首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Key message

E10 is a new maturity locus in soybean and FT4 is the predicted/potential functional gene underlying the locus.

Abstract

Flowering and maturity time traits play crucial roles in economic soybean production. Early maturity is critical for north and west expansion of soybean in Canada. To date, 11 genes/loci have been identified which control time to flowering and maturity; however, the molecular bases of almost half of them are not yet clear. We have identified a new maturity locus called “E10” located at the end of chromosome Gm08. The gene symbol E10e10 has been approved by the Soybean Genetics Committee. The e10e10 genotype results in 5–10 days earlier maturity than E10E10. A set of presumed E10E10 and e10e10 genotypes was used to identify contrasting SSR and SNP haplotypes. These haplotypes, and their association with maturity, were maintained through five backcross generations. A functional genomics approach using a predicted protein–protein interaction (PPI) approach (Protein–protein Interaction Prediction Engine, PIPE) was used to investigate approximately 75 genes located in the genomic region that SSR and SNP analyses identified as the location of the E10 locus. The PPI analysis identified FT4 as the most likely candidate gene underlying the E10 locus. Sequence analysis of the two FT4 alleles identified three SNPs, in the 5′UTR, 3′UTR and fourth exon in the coding region, which result in differential mRNA structures. Allele-specific markers were developed for this locus and are available for soybean breeders to efficiently develop earlier maturing cultivars using molecular marker assisted breeding.
  相似文献   

3.

Key message

Allotetraploidization drives Glu-1Ay silencing in polyploid wheat.

Abstract

The high-molecular-weight glutenin subunit gene, Glu-1Ay, is always silenced in common wheat via elusive mechanisms. To investigate its silencing and heredity during wheat polyploidization and domestication, the Glu-1Ay gene was characterized in 1246 accessions containing diploid and polyploid wheat worldwide. Eight expressed Glu-1Ay alleles (in 71.81% accessions) and five silenced alleles with a premature termination codon (PTC) were identified in Triticum urartu; 4 expressed alleles (in 41.21% accessions), 13 alleles with PTCs and 1 allele with a WIS 2-1A retrotransposon were present in wild tetraploid wheat; and only silenced alleles with PTC or WIS 2-1A were in cultivated tetra- and hexaploid wheat. Both the PTC number and position in T. urartu Glu-1Ay alleles (one in the N-terminal region) differed from its progeny wild tetraploid wheat (1–5 PTCs mainly in the repetitive domain). The WIS 2-1A insertion occurred?~?0.13 million years ago in wild tetraploid wheat, much later than the allotetraploidization event. The Glu-1Ay alleles with PTCs or WIS 2-1A that arose in wild tetraploid wheat were fully succeeded to cultivated tetraploid and hexaploid wheat. In addition, the Glu-1Ay gene in wild einkorn inherited to cultivated einkorn. Our data demonstrated that the silencing of Glu-1Ay in tetraploid and hexaploid wheat was attributed to the new PTCs and WIS 2-1A insertion in wild tetraploid wheat, and most silenced alleles were delivered to the cultivated tetraploid and hexaploid wheat, providing a clear evolutionary history of the Glu-1Ay gene in the wheat polyploidization and domestication processes.
  相似文献   

4.
Pollination-constant non-astringent (PCNA) trait is desirable in persimmon production because it confers natural astringency loss in mature persimmon fruit. Expression of the PCNA trait requires six homozygous recessive PCNA (ast) alleles at the single ASTRINGENCY (AST) locus in hexaploid persimmon. When crossing non-PCNA accessions to breed PCNA offspring, knowledge of ast and non-PCNA (AST) allele dosage in the parental accessions is important, because more PCNA offspring can segregate from a non-PCNA parent with more ast and fewer AST alleles. Previously, we have demonstrated that a region linked to the AST locus has numerous fragment size polymorphisms with varying numbers of simple sequence repeats. Here, we reveal the polymorphisms in this region in a broad collection of persimmon germplasms. Among 237 accessions, we distinguished 21 AST- and 5 ast-linked fragments with different sizes. Based on the number of fragments detected per individual, we identified 21 non-PCNA accessions with three different ast alleles; by crossing these with a PCNA parent, we obtain PCNA offspring under autohexaploid inheritance. Furthermore, AST and ast allelic combination patterns in hexaploid persimmon were shown to be applicable to cultivar identification of non-PCNA accessions. We directly sequenced ast-linked fragments from 48 accessions with one-size peak of ast-linked fragment and found two distinctive groups of fragments based on single nucleotide polymorphisms. This result suggests that a bottleneck event occurred during ast allele development. We conclude that our fragment size profile can be used to accelerate PCNA breeding that uses non-PCNA parents and to study ast allele accumulation in persimmon.  相似文献   

5.
Adenosine monophosphate-activated protein kinase (AMPK), an important energy sensor, is crucial for organism survival under adverse conditions. In this study, the roles of this gene under cold stress in a warm-water mud crab, Scylla paramamosain was investigated. The full-length cDNA (SpAMPK) was 1884 bp and its open reading frame of 1566 bp was isolated and characterized. The expressions of SpAMPK detected by quantitative real-time PCR (qRT-PCR) in various tissues revealed that the highest expression was in the hepatopancreas. The profiles of SpAMPK gene in the hepatopancreas, chela muscle and gill were detected when the subadult crabs were exposed to the four temperature conditions of 10, 15, 20 and 25°C. The results showed that the expression patterns of SpAMPK mRNA in the three tissues were significantly higher when crabs were exposed to 15°C than the other three temperature treatments, while at 10°C treatment, the SpAMPK mRNA was lowest among the four temperature treatments. These findings suggested that the high expression of SpAMPK mRNA might initiate ATP-producing pathways to generate energy to cope with cold stress at 15°C treatment, which was slightly below the range of optimum temperatures; while treatment at 10°C, far lower than optima, the low expression of SpAMPK mRNA could reduce the energy expenditure and thus induce the crabs into cold anesthesia. The results of SpAMPK in this study might contribute to the understanding of the molecular mechanism of acclimation to cold hardiness in S. paramamosain.  相似文献   

6.
The allele and genotype distribution of two alcohol dehydrogenase genes ADH1B (exon 3 polymorphism A/G (47His)), ADH7 (intron 5 polymorphism G/C) and cytochrome P450 2E1 gene (CYP2E1; 5′-flanking region G/C and intron 6 T/A polymorphisms) were examined in Russian (Tomsk, n = 125) healthy population and in coronary atherosclerosis patients (CA, n = 92). The genotype frequencies followed the Hardy-Weinberg equilibrium and the alleles were in linkage equilibrium or gametic equilibrium in the control sample. Only two CYP2E1 gene polymorphisms were in linkage disequilibrium. The frequencies of the derived alleles at ADH1B * G (+MslI) allele, CYP2E1 * C2 (+PstI) allele and CYP2E1 * C (-DraI) allele were 8.48 ± 1.86, 1.20 ± 0.69, and 10.00 ± 1.90%, respectively. The ADH7 gene polymorphism showed a high level of heterozygosity; the frequency of the ADH7 * C (-StyI) allele was 44.58 ± 3.21%. A significantly higher frequency of CYP2E1 PstI C2 allele has been revealed in the CA group (P = 0.043; OR = 4.23; 95% CI 1.03–20.01). The tendency to significant effect of A1A2 genotype in ADH1B MslI polymorphism was observed for systolic blood pressure in the control group (P = 0.068). The statistically significant two-way interaction effects of ADH7 StyI and CYP2E1 DraI on diastolic blood pressure (P = 0.029) and on the serum high density lipoprotein level (P = 0.042) were also revealed. Association of A1A2 genotype in ADH1B MslI polymorphism with reduced amount in a serum of a very low density lipoprotein level (P = 0.045) have also been shown. This may result from multifunctional activity of alcohol metabolizing enzymes and their involvement in many metabolic and free radical reactions in the body.  相似文献   

7.
As observed in other self-incompatible species in the Pyrinae subtribe, loquat (Eriobotrya japonica) demonstrates gametophytic self-incompatibility that is controlled by the S-locus, which encodes a polymorphic stylar ribonuclease (S-RNase). This allows the female reproductive organ (style) to recognize and reject the pollen from individuals with the same S-alleles, but allows the pollen from individuals with different S-alleles to effect fertilization. The S-genotype is therefore an important consideration in breeding strategies and orchard management. In an attempt to optimize the selection of parental lines in loquat production, the S-RNase alleles of 35 loquat cultivars and their 26 progeny, as well as five wild loquat species, were identified and characterized in this study. The best pollinizer cultivar combinations were also explored. A total of 28 S-alleles were detected, 21 of which constituted novel S-RNase alleles. The S-haplotypes S2 and S6 were the most frequent, followed by S 29 , S 31 , S 5 , S 24 , S 28 , S 33 , S 34 , S 32 , and S 15 , while the rare alleles S 1 , S 9 , S 14 , S 16 , S 17 , S 18 , S 19 , S 20 , S 21 , S 22 , S 23 , S 27 , and S 35 were only observed in one of the accessions tested. Moreover, the S-genotypes of five wild loquat species (E. prinoides, E. bengalensis, E. prinoides var. dadunensis, E. deflexa, and E. japonica) are reported here for the first time. The results will not only facilitate the selection of suitable pollinators for optimal orchard management, but could also encourage the crossbreeding of wild loquat species to enhance the genetic diversity of loquat cultivars.  相似文献   

8.

Key message

Two distinct patterns of sequence diversity for the recessive alleles of two host factors HvPDIL5 - 1 and HvEIF4E indicated the adaptive selection for bymovirus resistance in cultivated barley from East Asia.

Abstract

Plant pathogens are constantly challenging plant fitness and driving resistance gene evolution in host species. Little is known about the evolution of sequence diversity in host recessive resistance genes that interact with plant viruses. Here, by combining previously published and newly generated targeted re-sequencing information, we systematically analyzed natural variation in a broad collection of wild (Hordeum spontaneum; Hs) and domesticated barleys (Hordeum vulgare; Hv) using the full-length coding sequence of the two host factor genes, HvPDIL5-1 and HvEIF4E, conferring recessive resistance to the agriculturally important Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV). Interestingly, two types of gene evolution conferred by sequence variation in domesticated barley, but not in wild barley were observed. Whereas resistance-conferring alleles of HvEIF4E exclusively contained non-synonymous amino acid substitutions (including in-frame sequence deletions and insertions), loss-of-function alleles were predominantly responsible for the HvPDIL5-1 conferred bymovirus resistance. A strong correlation between the geographic origin and the frequency of barley accessions carrying resistance-conferring alleles was evident for each of the two host factor genes, indicating adaptive selection for bymovirus resistance in cultivated barley from East Asia.
  相似文献   

9.
Group A saponins are thought to be the cause of bitter and astringent tastes in processed foods of soybean (Glycine max), and the elimination of group A saponins is an important breeding objective. The group A saponins include two main Aa and Ab types, controlled by codominant alleles at the Sg-1 locus that is one of several key loci responsible for saponin biosynthesis in the subgenus Glycine soja. However, A0 mutant lacking group A saponin is a useful gene resource for soybean quality breeding. Here, eight Chinese wild soybean A0 accessions were sequenced to reveal the mutational mechanisms, and the results showed that these mutants were caused by at least three kinds of mechanisms involving four allelic variants (sg-10-b2, sg-10-b3, Sg-1b-0, and Sg-1b-01). The sg-10-b2 had two nucleotide deletions at positions +?72 and +?73 involving in the 24th and 25th amino acids. The sg-10-b3 contained a stop codon (TGA) at the 254th residue. The Sg-1b-0 and Sg-1b-01 were two novel A0-type mutants, which likely carried normal structural alleles, and nevertheless did not encode group A saponin due to unknown mutations beyond the normal coding regions. In addition, to reveal the structural features, allelic polymorphism, and mechanisms of the abiogenetic absence of group A (i.e., A0 phenotype), nucleotide sequence analysis was performed for the Sg-1 locus in wild soybean (Glycine soja). The results showed that Sg-1 alleles had a lower conservatism in the coding region; as high as 18 sequences were found in Chinese wild soybeans in addition to the Sg-1a (Aa) and Sg-1b (Ab) alleles. Sg-1a and Sg-1b alleles were characterized by eight synonymous codons and nine amino acid substitutions. Two evolutionarily transitional allelic sequences (Sg-1a7 and Sg-1b2) from Sg-1a toward Sg-1b were detected.  相似文献   

10.
Gibberellin-sensitive dwarfing gene Rht18 was mapped in two durum wheat recombinant inbred lines (RIL) populations developed from crosses, Bijaga Yellow/Icaro and HI 8498/Icaro. Rht18 was mapped within genetic interval of 1.8 cM on chromosome 6A. Simple sequence repeat (SSR) markers S470865SSR4, barc37 and TdGA2ox-A9 specific marker showed co-segregation with Rht18 in Bijaga Yellow/Icaro population consisting 256 RILs. Effect of Rht18 on plant height was validated in HI 8498/Icaro RIL population which segregated for Rht18 and Rht-B1b. Rht-B1b from HI 8498 showed pleiotropic effect on plant height and coleoptile length, on the other hand, Rht18 did not show effect on coleoptile length. The SSR and SNP markers linked to Rht18 were also validated by assessing their allelic frequency in 89 diverse durum and bread wheat accessions. It was observed that 204 bp allele of S470865SSR4 could differentiate Icaro from rest of the wheat accessions except HI 8498, suggesting its utility for selection of Rht18 in wheat improvement programs. Rht18 associated alleles of TdGA2ox-A9, IAW4371 and IAW7940 were absent in most of the tall Indian local durum wheat and bread wheat, hence could be used to transfer Rht18 to bread wheat and local durum wheat. SSR marker barc3 showed high recombination frequency with Rht18, though it showed allele unique to Icaro. Since semidwarf wheat with GA-sensitive dwarfing genes are useful in dry environments owing to their longer coleoptile, better emergence and seedling vigor, Rht18 may provide a useful alternative to widely used GA-insensitive dwarfing genes under dry environments.  相似文献   

11.
Osmoregulation is an important mechanism by which euryhaline crustaceans regulate osmotic and ionic concentrations. The Chinese mitten crab (Eriocheir sinensis) is a strong osmoregulating animal model among crustacean species, as it can maintain its hemolymph composition and survives well in either seawater or freshwater. Osmoregulation by E. sinensis during physiological adaptation has been studied extensively. However, the genetic basis of osmoregulation in E. sinensis for acclimating to changing salinities remains unclear. The current study investigated five genes involved in E. sinensis osmoregulation and compared them with a representative marine crab Portunus trituberculatus to test whether adaptive evolution has occurred changing salinity conditions. The results showed that carbonic anhydrase (CA), cytochrome P450 4C (CYP4C), glutamate dehydrogenase (GDH), and the Na+/H+ exchanger (NHE) have undergone positive selection (i.e., directional selection) in E. sinensis. Thus, the positive selection in CA and NHE suggests that E. sinensis has enhanced capacity for maintaining systemic acid-base balance and ion regulation. GDH and CYP4C also demonstrated positive selection in E. sinensis, suggesting that E. sinensis might have acquired an enhanced capacity to metabolize glutamate and synthesize ecdysteroids in response to a change in osmotic concentration. The present study provides new insight into the molecular genetic basis of salinity adaption in E. sinensis.  相似文献   

12.
13.
Genetic analysis of a diverse set of 42 traits for flower (5), phenology (9), fruit quality (19), leaf (8) and disease resistance (1) was carried out in two interspecific almond × peach populations, an F2 (T × E) and a BC1 (T1E), from the cross between ‘Texas’ almond and ‘Earlygold’ peach. Traits related to flower, phenology, fruit quality, leaf morphology and resistance to powdery mildew were phenotyped over 3 years in two locations and studied for co-segregation with a large set of SNP and SSR markers. Three maps were used, one for the T × E and two for the T1E (T1E and E) population. Nine major genes were identified and mapped: anther color (Ag/ag and Ag2/ag2), flower color (Fc2/fc2), maturity date (MD/md), almond fruit type (almond vs. peach; Alf/alf), juiciness (Jui/jui), blood flesh (DBF2/dbf2), powdery mildew resistance (Vr3) and flower type (showy/non-showy; Sh/sh). These genes were often located in genome positions different from those for major genes for similar traits mapped before. Two of them explain fundamental aspects that define the fruit of peach with respect to that of almond: Alf and Jui, for its thick and juicy mesocarp, respectively. The genetics of quantitative traits was studied, and 32 QTLs were detected, with consistent behavior over the years. New alleles identified from almond for important traits such as red skin color, blood flesh, fruit weight and powdery mildew resistance may prove useful for the introduction of new variability into the peach gene pool used in commercial breeding programs.  相似文献   

14.
The distribution of genotypes and alleles of ACE (I/D polymorphism), ACTN3 (R577X), NOS3 (5/4), UCP2 (Ala55Val), and UCP3 (-55C/T) genes, as well as the correlation between the genotype and physiological parameters, was studied in rowers (n = 230) and in a control group (n = 855). The genotypes were determined by analyzing restriction fragment length polymorphism. Physiological parameters were determined with a PM 3 rowing ergometer and a MetaMax 3B gas analyzer. The frequency of the ACE II genotype was significantly higher in elite rowers (n = 107) than in the control subjects. The frequency of the ACTN3 XX genotype, unfavorable for development of speed and strength qualities, was twofold lower in all rowers than in the control subjects. The frequencies of the ACE I, ACTN3 R, UCP2 Val, and UCP3 T alleles increased in the athletes along with an increase in skill, which suggested natural sports selection. In addition, ACE I, NOS3 5, UCP2 Val, and UCP3 T alleles correlated with a high aerobic performance. Thus, the ACE I, NOS3 5, UCP2 Val, and UCP3 T alleles may be regarded as genetic markers associated with enhanced aerobic performance and may be included in a diagnostic system for prognosis of human physical performance.  相似文献   

15.
Cuticular wax on the aerial surface of plants has a protective function against many environmental stresses. The bluish–whitish appearance of wheat leaves and stems is called glaucousness. Most modern cultivars of polyploid wheat species exhibit the glaucous phenotype, while in a wild wheat progenitor, Ae. tauschii, both glaucous and non-glaucous accessions exist. Iw2, a wax inhibitor locus on the short arm of chromosome 2D, is the main contributor to this phenotypic variation in Ae. tauschii, and the glaucous/non-glaucous phenotype of Ae. tauschii is usually inherited by synthetic hexaploid wheat. However, a few synthetic lines show the glaucous phenotype although the parental Ae. tauschii accessions are non-glaucous. Molecular marker genotypes indicate that the exceptional non-glaucous Ae. tauschii accessions share the same genotype in the Iw2 chromosomal region as glaucous accessions, suggesting that these accessions have a different causal locus for their phenotype. This locus was assigned to the long arm of chromosome 3D using an F2 mapping population and designated W4, a novel glaucous locus in Ae. tauschii. The dominant W4 allele confers glaucousness, consistent with phenotypic observation of Ae. tauschii accessions and the derived synthetic lines. These results implied that glaucous accessions of Ae. tauschii with the W2W2iw2iw2W4W4 genotype could have been the D-genome donor of common wheat.  相似文献   

16.
Analysis of abnormal phenotypes produced by different types of mutations has been crucial for our understanding of gene function. Some floxed alleles that retain a neomycin-resistance selection cassette (neo cassette) are not equivalent to wild-type alleles and provide useful experimental resources. Pax6 is an important developmental gene and the aim of this study was to determine whether the floxed Pax6 tm1Ued (Pax6 fl ) allele, which has a retained neo cassette, produced any abnormal eye phenotypes that would imply that it differs from the wild-type allele. Homozygous Pax6 fl/fl and heterozygous Pax6 fl/+ mice had no overt qualitative eye abnormalities but morphometric analysis showed that Pax6 fl/fl corneas tended be thicker and smaller in diameter. To aid identification of weak effects, we produced compound heterozygotes with the Pax6 Sey-Neu (Pax6 ?) null allele. Pax6 fl/? compound heterozygotes had more severe eye abnormalities than Pax6 +/? heterozygotes, implying that Pax6 fl differs from the wild-type Pax6 + allele. Immunohistochemistry showed that the Pax6 fl/? corneal epithelium was positive for keratin 19 and negative for keratin 12, indicating that it was abnormally differentiated. This Pax6 fl allele provides a useful addition to the existing Pax6 allelic series and this study demonstrates the utility of using compound heterozygotes with null alleles to unmask cryptic effects of floxed alleles.  相似文献   

17.
The granule-bound starch synthase (GBSS) is the enzyme responsible for amylose synthesis in starch granules. Loss of GBSS activity results in starch granules containing mostly amylopectin and little or no amylose, a phenotype described as waxy. Previously, two phenotypic classes of waxy alleles were identified in sorghum (Sorghum bicolor L. Moench) characterized by the absence (waxy a ; wx a ) or presence (waxy b ; wx b ) of the GBSS protein in the endosperm. To characterize these alleles, we examined endosperm architecture using scanning electron microscopy (SEM), assayed GBSS enzymatic activities, and identified DNA lesions associated with the mutations in the GBSS (Sb10g002140) gene. wx a , the allele present in B Tx630 and R Tx2907, contained a large insertion in the third exon, which was consistent with the absence of the GBSS protein previously observed. wx b , the allele present in B 9307 and B TxARG1, contained a missense mutation that resulted in conversion of glutamine 268 to histidine in a conserved domain in starch synthases. In wx b , GBSS activity was less than 25% that of the non-waxy line B Wheatland, and GBSS activity was not detected in wx a . SEM showed that endosperm architecture was very similar in both wx a and wx b alleles, but altered in comparison to non-waxy lines R Tx430 and B Wheatland. Both alleles may have a range of potential applications in grain sorghum because of low amylose content in their starch and the presence or absence of the GBSS protein. PCR based markers were developed for both the wx a and the wx b alleles to aid in molecular breeding of low amylose sorghum.  相似文献   

18.
Genetic similarity and relatedness within the set of pear genotypes including autochthonous Circassian cultivars from North Caucasus, European cultivars, accessions of Pyrus caucasica Fed., and modern Russian cultivars were estimated on the basis of analysis of SSR loci. The level of polymorphism for the studied loci varied from 11 to 15 alleles per locus in the set of 29 samples of pears. A higher level of allelic polymorphism of SSR loci was revealed for a set of P. caucasica samples in comparison with modern cultivated cultivars: from 9 to 12 alleles for P. caucasica and from 6 to 8 alleles for modern cultivars. Specific alleles for the mentioned groups of pears were identified. UPGMA clustering revealed two distinct groups: one includes P. caucasica accessions and autochthonous Caucasian cultivars and the other group includes all cultivated European and Russian pear cultivar. The results support the hypothesis of an isolated gene pool formation of autochthonous pear cultivars of the North Caucasus and their probable origin from the wild P. caucasica.  相似文献   

19.

Background and aims

Low nitrogen negatively affects soil fertility and plant productivity. Glucose-6-phosphate dehydrogenase (G6PDH) and Epichloë gansuensis endophytes are two factors that are associated with tolerance of Achnatherum inebrians to abiotic stress. However, the possibility that E. gansuensis interacts with G6PDH in enhancing low nitrogen tolerance of host grasses has not been examined.

Methods

A. inebrians plants with (E+) and without E. gansuensis (E?) were subjected to different nitrogen concentration treatments (0.1, 1, and 7.5 mM). After 90 days, physiological studies were carried out to investigate the participation of G6PDH in the adaption of host plants to low nitrogen availability.

Results

Low nitrogen retarded the growth of A. inebrians. E+ plants had higher total dry weight, chlorophyll a and b contents, net photosynthesis rate, G6PDH activity, and GSH content, while having lower plasma membrane (PM) NADPH oxidase activity, NADPH/NADP+ ratios, and MDA and H2O2 than in E? A. inebrians plants under low nitrogen concentration.

Conclusions

The presence of E. gansuensis played a key role in maintaining the growth of the A. inebrians plants under low nitrogen concentration by regulating G6PDH activity and the NADPH/NADP+ ratio and improving net photosynthesis rate.
  相似文献   

20.
The Cf-9 gene in the tomato is known to confer resistance against leaf mold disease caused by Cladosporium fulvum, and a gene-based marker targeted to the Cf-9 allele has been widely used as a crop protection approach. However, we found this marker to be misleading in genotyping. Therefore, we developed new single-nucleotide polymorphism (SNP) and insertion and deletion (InDel) markers targeted to the Cf-9 allele in order to increase genotyping accuracy and facilitate high-throughput screening. The DNA sequences of reported Cf-9, cf-9, Cf-0, and closely related Cf-4 alleles were compared, and two functional and non-synonymous SNPs were found to distinguish the Cf-9 resistance allele from the cf-9, Cf-0, and Cf-4 alleles. An SNP marker including these two SNPs was developed and applied to the genotyping of 33 tomato cultivars by high-resolution melting analysis. Our SNP marker was able to select all three Cf-9 genotypes (resistant, heterozygous, and susceptible alleles). Interestingly, two cultivars were grouped separately from these three genotypes. To further examine this outgroup, we preformed polymerase chain reaction (PCR) on two InDel regions identified by sequence comparison of the Cf-9 and Cf-4 genes. The band patterns revealed that these two cultivars carried Cf-4 rather than Cf-9 alleles and that three cultivars classified in the Cf-9 resistance group actually carried both Cf-9 and Cf-4 genes. To determine whether these genotyping results were consistent with disease resistance phenotypes, we examined the induction of a hypersensitive response by transiently expressing the corresponding effector genes, and found that the results matched perfectly with the genotyping results. These findings indicate that the combination of our SNP and InDel markers allows resistant Cf-9 alleles to be distinguished from cf-9 and Cf-4 alleles, which will be useful for marker-assisted selection of tomato cultivars resistant to C. fulvum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号