首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Both overnutrition and an incorrect nutrient balance have contributed to the rise in obesity. Moreover, it is now clear that poor nutrition during early life augments the possibility of excess weight gain in later years. Our aim was to determine how neonatal overnutrition affects later responses to a sucrose-enriched diet and whether this varies depending upon when the diet is introduced in postnatal life. Male Wistar rats raised in litters of four or 12 pups were given a 33% sucrose solution instead of water from weaning (day 21) or postnatal day (PND) 65. All rats received normal chow ad libitum until they were euthanized on PND 80. Body weight (BW) and food and liquid intake were monitored throughout the study. Fat mass, adipocyte morphology, serum biochemical and hormonal parameters, and hypothalamic neuropeptide mRNA levels were measured at study termination. Neonatal overnutrition increased food intake, BW, and leptin levels, induced adipocyte hypertrophy, and decreased total ghrelin levels. The sucrose-enriched diet increased total energy intake, adipose accrual, and leptin, adiponectin, and acylated ghrelin levels but decreased BW. Most of these responses were accentuated in neonatally overnourished rats, which also had increased insulin and triglyceride levels. However, long-term sucrose intake induced adipocyte hypertrophy in rats from normal-sized litters but not in neonatally overfed rats. The results reported here indicate that neonatal overnutrition increases the detrimental response to a diet rich in sucrose later in life. Moreover, the timing and duration of the exposure to a sucrose-enriched diet alter the adverse metabolic outcomes.  相似文献   

2.
The adipose tissue-derived hormone leptin regulates energy balance through catabolic effects on central circuits, including proopiomelanocortin (POMC) neurons. Leptin activation of POMC neurons increases thermogenesis and locomotor activity. Protein tyrosine phosphatase 1B (PTP1B) is an important negative regulator of leptin signaling. POMC neuron-specific deletion of PTP1B in mice results in reduced high-fat diet-induced body weight and adiposity gain due to increased energy expenditure and greater leptin sensitivity. Mice lacking the leptin gene (ob/ob mice) are hypothermic and cold intolerant, whereas leptin delivery to ob/ob mice induces thermogenesis via increased sympathetic activity to brown adipose tissue (BAT). Here, we examined whether POMC PTP1B mediates the thermoregulatory response of CNS leptin signaling by evaluating food intake, body weight, core temperature (T(C)), and spontaneous physical activity (SPA) in response to either exogenous leptin or 4-day cold exposure (4°C) in male POMC-Ptp1b-deficient mice compared with wild-type controls. POMC-Ptp1b(-/-) mice were hypersensitive to leptin-induced food intake and body weight suppression compared with wild types, yet they displayed similar leptin-induced increases in T(C). Interestingly, POMC-Ptp1b(-/-) mice had increased BAT weight and elevated plasma triiodothyronine (T(3)) levels in response to a 4-day cold challenge, as well as reduced SPA 24 h after cold exposure, relative to controls. These data show that PTP1B in POMC neurons plays a role in short-term cold-induced reduction of SPA and may influence cold-induced thermogenesis via enhanced activation of the thyroid axis.  相似文献   

3.
Acute administration of peptide YY(3-36) [PYY(3-36)] results in a reduction in food intake in several different vertebrates. However, long-term continuous administration of PYY(3-36) causes only a transient reduction in food intake, thus potentially limiting its therapeutic efficacy. We hypothesized that a fall in leptin levels associated with reduced food intake could contribute to the transient anorectic effects of continuous PYY(3-36) infusion and thus that leptin replacement might prolong the anorectic effects of PYY(3-36). Seven-day administration of 100 microg x kg body wt(-1) x day(-1) PYY(3-36) using osmotic minipumps caused a significant reduction in food intake of ad libitum-fed rats, but only for the first 2 days postimplantation. Circulating levels of leptin were reduced 1 day following continuous infusion of PYY(3-36), and combined leptin infusion at a dose of leptin that had no anorectic effects on its own (100 microg x kg body wt(-1) x day(-1)) prolonged the anorectic actions of PYY(3-36) in ad libitum-fed rats for up to 6 days postimplantation and yielded reduced weight gain compared with either peptide alone. The inhibitory effects of 100 microg x kg body wt(-1) x day(-1) PYY(3-36) on food intake were absent in rats refed after a 24-h fast and substantially reduced at a dose of 1,000 microg x kg body wt(-1) x day(-1) PYY(3-36). Leptin replacement was unable to recover the anorectic effects of PYY(3-36) in fasted rats. Our results suggest that an acute fall in leptin levels is not solely responsible for limiting duration of action of chronic PYY(3-36) infusion, yet chronic coadministration of a subanorectic dose of leptin can extend the anorectic effects of PYY(3-36).  相似文献   

4.
The neonatal leptin surge, occurring from postnatal day (PND) 5 to 13 and peaking at PND9 in rodents, is important for the development of neuroendocrine circuits involved in metabolic control and reproductive function. We previously demonstrated that treatment with a leptin antagonist from PND 5 to 9, coincident with peak leptin levels in the neonatal surge, modified trophic factors and markers of cell turnover and neuronal maturation in the hypothalamus of peri-pubertal rats. The kisspeptin system and metabolic neuropeptide and hormone levels were also modified. Here our aim was to investigate if the timing of pubertal onset is altered by neonatal leptin antagonism and if the previously observed peripubertal modifications in hormones and neuropeptides persist into adulthood and affect male sexual behavior. To this end, male Wistar rats were treated with a pegylated super leptin antagonist (5 mg/kg, s.c.) from PND 5 to 9 and killed at PND102–103. The appearance of external signs of pubertal onset was delayed. Hypothalamic kiss1 mRNA levels were decreased in adult animals, but sexual behavior was not significantly modified. Although there was no effect on body weight or food intake, circulating leptin, insulin and triglyceride levels were increased, while hypothalamic leptin receptor, POMC and AgRP mRNA levels were decreased. In conclusion, alteration of the neonatal leptin surge can modify the timing of pubertal onset and have long-term effects on hypothalamic expression of reproductive and metabolic neuropeptides.  相似文献   

5.
We investigate whether leptin treatment to lactating rats affects food intake, body weight and leptin serum concentration and its anorectic effect on their adult offspring. Lactating rats were divided into 2 groups: Lep-single injected with recombinant rat leptin (8 microg/100 g of body weight, daily for the last 3 consecutive days of lactation) and control group (C) that received the same volume of saline. After weaning all pups had free access to the control diet, their body weight and food intake were monitored at each 4 days until 180 days of age, when they were tested for its food intake and response to either leptin (0.5 mg/kg body wt, ip) or saline vehicle. The offspring of the leptin-treated dams gained more weight and had higher food intake from day 37 onward (p<0.05), higher amount of retroperitoneal white adipose tissue (RPWAT) (37%, p<0.05) and higher leptin serum concentration (40%, p<0.05) at 180 days of age compared to control group. The food intake at 2, 4, 6 and 24 h was unaffected after acute injection of leptin in these animals, suggesting resistance to the anorectic effect of leptin. The maternal leptin treatment during lactation makes their adult offspring more susceptible to overweight with resistance to the anorectic effect of leptin.  相似文献   

6.
Early stress can cause metabolic disorders in adulthood. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) deficiency has also been linked to the development of metabolic disorders. The aim of this study was to assess whether an early stressful event such as maternal separation interacts with the nutritional availability of n-3 PUFAs during the life course on metabolic aspects. Litters were randomized into: maternal separated (MS) and non-handled (NH). The MS group was removed from their dam for 3 hours per day and put in an incubator at 32°C on days 1° to 10° postnatal (PND). On PND 35, males were subdivided into diets that were adequate or deficient in n-3 PUFAs, and this intervention was applied during the subsequent 15 weeks. Animal''s body weight and food consumption were measured weekly, and at the end of the treatment tissues were collected. MS was associated with increased food intake (p = 0.047) and weight gain (p = 0.012), but no differences were found in the NPY hypothalamic content between the groups. MS rats had also increased deposition of abdominal fat (p<0.001) and plasma triglycerides (p = 0.018) when compared to the NH group. Interactions between early life stress and n-3 PUFAs deficiency were found in plasma insulin (p = 0.033), HOMA index (p = 0.049), leptin (p = 0.010) and liver PEPCK expression (p = 0.050), in which the metabolic vulnerability in the MS group was aggravated by the n-3 PUFAs deficient diet exposure. This was associated with specific alterations in the peripheral fatty acid profile. Variations in the neonatal environment interact with nutritional aspects during the life course, such as n-3 PUFAs diet content, and persistently alter the metabolic vulnerability in adulthood.  相似文献   

7.
张明  蔡景霞 《动物学研究》2006,27(4):344-350
采用split-litter法对仔鼠进行分组和处理,共5组NTS组(未经实验人员抓握和标记),PND2—9TS组和PND10—17TS组(分别在仔鼠出生后的2—9天、10—17天,每天短暂抓握和标记仔鼠),PND2—9MS组和PND10—17MS组(分别在仔鼠出生后的2—9天、10—17天,除了按TS组相同方式抓握并在不同部位标记外,每天把仔鼠与母鼠分离1h)。待雌鼠成年后,进行明/暗箱测试和一次性被动回避反应测试。结果发现与NTS组相比,PND2—9TS组和PND10—17TS组的雌鼠在明/暗箱测试中停留于明室的累计时间明显较长,在被动回避作业中的重测试潜伏期也明显较长,表明新生期的触觉刺激经历减少雌性大鼠成年后在新异环境中的焦虑,并改善情绪记忆。与相应TS组相比,MS处理组的所有行为指标都无显著性差异,说明短时间母婴分离对雌鼠成年后的焦虑和情绪记忆无明显影响。结果提示,新生期的触觉刺激和母婴分离经历对仔鼠神经系统的发育产生不同的长期效应。  相似文献   

8.
Maternal deprivation (MD) during neonatal life has diverse long-term effects, including affectation of metabolism. Indeed, MD for 24 hours during the neonatal period reduces body weight throughout life when the animals are maintained on a normal diet. However, little information is available regarding how this early stress affects the response to increased metabolic challenges during postnatal life. We hypothesized that MD modifies the response to a high fat diet (HFD) and that this response differs between males and females. To address this question, both male and female Wistar rats were maternally deprived for 24 hours starting on the morning of postnatal day (PND) 9. Upon weaning on PND22 half of each group received a control diet (CD) and the other half HFD. MD rats of both sexes had significantly reduced accumulated food intake and weight gain compared to controls when raised on the CD. In contrast, when maintained on a HFD energy intake and weight gain did not differ between control and MD rats of either sex. However, high fat intake induced hyperleptinemia in MD rats as early as PND35, but not until PND85 in control males and control females did not become hyperleptinemic on the HFD even at PND102. High fat intake stimulated hypothalamic inflammatory markers in both male and female rats that had been exposed to MD, but not in controls. Reduced insulin sensitivity was observed only in MD males on the HFD. These results indicate that MD modifies the metabolic response to HFD intake, with this response being different between males and females. Thus, the development of obesity and secondary complications in response to high fat intake depends on numerous factors.  相似文献   

9.
Neuronal PTP1B regulates body weight, adiposity and leptin action   总被引:10,自引:0,他引:10  
Obesity is a major health problem and a risk factor for type 2 diabetes. Leptin, an adipocyte-secreted hormone, acts on the hypothalamus to inhibit food intake and increase energy expenditure. Most obese individuals develop hyperleptinemia and leptin resistance, limiting the therapeutic efficacy of exogenously administered leptin. Mice lacking the tyrosine phosphatase PTP1B are protected from diet-induced obesity and are hypersensitive to leptin, but the site and mechanism for these effects remain controversial. We generated tissue-specific PTP1B knockout (Ptpn1(-/-)) mice. Neuronal Ptpn1(-/-) mice have reduced weight and adiposity, and increased activity and energy expenditure. In contrast, adipose PTP1B deficiency increases body weight, whereas PTP1B deletion in muscle or liver does not affect weight. Neuronal Ptpn1(-/-) mice are hypersensitive to leptin, despite paradoxically elevated leptin levels, and show improved glucose homeostasis. Thus, PTP1B regulates body mass and adiposity primarily through actions in the brain. Furthermore, neuronal PTP1B regulates adipocyte leptin production and probably is essential for the development of leptin resistance.  相似文献   

10.
Ingestion of high-fat, high-calorie diets is associated with hyperphagia, increased body fat, and obesity. The mechanisms responsible are currently unclear; however, altered leptin signaling may be an important factor. Vagal afferent neurons (VAN) integrate signals from the gut in response to ingestion of nutrients and express leptin receptors. Therefore, we tested the hypothesis that leptin resistance occurs in VAN in response to a high-fat diet. Sprague-Dawley rats, which exhibit a bimodal distribution of body weight gain, were used after ingestion of a high-fat diet for 8 wk. Body weight, food intake, and plasma leptin levels were measured. Leptin signaling was determined by immunohistochemical localization of phosphorylated STAT3 (pSTAT3) in cultured VAN and by quantifaction of pSTAT3 protein levels by Western blot analysis in nodose ganglia and arcuate nucleus in vivo. To determine the mechanism of leptin resistance in nodose ganglia, cultured VAN were stimulated with leptin alone or with lipopolysaccharide (LPS) and SOCS-3 expression measured. SOCS-3 protein levels in VAN were measured by Western blot following leptin administration in vivo. Leptin resulted in appearance of pSTAT3 in VAN of low-fat-fed rats and rats resistant to diet-induced obesity but not diet-induced obese (DIO) rats. However, leptin signaling was normal in arcuate neurons. SOCS-3 expression was increased in VAN of DIO rats. In cultured VAN, LPS increased SOCS-3 expression and inhibited leptin-induced pSTAT3 in vivo. We conclude that VAN of diet-induced obese rats become leptin resistant; LPS and SOCS-3 may play a role in the development of leptin resistance.  相似文献   

11.
In obesity, anorectic responses to leptin are diminished, giving rise to the concept of "leptin resistance." Increased expression of protein tyrosine phosphatase 1B (PTP1B) has been associated with the attenuation of leptin signaling and development of cellular leptin resistance. Here we report that hypothalamic levels of the tyrosine phosphatase TCPTP are also elevated in obesity to attenuate the leptin response. We show that mice that lack TCPTP in neuronal cells have enhanced leptin sensitivity and are resistant to high-fat-diet-induced weight gain and the development of leptin resistance. Also, intracerebroventricular administration of a TCPTP inhibitor enhances leptin signaling and responses in mice. Moreover, the combined deletion of TCPTP and PTP1B in neuronal cells has additive effects in the prevention of diet-induced obesity. Our results identify TCPTP as a critical negative regulator of hypothalamic leptin signaling and causally link elevated TCPTP to the development of cellular leptin resistance in obesity.  相似文献   

12.
We have previously shown that cold-acclimated (8°C) male field voles (Microtus agrestis) transferred from short (SD, 8:16 h L:D) to long photoperiod (LD, 16:8 h L:D) exhibit increases in body mass, adiposity and food intake. To assess whether these increases were associated with decreased leptin sensitivity, we infused LD and SD voles with physiological doses of murine leptin (or saline) delivered peripherally for 7 days via mini-osmotic pumps. Measurements were made of body mass (weight-reducing effect of leptin), food intake (anorectic effect of leptin) and gene expression of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) (thermogenic effect of leptin). The SD animals were sensitive to the weight-reducing effects of leptin (mean body mass decrease of 1.2 g over 7 days) and appetite-reducing effect of leptin (mean food intake decrease of 2.5 g over 7 days), whereas LD voles were resistant to the hormone treatment. The switch from a leptin-sensitive to leptin-resistant state appears to act as a desensitisation mechanism that allows voles transferred from SD to LD to ignore elevated leptin levels generated by increased body fat and accumulate adipose tissue without stimulating compensatory changes opposing the weight gain. Neither SD nor LD voles responded to infusion of leptin by changes in BAT UCP1 gene expression, suggesting dissociation of anorectic and thermogenic effects of leptin, possibly related to chronic cold exposure. Our results indicate that cold-acclimated voles show photoperiod-regulated changes in leptin sensitivity and may provide an attractive model for elucidating molecular mechanisms of leptin resistance.  相似文献   

13.
Common obesity is primarily characterized by resistance to the actions of the hormone leptin. Mice deficient in protein tyrosine phosphatase 1B (PTP1B) are resistant to diabetes and diet-induced obesity, prompting us to further define the relationship between PTP1B and leptin in modulating obesity. Leptin-deficient (Lep(ob/ob)) mice lacking PTP1B exhibit an attenuated weight gain, a decrease in adipose tissue, and an increase in resting metabolic rate. Furthermore, PTP1B-deficient mice show an enhanced response toward leptin-mediated weight loss and suppression of feeding. Hypothalami from these mice also display markedly increased leptin-induced Stat3 phosphorylation. Finally, substrate-trapping experiments demonstrate that leptin-activated Jak2, but not Stat3 or the leptin receptor, is a substrate of PTP1B. These results suggest that PTP1B negatively regulates leptin signaling, and provide one mechanism by which it may regulate obesity.  相似文献   

14.
Leptin regulates energy balance through central circuits that control food intake and energy expenditure, including proopiomelanocortin (POMC) neurons. POMC neuron-specific deletion of protein tyrosine phosphatase 1B (PTP1B) (Ptpn1(loxP/loxP) POMC-Cre), a negative regulator of CNS leptin signaling, results in resistance to diet-induced obesity and improved peripheral leptin sensitivity in mice, thus establishing PTP1B as an important component of POMC neuron regulation of energy balance. POMC neurons are expressed in the pituitary, the arcuate nucleus of the hypothalamus (ARH), and the nucleus of the solitary tract (NTS) in the hindbrain, and it is unknown how each population might contribute to the phenotype of POMC-Ptp1b(-/-) mice. It is also unknown whether improved leptin sensitivity in POMC-Ptp1b(-/-) mice involves altered melanocortin receptor signaling. Therefore, we examined the effects of hindbrain administration (4th ventricle) of leptin (1.5, 3, and 6 μg) or the melanocortin 3/4R agonist melanotan II (0.1 and 0.2 nmol) in POMC-Ptp1b(-/-) (KO) and control PTP1B(fl/fl) (WT) mice on food intake, body weight, spontaneous physical activity (SPA), and core temperature (T(C)). The results show that KO mice were hypersensitive to hindbrain leptin- and MTII-induced food intake and body weight suppression and SPA compared with WT mice. Greater increases in leptin- but not MTII-induced T(C) were also observed in KO vs. WT animals. In addition, KO mice displayed elevated hindbrain and hypothalamic MC4R mRNA expression. These studies are the first to show that hindbrain administration of leptin or a melanocortin receptor agonist alters energy balance in mice likely via participation of hindbrain POMC neurons.  相似文献   

15.

Background

The OLETF rat is an animal model of early onset hyperphagia induced obesity, presenting multiple pre-obese characteristics during the suckling period. In the present study, we used a cross-fostering strategy to assess whether interactions with obese dams in the postnatal environment contributed to the development of obesity.

Methodology

On postnatal Day (PND)-1 OLETF and control LETO pups were cross-fostered to same or opposite strain dams. An independent ingestion test was performed on PND11 and a nursing test on PND18. Rats were sacrificed at weaning or on PND90, and plasma leptin, insulin, cholesterol, triglycerides and alanine aminotransferase (ALT) were assayed. Fat pads were collected and weighed and adipocyte size and number were estimated. Body weight and intake, as well as the estrous cycle of the female offspring were monitored.

Principal Findings

During the suckling period, the pups'' phenotype was almost completely determined by the strain of the mother. However, pups independently ingested food according to their genotype, regardless of their actual phenotype. At adulthood, cross fostered males of both strains and LETO females were affected in regard of their adiposity levels in the direction of the foster dam. On the other hand, OLETF females showed almost no alterations in adiposity but were affected by the strain of the dams in parameters related to the metabolic syndrome. Thus, OLETF females showed reduced liver adiposity and circulating levels of ALT, while LETO females presented a disrupted estrous cycle and increased cholesterol and triglycerides in the long term.

Conclusions

The present study provides further support for the early postnatal environment playing a sex-divergent role in programming later life phenotype. In addition, it plays a more central role in determining the functioning of mechanisms involved in energy balance that may provide protection from or sensitivity to later life obesity and pathologies related to the metabolic syndrome.  相似文献   

16.
We investigated the effect of daily intracerebroventricular (ICV) leptin administration (neonatal age 2-7 days) on hypothalamic neuropeptides (neuropeptide Y, alpha-melanocyte-stimulating hormone) that regulate food intake, body weight (BW) gain, and the metabolic/hormonal profile in suckling (8 and 21 days) and adult rat (35, 60, 90, and 120 days). ICV leptin (0.16 mug.g BW(-1).dose(-1); n = 70) led to a postnatal decline in BW (P = 0.0002) that persisted only in the adult females (P = 0.002). The postnatal decline in BW due to leptin was associated with a decline in food intake (P = 0.01) and hypothalamic leptin receptor (P = 0.008) and neuropeptide Y (P = 0.008) immunoreactivities and an increase in alpha-melanocyte-stimulating hormone (P = 0.008) immunoreactivity. In addition, hyperinsulinemia (P = 0.01) with hypocorticosteronemia (P = 0.007) occurred during the postnatal period with hypercorticosteronemia (P = 0.007) and hypoleptinemia (P = 0.008) and an increase in leutinizing hormone (P = 0.01) in the adult male and female progeny. Persistent hyperinsulinemia (P = 0.015) with hyperglycemia (P = 0.008) and glucose intolerance (P = 0.001) were observed only in the adult female. We conclude that postnatal leptin administration alters the adult female phenotype and speculate that this may relate to retention of leptin sensitivity resulting in a lipoatrophic state.  相似文献   

17.
For this study, we have determined the effects of neonatal leptin treatment on the evolution of body weight. Experiment 1: pups were divided into two groups: LepF - injected with leptin (8 micro g/100 g of body weight) for the first 10 days of lactation and control (C) - receiving saline. Experiment 2: pups were divided into two groups: LepL - injected with the same leptin concentration of experiment one for the last 10 days of lactation, and C, which received saline. Body weight and food intake were monitored until age 150 days, after which leptin concentrations were measured by ELISA. The LepF group had a significant increase in body weight (p < 0.05) from day 98 onward, in food intake (p < 0.05) from day 74 onward, and higher serum leptin concentration compared to the control (108 %, p < 0.05). The LepL group had a significant increase in body weight (p < 0.05) from day 113 onward, in food intake from day 121 onward (p < 0.001), and higher serum leptin concentration compared to controls (6.9 %, p < 0.05). These results suggest that both periods of lactation constituted a critical window for body weight and food intake programming, but the effects are more marked when the leptin is injected within the first ten days.  相似文献   

18.
大部分肥胖患者体内出现瘦素抵抗,表现为血清瘦素水平异常升高,但机体对瘦素不敏感或无反应,使瘦素抑制食欲、增加能量消耗和降低血糖等功能不能有效发挥.减轻瘦素抵抗被认为是治疗肥胖及肥胖相关疾病的有效途径.运动减轻肥胖、改善糖脂代谢和增强胰岛素敏感性的作用与运动降低瘦素水平、改善瘦素抵抗密切相关.本文在概述瘦素实现生理功能的机制、肥胖症的中枢及外周瘦素抵抗的基础上,主要综述近年来运动减轻肥胖症瘦素抵抗机制的研究进展,包括减轻高瘦素血症、改善中枢和外周瘦素抵抗,以期为运动防治肥胖机制的研究提供新视角.  相似文献   

19.
Risk of obesity in adult life is subject to programming during gestation. To examine whether in utero exposure to maternal obesity increases the risk of obesity in offspring, we developed an overfeeding-based model of maternal obesity in rats utilizing intragastric feeding of diets via total enteral nutrition. Feeding liquid diets to adult female rats at 220 kcal/kg(3/4) per day (15% excess calories/day) compared with 187 kcal/kg(3/4) per day for 3 wk caused substantial increase in body weight gain, adiposity, serum insulin, leptin, and insulin resistance. Lean or obese female rats were mated with ad libitum AIN-93G-fed male rats. Exposure to obesity was ensured to be limited only to the maternal in utero environment by cross-fostering pups to lean dams having ad libitum access to AIN-93G diets throughout lactation. Numbers of pups, birth weight, and size were not affected by maternal obesity. Male offspring from each group were weaned at postnatal day (PND)21 to either AIN-93G diets or high-fat diets (45% fat calories). Body weights of offspring from obese dams did not differ from offspring of lean dams when fed AIN-93G diets through PND130. However, offspring from obese dams gained remarkably greater (P < 0.005) body weight and higher % body fat when fed a high-fat diet. Body composition was assessed by NMR, X-ray computerized tomography, and weights of adipose tissues. Adipose histomorphometry, insulin sensitivity, and food intake were also assessed in the offspring. Our data suggest that maternal obesity at conception leads to fetal programming of offspring, which could result in obesity in later life.  相似文献   

20.
This study examined the effects of highly palatable food during adolescence on the psycho-emotional and neural disturbances caused by early life stress experience in female rats. Female Sprague-Dawley pups were separated from dam for 3 h daily during the first two weeks of birth (MS) or left undisturbed (NH). Half of MS females received free access to chocolate cookies in addition to ad libitum chow from postnatal day 28. Pups were subjected to the behavioral tests during young adulthood. The plasma corticosterone response to acute stress, ΔFosB and brain-derived neurotrophic factor (BDNF) levels in the brain regions were analyzed. Total caloric intake and body weight gain during the whole experimental period did not differ among the experimental groups. Cookie access during adolescence and youth improved anxiety-/depression-like behaviors by MS experience. ΔFosB expression was decreased, but BDNF was increased in the nucleus accumbens of MS females, and ΔFosB expression was normalized and BDNF was further increased following cookie access. Corticosterone response to acute stress was blunted by MS experience and cookie access did not improve it. Results suggest that cookie access during adolescence improves the psycho-emotional disturbances of MS females, and ΔFosB and/or BDNF expression in the nucleus accumbens may play a role in its underlying neural mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号