首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In all mammals, tissue inflammation leads to pain and behavioral sensitization to thermal and mechanical stimuli called hyperalgesia. We studied pain mechanisms in the African naked mole-rat, an unusual rodent species that lacks pain-related neuropeptides (e.g., substance P) in cutaneous sensory fibers. Naked mole-rats show a unique and remarkable lack of pain-related behaviors to two potent algogens, acid and capsaicin. Furthermore, when exposed to inflammatory insults or known mediators, naked mole-rats do not display thermal hyperalgesia. In contrast, naked mole-rats do display nocifensive behaviors in the formalin test and show mechanical hyperalgesia after inflammation. Using electrophysiology, we showed that primary afferent nociceptors in naked mole-rats are insensitive to acid stimuli, consistent with the animal's lack of acid-induced behavior. Acid transduction by sensory neurons is observed in birds, amphibians, and fish, which suggests that this tranduction mechanism has been selectively disabled in the naked mole-rat in the course of its evolution. In contrast, nociceptors do respond vigorously to capsaicin, and we also show that sensory neurons express a transient receptor potential vanilloid channel-1 ion channel that is capsaicin sensitive. Nevertheless, the activation of capsaicin-sensitive sensory neurons in naked mole-rats does not produce pain-related behavior. We show that capsaicin-sensitive nociceptors in the naked mole-rat are functionally connected to superficial dorsal horn neurons as in mice. However, the same nociceptors are also functionally connected to deep dorsal horn neurons, a connectivity that is rare in mice. The pain biology of the naked mole-rat is unique among mammals, thus the study of pain mechanisms in this unusual species can provide major insights into what constitutes “normal” mammalian nociception.  相似文献   

2.
In all mammals, tissue inflammation leads to pain and behavioral sensitization to thermal and mechanical stimuli called hyperalgesia. We studied pain mechanisms in the African naked mole-rat, an unusual rodent species that lacks pain-related neuropeptides (e.g., substance P) in cutaneous sensory fibers. Naked mole-rats show a unique and remarkable lack of pain-related behaviors to two potent algogens, acid and capsaicin. Furthermore, when exposed to inflammatory insults or known mediators, naked mole-rats do not display thermal hyperalgesia. In contrast, naked mole-rats do display nocifensive behaviors in the formalin test and show mechanical hyperalgesia after inflammation. Using electrophysiology, we showed that primary afferent nociceptors in naked mole-rats are insensitive to acid stimuli, consistent with the animal's lack of acid-induced behavior. Acid transduction by sensory neurons is observed in birds, amphibians, and fish, which suggests that this tranduction mechanism has been selectively disabled in the naked mole-rat in the course of its evolution. In contrast, nociceptors do respond vigorously to capsaicin, and we also show that sensory neurons express a transient receptor potential vanilloid channel-1 ion channel that is capsaicin sensitive. Nevertheless, the activation of capsaicin-sensitive sensory neurons in naked mole-rats does not produce pain-related behavior. We show that capsaicin-sensitive nociceptors in the naked mole-rat are functionally connected to superficial dorsal horn neurons as in mice. However, the same nociceptors are also functionally connected to deep dorsal horn neurons, a connectivity that is rare in mice. The pain biology of the naked mole-rat is unique among mammals, thus the study of pain mechanisms in this unusual species can provide major insights into what constitutes “normal” mammalian nociception.  相似文献   

3.

Background

TRPA1 has been implicated in both chemo- and mechanosensation. Recent work demonstrates that inhibiting TRPA1 function reduces mechanical hypersensitivity produced by inflammation. Furthermore, a broad range of chemical irritants require functional TRPA1 to exert their effects. In this study we use the ex-vivo skin-nerve preparation to directly determine the contribution of TRPA1 to mechanical- and chemical-evoked responses at the level of the primary afferent terminal.

Results

Acute application of HC-030031, a selective TRPA1 antagonist, inhibited all formalin responses in rat C fibers but had no effect on TRPV1 function, assessed by capsaicin responsiveness. Genetic ablation experiments corroborated the pharmacological findings as C fibers from wild type mice responded to both formalin and capsaicin, but fibers from their TRPA1-deficient littermates responded only to capsaicin. HC-030031 markedly reduced the mechanically-evoked action potential firing in rat and wild type mouse C fibers, particularly at high-intensity forces, but had no effect on the mechanical responsiveness of Aδ fiber nociceptors. Furthermore, HC-030031 had no effect on mechanically-evoked firing in C fibers from TRPA1-deficient mice, indicating that HC-030031 inhibits mechanically-evoked firing via a TRPA1-dependent mechanism.

Conclusion

Our data show that acute pharmacological blockade of TRPA1 at the cutaneous receptive field inhibits formalin-evoked activation and markedly reduces mechanically-evoked action potential firing in C fibers. Thus, functional TRPA1 at sensory afferent terminals in skin is required for their responsiveness to both noxious chemical and mechanical stimuli.  相似文献   

4.
Manipulation of culture strategies was adopted to study the influence of nutrient stress, pH stress and precursor feeding on the biosynthesis of capsaicin in suspension and immobilized cell cultures of C. chinense. Cells cultured in the absence of one of the four nutrients (ammonium and potassium nitrate for nitrate and potassium stress, potassium dihydrogen orthophosphate for phosphorus stress, and sucrose for sugar stress) influenced the accumulation of capsaicin. Among the stress factors studied, nitrate stress showed maximal capsaicin production on day 20 (505.9 ± 2.8 μg g?1 f.wt) in immobilized cell, whereas in suspension cultures the maximum accumulation (345.5 ± 2.9 μg g?1 f.wt) was obtained on day 10. Different pH affected capsaicin accumulation; enhanced accumulation of capsaicin (261.6 ± 3.4 μg g?1 f.wt) was observed in suspension cultures at pH 6 on day 15, whereas in case of immobilized cultures the highest capsaicin content (433.3 ± 3.3 μg g?1 f.wt) was obtained at pH 5 on day 10. Addition of capsaicin precursors and intermediates significantly enhanced the biosynthesis of capsaicin, incorporation of vanillin at 100 μM in both suspension and immobilized cell cultures resulted in maximum capsaicin content with 499.1 ± 5.5 μg g?1 f.wt on day 20 and 1,315.3 ± 10 μg g?1 f.wt on day 10, respectively. Among the different culture strategies adopted to enhance capsaicin biosynthesis in cell cultures of C. chinense, cells fed with vanillin resulted in the maximum capsaicin accumulation. The rate of capsaicin production was significantly higher in immobilized cells as compared to freely suspended cells.  相似文献   

5.
Pharmacological therapies in type 1 diabetes for efficient control of glycemia and changes in pain alterations due to diabetic neuropathy are a continuous challenge. Transient receptor potential vanilloid type 1 (TRPV1) from dorsal root ganglia (DRG) neurons is one of the main pharmacological targets in diabetes, and its ligand capsaicin can be a promising compound for blood-glucose control. Our goal is to elucidate the effect of intraperitoneal (i.p.) capsaicin administration in type 1 diabetic mice against TRPV1 receptors from pancreatic DRG primary afferent neurons. A TCR+/?/Ins-HA+/? diabetic mice (dTg) was used, and patch-clamp and immunofluorescence microscopy measurements have been performed on thoracic T9–T12 DRG neurons. Capsaicin (800 μg/kg, i.p. three successive days) administration in the late-phase diabetes reduces blood-glucose levels, partly reverses the TRPV1 current density and recovery time constant, without any effect on TRPV1 expression general pattern, in dTg mice. A TRPV1 hypoalgesia profile was observed in late-phase diabetes, which was partly reversed to normoalgesic profile upon capsaicin i.p. administration. According to the soma dimensions of the thoracic DRG neurons, a detailed analysis of the TRPV1 expression upon capsaicin i.p. treatment was done, and the proportion of large A-fiber neurons expressing TRPV1 increased in dTg capsaicin-treated mice. In conclusion, the benefits of low-dose capsaicin intraperitoneal treatment in late-phase type-1 diabetes should be further exploited.  相似文献   

6.
Endothelin-1 (ET-1) and bradykinin (BK) are endogenous peptides that signal through Gαq/11-protein coupled receptors (GPCRs) to produce nociceptor sensitization and pain. Both peptides activate phospholipase C to stimulate Ca2+ accumulation, diacylglycerol production, and protein kinase C activation and are rapidly desensitized via a G-protein receptor kinase 2-dependent mechanism. However, ET-1 produces a greater response and longer lasting nocifensive behavior than BK in multiple models, indicating a potentially divergent signaling mechanism in primary afferent sensory neurons. Using cultured sensory neurons, we demonstrate significant differences in both Ca2+ influx and Ca2+ release from intracellular stores following ET-1 and BK treatments. As intracellular store depletion may contribute to the regulation of other signaling cascades downstream of GPCRs, we concentrated our investigation on store-operated Ca2+ channels. Using pharmacological approaches, we identified transient receptor potential canonical channel 3 (TRPC3) as a dominant contributor to Ca2+ influx subsequent to ET-1 treatment. On the other hand, BK treatment stimulated Orai1 activation, with only minor input from TRPC3. Taken together, data presented here suggest that ET-1 signaling targets TRPC3, generating a prolonged Ca2+ signal that perpetuates nocifensive responses. In contrast, Orai1 dominates as the downstream target of BK receptor activation and results in transient intracellular Ca2+ increases and abridged nocifensive responses.  相似文献   

7.

Resiniferatoxin (RTX) is a metabolite extracted from Euphorbia resinifera. RTX is a potent capsaicin analog with specific biological activities resulting from its agonist activity with the transient receptor potential channel vanilloid subfamily member 1 (TRPV1). RTX has been examined as a pain reliever, and more recently, investigated for its ability to desensitize cardiac sensory fibers expressing TRPV1 to improve chronic heart failure (CHF) outcomes using validated animal models. Caenorhabditis elegans (C. elegans) expresses orthologs of vanilloid receptors activated by capsaicin, producing antinociceptive effects. Thus, we used C. elegans to characterize the antinociceptive properties and performed proteomic profiling to uncover specific signaling networks. After exposure to RTX, wild-type (N2) and mutant C. elegans were placed on petri dishes divided into quadrants for heat stimulation. The thermal avoidance index was used to phenotype each tested C. elegans experimental group. The data revealed for the first time that RTX can hamper the nocifensive response of C. elegans to noxious heat (32 – 35 °C). The effect was reversed 6 h after RTX exposure. Additionally, we identified the RTX target, the C. elegans transient receptor potential channel OCR-3. The proteomics and pathway enrichment analysis results suggest that Wnt signaling is triggered by the agonistic effects of RTX on C. elegans vanilloid receptors.

  相似文献   

8.
The ability to perceive and avoid harmful substances or stimuli is key to an organism's survival. The neuronal cognate of the perception of pain is known as nociception, and the reflexive motion to avoid pain is termed the nocifensive response. As the nocifensive response is an ancient and evolutionarily conserved behavioral response to nociceptive stimuli, it is amenable to study in relatively simple and genetically tractable model systems such as Drosophila. Recent studies have taken advantage of the useful properties of Drosophila larvae to begin elucidating the neuronal connectivity and molecular machinery underlying the nocifensive response. However, these studies have primarily utilized the third-instar larval stage, and many mutations that potentially influence nociception survive only until earlier larval stages. Here we characterize the nocifensive responses of Drosophila throughout larval development and find dramatic changes in the nature of the behavior. Notably, we find that prior to the third instar, larvae are unable to perform the characteristic "corkscrew-like roll" behavior. Also, we identify an avoidance behavior consistent with a nocifensive response that is present immediately after larval hatching, representing a paradigm that may be useful in examining mutations with an early lethal phenotype.  相似文献   

9.
Nitric oxide synthases (NOSs) have been shown to modulate thermal hyperalgesia and mechanical hypersensitivity in inflammatory and neuropathic pain. However, little is known about the effect of NOSs on baseline function of sensory nerve fibers. Using genetic deficiency and pharmacologic inhibition of NOSs, we examined the impact of the three isoforms NOS1, NOS2, and NOS3 on baseline nocifensive behavior by measuring current vocalization threshold in response to electrical stimulation at 5, 250, 2000 Hz that preferentially stimulate C, Aδ, and Aβ fibers. In response to 5, 250 and 2000 Hz, NOS1-deficient animals had significantly higher current vocalization thresholds compared with wild-type. Genetic deficiency of NOS2 was associated with higher current vocalization thresholds in response to 5 Hz (C-fiber) stimulation. In contrast, NOS3-deficient animals had an overall weak trend toward lower current vocalization thresholds at 5 Hz and significantly lower current vocalization threshold compared with wild-type animals at 250 and 2000 Hz. Therefore, NOSs distinctively affect baseline mouse current vocalization threshold and appear to play a role on nocifensive response to electrical stimulation of sensory nerve fibers.  相似文献   

10.
We have previously shown that the neurosteroid pregnenolone sulfate (PS) inhibits the capsaicin receptor-mediated current in rat dorsal root ganglion neurons. Here, we examined the effect of intradermal injection of PS into the rat hindpaw on capsaicin-induced nociception. Results revealed that PS co-injected with capsaicin dose-dependently inhibited the capsaicin-induced nocifensive response. In contrast, injections of PS into one hindpaw and capsaicin into the contralateral hindpaw had no effect on the capsaicin-induced nocifensive response, suggesting that PS produced its effect locally but not systemically. Moreover, PS inhibition of the capsaicin-induced nocifensive response was not significantly reduced by a nonselective opioid receptor antagonist or by cannabinoid receptor antagonists, indicating that neither an opioid- nor a cannabinoid-dependent mechanism mediated the effect of PS. These data demonstrate that PS acts peripherally to attenuate capsaicin-induced nociception through an opioid- and cannabinoid-independent mechanism and suggest a new therapeutic potential for PS in pain management.  相似文献   

11.

Eugenol, a known vanilloid, was frequently used in dentistry as a local analgesic in addition, antibacterial and neuroprotective effects were also reported. Eugenol, capsaicin and many vanilloids are interacting with the transient receptor potential vanilloid 1 (TRPV1) in mammals and the TRPV1 is activated by noxious heat. The pharmacological manipulation of the TRPV1 has been shown to have therapeutic value. Caenorhabditis elegans (C. elegans) express TRPV orthologs (e.g. OCR-2, OSM-9) and it is a commonly used animal model system to study nociception as it displays a well-defined and reproducible nocifensive behavior. After exposure to vanilloid solutions, C. elegans wild type (N2) and mutants were placed on petri dishes divided in quadrants for heat stimulation. Thermal avoidance index was used to phenotype each tested C. elegans experimental groups. The results showed that eugenol, vanillin and zingerone can hamper nocifensive response of C. elegans to noxious heat (32–35 °C) following a sustained exposition. Also, the effect was reversed 6 h post exposition. Furthermore, eugenol and vanillin did not target specifically the OCR-2 or OSM-9 but zingerone did specifically target the OCR-2 similarly to capsaicin. Further structural and physicochemical analyses were performed. Key parameters for quantitative structure-property relationships (QSPR), quantitative structure-activity relationships (QSAR) and frontier orbital analyses suggest similarities and dissimilarities amongst the tested vanilloids and capsaicin in accordance with the relative anti-nociceptive effects observed.

  相似文献   

12.
Learned flavor preferences can be established after intragastric nutrient administration by two different behavioral procedures, concurrent and sequential. In a concurrent procedure, two flavored stimuli are offered separately but at the same time on a daily basis: one stimulus is paired with the simultaneous intragastric administration of partially digested food and the other with physiological saline. In sequential learning, the two stimuli are presented during alternate sessions. Neural mechanisms underlying these learning modalities have yet to be fully elucidated. The aim of this study was to examine the role of vagal afferent fibers in the visceral processing of rewarding nutrients during concurrent (experiment 1) and sequential (experiment 2) flavor preference learning in Wistar rats. For this purpose, capsaicin, a neurotoxin that destroys slightly myelinated or unmyelinated sensory axons, was applied to the subdiaphragmatic region of the esophagus to selectively damage most of the vagal afferent pathways that originate in the gastrointestinal system. Results showed that capsaicin [1 mg of capsaicin dissolved in 1 ml of vehicle (10% Tween 80 in oil)] blocked acquisition of concurrent but not sequential flavor preference learning. These results are interpreted in terms of a dual neurobiological system involved in processing the rewarding effects of intragastrically administered nutrients. The vagus nerve, specifically capsaicin-sensitive vagal afferent fibers, would only be essential in concurrent flavor preference learning, which requires rapid processing of visceral information.  相似文献   

13.
Common food irritants elicit oral heat or cool sensations via actions at thermosensitive transient receptor potential (TRP) channels. We used a half-tongue, 2-alternative forced-choice procedure coupled with bilateral pain intensity ratings to investigate irritant effects on heat and cold pain. The method was validated in a bilateral thermal difference detection task. Capsaicin, mustard oil, and cinnamaldehyde enhanced lingual heat pain elicited by a 49 degrees C stimulus. Mustard oil and cinnamaldehyde weakly enhanced lingual cold pain (9.5 degrees C), whereas capsaicin had no effect. Menthol significantly enhanced cold pain and weakly reduced heat pain. To address if capsaicin's effect was due to summation of perceptually similar thermal and chemical sensations, one-half of the tongue was desensitized by application of capsaicin. Upon reapplication, capsaicin elicited little or no irritant sensation yet still significantly enhanced heat pain on the capsaicin-treated side, ruling out summation. In a third experiment, capsaicin significantly enhanced pain ratings to graded heat stimuli (47 degrees C to 50 degrees C) resulting in an upward shift of the stimulus-response function. Menthol may induce cold hyperalgesia via enhanced thermal gating of TRPM8 in peripheral fibers. Capsaicin, mustard oil, and cinnamaldehyde may induce heat hyperalgesia via enhanced thermal gating of TRPV1 that is coexpressed with TRPA1 in peripheral nociceptors.  相似文献   

14.
Activation of the vagal afferents by noxious gastrointestinal stimuli suggests that vagal afferents may play a complex role in visceral pain processes. The contribution of the vagus nerve to visceral pain remains unresolved. Previous studies reported that patients following chronic vagotomy have lower pain thresholds. The patient with irritable bowel syndrome has been shown alteration of vagal function. We hypothesize that vagal afferent nerves modulate visceral pain. Visceromotor responses (VMR) to graded colorectal distension (CRD) were recorded from the abdominal muscles in conscious rats. Chronic subdiaphragmatic vagus nerve sections induced 470, 106, 51, and 54% increases in VMR to CRD at 20, 40, 60 and 80 mmHg, respectively. Similarly, at light level of anesthesia, topical application of lidocaine to the subdiaphragmatic vagus nerve in rats increased VMR to CRD. Vagal afferent neuronal responses to low or high-intensity electrical vagal stimulation (EVS) of vagal afferent Adelta or C fibers were distinguished by calculating their conduction velocity. Low-intensity EVS of Adelta fibers (40 microA, 20 Hz, 0.5 ms for 30 s) reduced VMR to CRD at 40, 60, and 80 mmHg by 41, 52, and 58%, respectively. In contrast, high-intensity EVS of C fibers (400 microA, 1 Hz, 0.5 ms for 30 s) had no effect on VMR to CRD. In conclusion, we demonstrated that vagal afferent nerves modulate visceral pain. Low-intensity EVS that activates vagal afferent Adelta fibers reduced visceral pain. Thus EVS may potentially have a role in the treatment of chronic visceral pain.  相似文献   

15.
The awareness in specific brain centers of angina pectoris most often results from ischemic episodes in the heart. These ischemic episodes induce the release of a collage of chemicals that activate chemosensitive and mechanoreceptive receptors in the heart, which in turn excite receptors of the sympathetic afferent pathways. Ascending pain signals from these fibers result in the activation of the brain centers which are involved in the perception and integration of cardiac pain. Cytochemical studies of the nervous system provide the opportunity to identify these areas at the cellular level. In the present investigation, cardiac nociception was studied in the brains and the spinal cords of rats, using Fos protein as a marker of neuronal activation, following the application of pain-inducing chemicals to the heart. Induction of myocardial pain in conscious rats was achieved by infusion of bradykinin (0.5 microg) or capsaicin (5 microg) into the pericardial sac. During pain stimulation, the rats demonstrated pain behavior, in conjunction with alterations in heart rate and blood pressure. The cerebral Fos expression pattern was studied 2 h after pain stimulation. In contrast to the control group, increased Fos expression was found following the use of both capsaicin and bradykinin in a variety of areas of the brain. Bradykinin, but not capsaicin, induced Fos expression in the upper thoracic and upper cervical spinal cord; these segments are the sites where cardiac sympathetic fibers terminate. This finding suggests that these two chemicals use two different pathways, and provides extra evidence for the role of the vagus nerve in the transmission of cardiac nociception. Different cerebral areas showed an increase in the c-fos activity following pericardial application of pain-inducing chemicals. The role of these cerebral areas in the integration of cardiac pain is discussed in relation to the identified pathways which transmit cardiac pain.  相似文献   

16.
脊髓背角痛觉传递和调制的一些化学解剖学观察   总被引:7,自引:0,他引:7  
魏锋 《生理科学进展》1996,27(4):327-330
本实验研究了脊髓背角内C纤维末梢的分布和突触学特征及其一些神经递质化学构筑;定量观察了急性痛引起背角的递质变化;显示了初级传入C纤维,抑制性中间神经元和背角伤害性感受神经元三者之间的突触关系,并探讨它们在痛觉信息传递和调制中的作用。  相似文献   

17.
Pruritus is a common symptom in chronic liver diseases, which may also alter thermal sensitivity. The underlying mechanisms remain unclear and treatments are not satisfactory. Portal-systemic shunting has been proposed to alter thermal sensitivity in cirrhotics. Inflammation-induced enhanced activity of the Transient Receptor Potential Vanilloid 1 (TRPV1) may contribute to pruritus and thermal hyperalgesia. Sildenafil reduces neuroinflammation in portacaval shunt (PCS) rats. The aims were to assess whether: (1) PCS rats show enhanced scratching or thermal sensitivity; (2) TRPV1 activity is enhanced in PCS rats; (3) treatment with sildenafil reduces TRPV1 activation, scratching and thermal hyperalgesia. Rats were treated with sildenafil beginning 3 weeks after surgery. The number of scratches performed were counted. Thermal hyperalgesia was analyzed using the Hargreaves’ Plantar Test. TRPV1 activation by measuring the increase in Ca2+ induced by capsaicin in dorsal root ganglia neurons. PCS rats show enhanced scratching behavior, reaching 66?±?5 scratches/h (p?<?0.01) at 21 days after surgery, while controls show 37?±?2 scratches/h. PCS rats show thermal hyperalgesia. Paw withdrawal latency was reduced (p?<?0.05) to 10?±?1 s compared to controls (21?±?2 s). Capsaicin-induced calcium increase was higher in dorsal root ganglia cultures from PCS rats, indicating TRPV1functional increase. PCS rats show enhanced scratching behavior and thermal sensitivity and are a good model to study these alterations in chronic liver diseases. Enhanced sensitivity and activity of TRPV1 channel underlies these alterations. Treatment with sildenafil reduces TRPV1 channel sensitivity and activity and normalizes scratching behavior and thermal sensitivity.  相似文献   

18.
目的:研究辣椒辣素对足底切开大鼠疼痛相关行为的影响.方法:32只Wister雄性大鼠随机分为四组:生理盐水组、0.05%辣椒辣素组(C0.05)、0.1%辣椒辣素组(C0.1)、赋形剂组(吐温80),各200微升.切开前一天足底给药,分别测定给药前的基础值,给药后24小时,术后2小时及1、2、3天对热刺激的反应,并记录累积疼痛得分,术后三天进行组织病理学评估.结果:预先给予的辣椒辣素能够减弱热痛觉过敏和降低累积疼痛得分.组织病理学检查证实:与生理盐水比较辣椒辣素影响切口的恢复.结论:辣椒辣素预处理具有预防术后痛的作用.对切口组织学的影响可能与药物抑制疼痛行为有关,而不一定是药物的局部作用.  相似文献   

19.

Background

Different classes of unmyelinated nerve fibers appear to exhibit distinct conductive properties. We sought a criterion based on conduction properties for distinguishing sympathetic efferents and unmyelinated, primary afferents in peripheral nerves.

Methodology/Principal Findings

In anesthetized monkey, centrifugal or centripetal recordings were made from single unmyelinated nerve fibers in the peroneal or sural nerve, and electrical stimuli were applied to either the sciatic nerve or the cutaneous nerve endings, respectively. In centrifugal recordings, electrical stimulation at the sympathetic chain and dorsal root was used to determine the fiber''s origin. In centrifugal recordings, sympathetic fibers exhibited absolute speeding of conduction to a single pair of electrical stimuli separated by 50 ms; the second action potential was conducted faster (0.61 0.16%) than the first unconditioned action potential. This was never observed in primary afferents. Following 2 Hz stimulation (3 min), activity-dependent slowing of conduction in the sympathetics (8.6 0.5%) was greater than in one afferent group (6.7 0.5%) but substantially less than in a second afferent group (29.4 1.9%). In centripetal recordings, most mechanically-insensitive fibers also exhibited absolute speeding to twin pulse stimulation. The subset that did not show this absolute speeding was responsive to chemical stimuli (histamine, capsaicin) and likely consists of mechanically-insensitive afferents. During repetitive twin pulse stimulation, mechanosensitive afferents developed speeding, and speeding in sympathetic fibers increased.

Conclusions/Significance

The presence of absolute speeding provides a criterion by which sympathetic efferents can be differentiated from primary afferents. The differences in conduction properties between sympathetics and afferents likely reflect differential expression of voltage-sensitive ion channels.  相似文献   

20.
Endomorphin-2 is an endogenous opioid in primary sensory afferent fibers   总被引:7,自引:0,他引:7  
Evidence is presented that the recently discovered endogenous mu-selective agonist, endomorphin-2, is localized in primary sensory afferents. Endomorphin-2-like immunoreactivity was found to be colocalized in a subset of substance P- and mu opiate receptor-containing fibers in the superficial laminae of the spinal cord and spinal trigeminal nucleus. Disruption of primary sensory afferents by mechanical (deafferentation by dorsal rhizotomy) or chemical (exposure to the primary afferent neurotoxin, capsaicin) methods virtually abolished endomorphin-2-like immunoreactivity in the dorsal horn. These results indicate that endomorphin-2 is present in primary afferent fibers where it can serve as the endogenous ligand for pre- and postsynaptic mu receptors and as a major modulator of pain perception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号