共查询到20条相似文献,搜索用时 0 毫秒
1.
Activin and TGFβ share SMAD signaling and colon cancers can inactivate either pathway alone or simultaneously. The differential effects of activin and TGFβ signaling in colon cancer have not been previously dissected. A key downstream target of TGFβ signaling is the cdk2 inhibitor p21 (p21(cip1/waf1)). Here, we evaluate activin-specific effects on p21 regulation and resulting functions. We find that TGFβ is a more potent inducer of growth suppression, while activin is a more potent inducer of apoptosis. Further, growth suppression and apoptosis by both ligands are dependent on SMAD4. However, activin downregulates p21 protein in a SMAD4-independent fashion in conjunction with increased ubiquitination and proteasomal degradation to enhance migration, while TGFβ upregulates p21 in a SMAD4-dependent fashion to affect growth arrest. Activin-induced growth suppression and cell death are dependent on p21, while activin-induced migration is counteracted by p21. Further, primary colon cancers show differential p21 expression consistent with their ACVR2/TGFBR2 receptor status. In summary, we report p21 as a differentially affected activin/TGFβ target and mediator of ligand-specific functions in colon cancer, which may be exploited for future risk stratification and therapeutic intervention. 相似文献
2.
3.
Bacteriophage Qβ utilizes some host cell translation factors during replication. Previously, we constructed a kinetic model that explains replication of long RNA molecules by Qβ replicase. Here, we expanded the previous kinetic model to include the effects of ribosome concentration on RNA replication. The expanded model quantitatively explained single- and double-strand formation kinetics during replication with various ribosome concentrations for two artificial long RNAs. This expanded model and the knowledge obtained in this study provide useful frameworks to understand the precise replication mechanism of Qβ replicase with ribosomes and to design amplifiable RNA genomes in translation-coupling systems. 相似文献
4.
Suzanne Speck James Lim Sagar Shelake Marsel Matka Jonathan Stoddard Alexander Farr Vijay Kuchroo Yasmina Laouar 《PloS one》2014,9(7)
While the role of Transforming Growth Factor β (TGF-β) as an intrinsic pathway has been well established in driving de novo differentiation of Th17 cells, no study has directly assessed the capacity of TGF-β signaling initiated within dendritic cells (DCs) to regulate Th17 differentiation. The central finding of this study is the demonstration that Th17 cell fate during autoimmune inflammation is shaped by TGF-β extrinsic pathway via DCs. First, we provide evidence that TGF-β limits at the site of inflammation the differentiation of highly mature DCs as a means of restricting Th17 cell differentiation and controlling autoimmunity. Second, we demonstrate that TGF-β controls DC differentiation in the inflammatory site but not in the priming site. Third, we show that TGF-β controls DC numbers at a precursor level but not at a mature stage. While it is undisputable that TGF-β intrinsic pathway drives Th17 differentiation, our data provide the first evidence that TGF-β can restrict Th17 differentiation via DC suppression but such a control occurs in the site of inflammation, not at the site of priming. Such a demarcation of the role of TGF-β in DC lineage is unprecedented and holds serious implications vis-à-vis future DC-based therapeutic targets. 相似文献
5.
6.
7.
Mammals respond to a myocardial infarction by irreversible scar formation. By contrast, zebrafish are able to resolve the scar and to regenerate functional cardiac muscle. It is not known how opposing cellular responses of fibrosis and new myocardium formation are spatially and temporally coordinated during heart regeneration in zebrafish. Here, we report that the balance between the reparative and regenerative processes is achieved through Smad3-dependent TGFβ signaling. The type I receptor alk5b (tgfbr1b) is expressed in both fibrotic and cardiac cells of the injured heart. TGFβ ligands are locally induced following cryoinjury and activate the signaling pathway both in the infarct area and in cardiomyocytes in the vicinity of the trauma zone. Inhibition of the relevant type I receptors with the specific chemical inhibitor SB431542 qualitatively altered the infarct tissue and completely abolished heart regeneration. We show that transient scar formation is an essential step to maintain robustness of the damaged ventricular wall prior to cardiomyocyte replacement. Taking advantage of the reversible action of the inhibitor, we dissected the multifunctional role of TGFβ signaling into three crucial processes: collagen-rich scar deposition, Tenascin C-associated tissue remodeling at the infarct-myocardium interface, and cardiomyocyte proliferation. Thus, TGFβ signaling orchestrates the beneficial interplay between scar-based repair and cardiomyocyte-based regeneration to achieve complete heart regeneration. 相似文献
8.
Alpine ecosystems are, similar to arctic ecosystems, characterized by a very long snow season. Previous studies investigating arctic or alpine ecosystems have shown that winter CO2 effluxes can dominate the annual balance and that the timing and duration of the snow cover plays a crucial role for plant growth and phenology and might also influence the growing season ecosystem CO2 strength and dynamics. The objective of this study was to analyze seasonal and annual CO2 balances of a grassland site at an elevation of 2440 m a.s.l in the Swiss central Alps. We continuously measured the NEP using the eddy covariance method from June 2013 to October 2014, covering two growing seasons and one winter. We analyzed the influence of snow melt date on the CO2 exchange dynamics at this site, because snow melt differed about 24 days between the 2 years. To this end, we employed a process-based ecosystem carbon cycling model to disentangle the co-occurring effects of growing season length, environmental conditions during the growing season, and physiological/structural properties of the canopy on the ecosystem carbon balance. During the measurement period, the site was a net sink for CO2 although winter efflux contributed significantly to the total balance. The cumulative growing season NEP as well as mean and maximum daily CO2 uptake rates was lower during the year with the later snow melt, and the results indicated that the differences were mainly due to differing growing season lengths. 相似文献
9.
Monique Michels Lucinéia Gainski Danieslki Andriele Vieira Drielly Florentino Dhébora Dall’Igna Letícia Galant Beatriz Sonai Francieli Vuolo Franciele Mina Bruna Pescador Diogo Dominguini Tatiana Barichello Jo?o Quevedo Felipe Dal-Pizzol Fabrícia Petronilho 《Molecular medicine (Cambridge, Mass.)》2015,21(1):219-226
Sepsis-associated encephalopathy (SAE) is associated with an increased rate of morbidity and mortality. It is not understood what the exact mechanism is for the brain dysfunction that occurs in septic patients, but brain inflammation and oxidative stress are a possible theory. Such events can occur through the alteration of molecules that perpetuate the inflammatory response. Thus, it is possible to postulate that CD40 may be involved in this process. The aim of this work is to evaluate the role of CD40–CD40L pathway activation in brain dysfunction associated with sepsis in an animal model. Microglia activation induces the upregulation of CD40–CD40L, both in vitro and in vivo. The inhibition of microglia activation decreases levels of CD40–CD40L in the brain and decreases brain inflammation, oxidative damage and blood brain barrier dysfunction. Despite this, anti-CD40 treatment does not improve mortality in this model. However, it is able to improve long-term cognitive impairment in sepsis survivors. In conclusion, there is a major involvement of the CD40–CD40L signaling pathway in long-term brain dysfunction in an animal model of sepsis. 相似文献
10.
Chang Kong Hao Xie Zhenxing Gao Ming Shao Huan Li Run Shi Lili Cai Shanshan Gao Taolei Sun Chaoyang Li 《中国病毒学》2019,34(5):475-488
A plethora of evidence suggests that protein misfolding and aggregation are underlying mechanisms of various neurodegenerative diseases, such as prion diseases and Alzheimer's disease(AD). Like prion diseases, AD has been considered as an infectious disease in the past decades as it shows strain specificity and transmission potential. Although it remains elusive how protein aggregation leads to AD, it is becoming clear that cellular prion protein(PrP~C ) plays an important role in AD pathogenesis. Here, we briefly reviewed AD pathogenesis and focused on recent progresses how PrP~C contributed to AD development. In addition, we proposed a potential mechanism to explain why infectious agents, such as viruses, conduce AD pathogenesis. Microbe infections cause Aβ deposition and upregulation of PrP~C , which lead to high affinity binding between Aβ oligomers and PrP~C . The interaction between PrP~C and Aβ oligomers in turn activates the Fyn signaling cascade, resulting in neuron death in the central nervous system(CNS). Thus, silencing PrP~C expression may turn out be an effective treatment for PrP~C dependent AD. 相似文献
11.
M. Castro-Caldas A. Neves Carvalho E. Rodrigues C. J. Henderson C. R. Wolf C. M. P. Rodrigues M. J. Gama 《Molecular neurobiology》2012,46(2):475-486
Mitochondrial dysfunction and oxidative stress are implicated in the neurodegenerative process in Parkinson??s disease (PD). Moreover, c-Jun N-terminal kinase (JNK) plays an important role in dopaminergic neuronal death in substantia nigra pars compacta. Tauroursodeoxycholic acid (TUDCA) acts as a mitochondrial stabilizer and anti-apoptotic agent in several models of neurodegenerative diseases. Here, we investigated the role of TUDCA in preventing 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurodegeneration in a mouse model of PD. We evaluated whether TUDCA modulates MPTP-induced degeneration of dopaminergic neurons in the nigrostriatal axis, and if that can be explained by regulation of JNK phosphorylation, reactive oxygen species (ROS) production, glutathione S-transferase (GST) catalytic activation, and Akt signaling, using C57BL/6 glutathione S-transferase pi (GSTP) null mice. TUDCA efficiently protected against MPTP-induced dopaminergic degeneration. We have previously demonstrated that exacerbated JNK activation in GSTP null mice resulted in increased susceptibility to MPTP neurotoxicity. Interestingly, pre-treatment with TUDCA prevented MPTP-induced JNK phosphorylation in mouse midbrain and striatum. Moreover, the anti-oxidative role of TUDCA was demonstrated in vivo by impairment of ROS production in the presence of MPTP. Finally, results herein suggest that the survival pathway activated by TUDCA involves Akt signaling, including downstream Bad phosphorylation and NF-??B activation. We conclude that TUDCA is neuroprotective in an in vivo model of PD, acting mainly by modulation of JNK activity and cellular redox thresholds, together with activation of the Akt pro-survival pathway. These results open new perspectives for the pharmacological use of TUDCA, as a modulator of neurodegeneration in PD. 相似文献
12.
The blood-epididymis barrier (BEB) is formed by epithelial tight junctions mediating selective permeability of the epididymal epithelium. Defective barrier function can disturb the balance of the epididymal milieu, which may result in infertility. The stroma of the epididymis contains high amounts of cytokines of the TGFβ family of unknown function. We screened possible effects of all three TGFβ isoforms on paracellular tightness in a BEB in vitro model based on the strongly polarized mouse epididymal epithelial MEPC5 cells in the transwell system. In this model we found a robust transepithelial electrical resistance (TER) of about 840 Ω x cm2. Effects on the paracellular permeability were evaluated by two methods, TER and FITC-Dextran-based tracer diffusion assays. Both assays add up to corresponding results indicating a time-dependent disturbance of the BEB differentially for the three TGFβ isoforms (TGFβ3>TGFβ1>TGFβ2) in a TGFβ-recetor-1 kinase- and Smad-dependent manner. The tight junction protein claudin-1 was found to be reduced by the treatment with TGFβs, whereas occludin was not influenced. Epididymal epithelial cells are predominantly responsive to TGFβs from the basolateral side, suggesting that TGFβ may have an impact on the epididymal epithelium from the stroma in vivo. Our data show for the first time that TGFβs decrease paracellular tightness in epididymal epithelial cells, thus establishing a novel mechanism of regulation of BEB permeability, which is elementary for sperm maturation and male fertility. 相似文献
13.
TGFβ signalling in the development of ovarian function 总被引:1,自引:0,他引:1
Drummond AE 《Cell and tissue research》2005,322(1):107-115
Ovarian development begins back in the embryo with the formation of primordial germ cells and their subsequent migration and colonisation of the genital ridges. Once the ovary has been defined structurally, the primordial germ cells transform into oocytes and become housed in structures called follicles (in this case, primordial follicles), a procedure that, in most mammals, occurs either shortly before or during the first few days after birth. The growth and differentiation of follicles from the primordial population is termed folliculogenesis. Primordial follicles give rise to primary follicles that transform into preantral follicles, then antral follicles (secondary follicles) and, finally (preovulatory) Graafian follicles (tertiary follicles) in a co-ordinated series of transitions regulated by hormones and local intraovarian factors. Members of the transforming growth factor-β (TGFβ) superfamily have been shown to play important roles in this developmental process starting with the specification of primordial germ cells by the bone morphogenetic proteins through to the recruitment of primordial follicles by anti-Mullerian hormone and, potentially, growth and differentiation factor-9 (GDF9) and, finally, their transformation into preantral and antral follicles in response to activin and TGF-β. Developmental and mutant mouse models have been used to show the importance of this family of growth factors in establishing the first wave of folliculogenesis.The author thanks the NHMRC of Australia for funding (Regkey 241000). 相似文献
14.
15.
16.
Robert van der Burgh Kalliopi Pervolaraki Marjolein Turkenburg Hans R. Waterham Joost Frenkel Marianne Boes 《The Journal of biological chemistry》2014,289(40):27757-27765
Protein prenylation is a post-translational modification whereby non-sterol isoprenoid lipid chains are added, thereby modifying the molecular partners with which proteins interact. The autoinflammatory disease mevalonate kinase deficiency (MKD) is characterized by a severe reduction in protein prenylation. A major class of proteins that are affected are small GTPases, including Rac1 and RhoA. It is not clear how protein prenylation of small GTPases relates to GTP hydrolysis activity and downstream signaling. Here, we investigated the contribution of RhoA prenylation to the biochemical pathways that underlie MKD-associated IL-1β hypersecretion using human cell cultures, Rac1 and RhoA protein variants, and pharmacological inhibitors. We found that when unprenylated, the GTP-bound levels of RhoA decrease, causing a reduction in GTPase activity and increased protein kinase B (PKB) phosphorylation. Cells expressing unprenylated RhoA produce increased levels of interleukin 1β mRNA. Of other phenotypic cellular changes seen in MKD, increased mitochondrial potential and mitochondrial elongation, only mitochondrial elongation was observed. Finally, we show that pharmacological inactivation of RhoA boosts Rac1 activity, a small GTPase whose activity was earlier implied in MKD pathogenesis. Together, our data show that RhoA plays a pivotal role in MKD pathogenesis through Rac1/PKB signaling toward interleukin 1β production and elucidate the effects of protein prenylation in monocytes. 相似文献
17.
Neurochemical Research - Potentially druggable mechanisms underlying synaptic deficits seen in Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are under intense interrogations. In... 相似文献
18.
19.
Neurophysiology - Signaling pathways of neurons depend on such factors as the type and “strength” of the synapse, cable properties, distribution of ion channels, and biophysical... 相似文献