified for use as donor sources in wheat breeding programs. The robustness of gwm114b, KASP_16434, KASP_17207 and KASP_20836 for marker-assisted selection of these genes was demonstrated through tests on 74 Australian wheat cultivars. 相似文献
14.
Bansal UK Forrest KL Hayden MJ Miah H Singh D Bariana HS 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2011,122(8):1461-1466
Two Iranian common wheat landraces AUS28183 and AUS28187 from the Watkins collection showed high levels of seedling resistance
against Australian pathotypes of leaf rust and stripe rust pathogens. Chi-squared analyses of rust response segregation among
F3 populations derived from crosses of AUS28183 and AUS28187 with a susceptible genotype AUS27229 revealed monogenic inheritance
of leaf rust and stripe rust resistance. As both genotypes produced similar leaf rust and stripe rust infection types, they
were assumed to carry the same genes. The genes were temporarily named as LrW1 and YrW1. Molecular mapping placed LrW1 and YrW1 in the short arm of chromosome 5B, about 10 and 15 cM proximal to the SSR marker gwm234, respectively, and the marker cfb309 mapped 8–12 cM proximal to YrW1. LrW1 mapped 3–6 cM distal to YrW1 in two F3 populations. AUS28183 corresponded to the accession V336 of the Watkins collection which was the original source of Lr52. Based on the genomic location and accession records, LrW1 was concluded to be Lr52. Because no other seedling stripe rust resistance gene has previously been mapped in chromosome 5BS, YrW1 was permanently named as Yr47. A combination of flanking markers gwm234 and cfb309 with phenotypic assays could be used to ascertain the presence of Lr52 and Yr47 in segregating populations. This investigation characterised a valuable source of dual leaf rust and stripe rust resistance
for deployment in new wheat cultivars. Transfer of Lr52 and Yr47 into current Australian wheat backgrounds is in progress. 相似文献
15.
James A. Kolmer Zhenqi Su Amy Bernardo Guihua Bai Shiaoman Chao 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2018,131(7):1553-1560
Key message
A new gene for adult plant leaf rust resistance in wheat was mapped to chromosome 3BL. This gene was designated as Lr77.Abstract
‘Santa Fe’ is a hard red winter cultivar that has had long-lasting resistance to the leaf rust fungus, Puccinia triticina. The objective of this study was to determine the chromosome location of the adult plant leaf rust resistance in Santa Fe wheat. A partial backcross line of ‘Thatcher’ (Tc) wheat with adult plant leaf rust resistance derived from Santa Fe was crossed with Thatcher to develop a Thatcher//Tc*2/Santa Fe F6 recombinant inbred line (RIL) population. The RIL population and parental lines were evaluated for segregation of leaf rust resistance in three field plot tests and in an adult plant greenhouse test. A genetic map of the RIL population was constructed using 90,000 single-nucleotide polymorphism (SNP) markers with the Illumina Infinium iSelect 90K wheat bead array. A significant quantitative trait locus for reduction of leaf rust severity in all four tests was found on chromosome 3BL that segregated as a single adult plant resistance gene. The RILs with the allele from the resistant parent for SNP marker IWB10344 had lower leaf rust severity and a moderately resistant to moderately susceptible response compared to the susceptible RILs and Thatcher. The gene derived from Santa Fe on chromosome 3BL was designated as Lr77. Kompetitive allele-specific polymerase chain reaction assay markers linked to Lr77 on 3BL should be useful for selection of wheat germplasm with this gene.16.
The leaf rust resistance gene Lr25, transferred from Secale cereale L. into wheat and located on chromosome 4B, imparts resistance to all pathotypes of leaf rust in South-East Asia. In an F2-derived F3 population, created by crossing TcLr25 that carries the gene Lr25 for leaf rust resistance with leaf rust-susceptible parent Agra Local, three microsatellite markers located on the long arm
of chromosome 4B were found to be linked to the Lr25 locus. The donor parent TcLr25 is a near-isogenic line derived from the variety Thatcher. The most virulent pathotype of
leaf rust in the South-East Asian region, designated 77–5 (121R63-1), was used for challenging the population under artificially
controlled conditions. The marker Xgwm251 behaved as a co-dominant marker placed 3.8 cM away from the Lr25 locus on 4BL. Two null allele markers, Xgwm538 and Xgwm6, in the same linkage group were located at a distance of 3.8 cM
and 16.2 cM from the Lr25 locus, respectively. The genetic sequence of Xgwm251, Lr25, Xgwm538, and Xgwm6 covered a total length of 20 cM on 4BL. The markers were validated for their specificity to Lr25 resistance in a set of 43 wheat genetic stocks representing 43 other Lr genes. 相似文献
17.
Physical mapping and identification of a candidate for the leaf rust resistance gene <Emphasis Type="Italic">Lr1</Emphasis> of wheat 总被引:2,自引:0,他引:2
Qiu JW Schürch AC Yahiaoui N Dong LL Fan HJ Zhang ZJ Keller B Ling HQ 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2007,115(2):159-168
Lr1 is a dominant leaf rust resistance gene located on chromosome 5DL of bread wheat and the wild species Aegilops tauschii. In this study, three polymorphic markers (WR001, WR002, and WR003) were developed from resistance gene analogs (RGAs) clustering
around the Lr1 locus. Using these and other markers, Lr1 was mapped to a genetic interval of 0.79 cM in Ae. tauschii and 0.075 cM in wheat. The CAPS marker WR003, derived from LR1RGA1, co-segregated with Lr1 in both mapping populations of wheat and Ae. tauschii. For isolation of Lr1, two genomic BAC libraries (from Ae. tauschii and hexaploid wheat) were screened using the tightly flanking marker PSR567F and a set of nested primers derived from the
conserved region of the RGA sequences. Approximately 400 kb BAC contig spanning the Lr1 locus was constructed. The LR1RGA1 encoding a CC-NBS-leucine-rich repeat (LRR) type of protein was the only one of the four RGAs at the Lr1 locus, which co-segregated with leaf rust resistance. Therefore, it represents a very good candidate for Lr1. The allelic sequences of LR1RGA1 from resistant and susceptible lines revealed a divergent DNA sequence block of ∼605 bp encoding the LRR repeats 9–15, whereas
the rest of the sequences were mostly identical. Within this sequence block, the 48 non-synonymous changes resulted in 44
amino acid differences. This indicates that LR1RGA1 likely evolved through one or more recombination or gene conversion events with unknown genes.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
18.
Naeela Qureshi Harbans Bariana Kerrie Forrest Matthew Hayden Beat Keller Thomas Wicker Justin Faris Elena Salina Urmil Bansal 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2017,130(3):495-504
Key message
Fine mapping of Yr47 and Lr52 in chromosome arm 5BS of wheat identified close linkage of the marker sun180 to both genes and its robustness for marker-assisted selection was demonstrated.Abstract
The widely effective and genetically linked rust resistance genes Yr47 and Lr52 have previously been mapped in the short arm of chromosome 5B in two F3 populations (Aus28183/Aus27229 and Aus28187/Aus27229). The Aus28183/Aus27229 F3 population was advanced to generate an F6 recombinant inbred line (RIL) population to identify markers closely linked with Yr47 and Lr52. Diverse genomic resources including flow-sorted chromosome survey sequence contigs representing the orthologous region in Brachypodium distachyon, the physical map of chromosome arm 5BS, expressed sequence tags (ESTs) located in the 5BS6-0.81-1.00 deletion bin and resistance gene analog contigs of chromosome arm 5BS were used to develop markers to saturate the target region. Selective genotyping was also performed using the iSelect 90 K Infinium wheat SNP assay. A set of SSR, STS, gene-based and SNP markers were developed and genotyped on the Aus28183/Aus27229 RIL population. Yr47 and Lr52 are genetically distinct genes that mapped 0.4 cM apart in the RIL population. The SSR marker sun180 co-segregated with Lr52 and mapped 0.4 cM distal to Yr47. In a high resolution mapping population of 600 F2 genotypes Yr47 and Lr52 mapped 0.2 cM apart and marker sun180 was placed 0.4 cM distal to Lr52. The amplification of a different sun180 amplicon (195 bp) than that linked with Yr47 and Lr52 (200 bp) in 204 diverse wheat genotypes demonstrated its robustness for marker-assisted selection of these genes.19.
Singh S Franks CD Huang L Brown-Guedira GL Marshall DS Gill BS Fritz A 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2004,108(4):586-591
The leaf rust resistance gene Lr41 in wheat germplasm KS90WGRC10 and a resistance gene in wheat breeding line WX93D246-R-1 were transferred to Triticum aestivum from Aegilops tauschii and Ae. cylindrica, respectively. The leaf rust resistance gene in WX93D246-R-1 was located on wheat chromosome 2D by monosomic analysis. Molecular marker analysis of F2 plants from non-critical crosses determined that this gene is 11.2 cM distal to marker Xgwm210 on the short arm of 2D. No susceptible plants were detected in a population of 300 F2 plants from a cross between WX93D246-R-1 and TA 4186 (Lr39), suggesting that the gene in WX93D246-R-1 is the same as, or closely linked to, Lr39. In addition, no susceptible plants were detected in a population of 180 F2 plants from the cross between KS90WGRC10 and WX93D246-R-1. The resistance gene in KS90WGRC10, Lr41, was previously reported to be located on wheat chromosome 1D. In this study, no genetic association was found between Lr41 and 51 markers located on chromosome 1D. A population of 110 F3 lines from a cross between KS90WGRC10 and TAM 107 was evaluated with polymorphic SSR markers from chromosome 2D and marker Xgdm35 was found to be 1.9 cM proximal to Lr41. When evaluated with diverse isolates of Puccinia triticina, similar reactions were observed on WX93D246-R-1, KS90WGRC10, and TA 4186. The results of mapping, allelism, and race specificity test indicate that these germplasms likely have the same gene for resistance to leaf rust.Contribution number 03-348-J from the Kansas Agricultural Experimental Station, Manhattan, KansasCommunicated by J. Dvorak 相似文献
20.
Olivier?Marrion Jo?l?Fleurence Annie?Schwertz Jean-Louis?Guéant Lillia?Mamelouk Jamel?Ksouri Christian?Villaume
Palmaria palmata and Gracilaria verrucosa are edible red seaweeds and potential protein sources for human or animal nutrition, so studies were conducted on their in vitro protein digestibility. After 30 min predigestion by pepsin followed by 6 h digestion into a cell dialysis containing porcine pancreatin, the in vitro protein digestibility of P. palmata and G. verrucosa, expressed in regard to casein digestibility, was 4.9% and 42.1%, respectively. The level of protein digestibility seems to be related to the amount of soluble fibre, which was 45.3% and 30.5%, respectively. 相似文献