首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Signal transduction systems, including cholinergic pathways, which are likely to be of pathophysiological significance are altered in Alzheimer's disease (AD). Muscarinic cholinergic receptors are linked to the hydrolysis of phosphoinositide, involving the production of inositol 1,4,5-trisphosphate [Ins (1,4,5)P3] and the mobilization of cytosolic free calcium concentrations ([Ca2+]i). Effects of amyloid peptide (A) on these signals prior to neuronal degeneration were examined in cultured rat cortical cells. A increased the release of lactate dehydrogenase (LDH) in a concentration-dependent manner, however, it was blocked by B27 supplement. Prolonged exposure to a sublethal dose of A 25–35 or 1–42 disrupted carbachol-mediated release of Ins(1,4,5)P3 and [Ca2+]i, which was inhibited in media supplemented with B27 or the antioxidant vitamin E. In order to determine the specificity of the effect of A, various agonists glutamate or KCl but not bradykinin which utilize the phosphoinositide cascade were investigated. Our results indicated that A did not affect the stimulation of glutamate or KCl-mediated production of Ins(1,4,5)P3 or cause elevation in [Ca2+]i. Furthermore, metabotropic agonist trans-1-amino-cyclopentane-1,3,-dicarboxylate (ACPD) elevated calcium level was not inhibited by A pretreatment. Taken together, the results demonstrate that a sublethal dose of A selectively impaired cholinergic receptor-mediated signal transduction pathways, and antioxidant or B27 supplement attenuated this effect of A. Alterations of cholinergic signaling by prolonged exposure to A could be involved in cortical neurodegeneration that occurs in AD. Because functional loss of cholinergic pathways is an important aspect of AD, the differences in susceptibility of these two types of receptors prior to other signs of A action is important and requires further investigation.  相似文献   

2.
3.
《Biophysical journal》2019,116(12):2304-2313
Protein glycation, also known as nonenzymatic glycosylation, is a spontaneous post-translational modification that would change the structure and stability of proteins or hormone peptides. Recent studies have indicated that glycation plays a role in type 2 diabetes (T2D) and neurodegenerative diseases. Over the last two decades, many types of advanced glycation end products (AGEs), formed through the reactions of an amino group of proteins with reducing sugars, have been identified and detected in vivo. However, the effect of glycation on protein aggregation has not been fully investigated. In this study, we aim to elucidate the impact of protein glycation on islet amyloid polypeptide (IAPP, also known as amylin) aggregation, which was strongly associated with T2D. We chemically synthesized glycated IAPP (AGE-IAPP) to mimic the consequence of this hormone peptide in a hyperglycemia (high blood sugar) environment. Our data revealed that AGE-IAPP formed amyloid faster than normal IAPP, and higher-molecular-weight AGE-IAPP oligomers were also observed in the early stage of aggregation. Circular dichroism spectra also indicated that AGE-IAPP exhibited faster conformational changes from random coil to its β-sheet fibrillar states. Moreover, AGE-IAPP can induce normal IAPP to expedite its aggregation process, and its fibrils can also act as templates to promote IAPP aggregation. AGE-IAPP, like normal IAPP, is capable of interacting with synthetic membranes and also exhibits cytotoxicity. Our studies demonstrated that glycation modification of IAPP promotes the amyloidogenic properties of IAPP, and it may play a role in accumulating additional amyloid during T2D progression.  相似文献   

4.
A key event in the pathogenesis of Alzheimer’s disease (AD) is the accumulation of amyloid-β (Aβ) species in the brain, derived from the sequential cleavage of the amyloid precursor protein (APP) by β- and γ-secretases. Based on a systems biology study to repurpose drugs for AD, we explore the effect of lansoprazole, and other proton-pump inhibitors (PPIs), on Aβ production in AD cellular and animal models. We found that lansoprazole enhances Aβ37, Aβ40 and Aβ42 production and lowers Aβ38 levels on amyloid cell models. Interestingly, acute lansoprazole treatment in wild type and AD transgenic mice promoted higher Aβ40 levels in brain, indicating that lansoprazole may also exacerbate Aβ production in vivo. Overall, our data presents for the first time that PPIs can affect amyloid metabolism, both in vitro and in vivo.  相似文献   

5.
6.
Minocycline, a tetracycline antibiotic, has been reported to exert beneficial effects in models of Alzheimer’s disease (AD). To characterize the mechanisms underlying the putative minocycline-related neuroprotection, we studied its effect in an in vitro model of AD. Primary hippocampal cultures were treated with β-amyloid peptide (Aβ) and cell viability was assessed by standard MTT-assay. Incubation with 10 μM Aβ for 24 h significantly inhibits cellular MTT-reduction without inducing morphological signs of enhanced cell death or increase in release of lactate dehydrogenase. This indicates that cell viability was not affected. The inhibition of MTT-reduction by Aβ was due to an acceleration of MTT-formazan exocytosis. Intriguingly, the Aβ-triggered increase in MTT-formazan exocytosis was abolished by co-treatment with minocycline. In vehicle-treated cells minocycline had no effect on formazan exocytosis. This hitherto unrecognized property of minocycline has to be noticed in the elucidation of the underlying mechanism of this promising neuroprotectant.  相似文献   

7.
8.
Background Elevated plasma homocysteine and amyloid β (Aβ) have been associated with Alzheimer’s disease (AD). We investigated the cross-sectional association between these biomarkers. Methods We used linear regression to relate plasma homocysteine and Aβ adjusting for age, gender, creatinine, APOE-ε4, and ethnic group in 327 persons aged 78 ± 6.6 years. Results Plasma homocysteine correlated with age, serum creatinine, plasma Aβ40 and Aβ42, and was inversely correlated with serum vitamin B12, and folate. Aβ42, but not Aβ40, was related to later development of dementia. Homocysteine was related to higher Aβ40 levels (coefficient = 2.0; P < 0.0001) and this association was attenuated after adjustment for creatinine (coefficient = 1.0; P < 0.0001). The crude association between homocysteine and Aβ42 was weaker (coefficient = 0.5; P = 0.01) and became non-significant after adjustment for creatinine (coefficient = 0.4; P = 0.06). These associations were unrelated to ethnicity, the presence of APOE-ε4 or dementia. Analyses by quartiles of homocysteine showed that these association were driven primarily by the fourth quartile. Conclusions Plasma homocysteine is directly related to Aβ40. The association with Aβ42 is not significant. These results seem to indicate that homocysteine is related to aging but not specifically to AD. Special issue dedicated to John P. Blass.  相似文献   

9.
β-Amyloid peptide (Aβ), the main constituent of senile plaques and diffuse amyloid deposits in Alzheimer's diseased brain, was shown to initiate the development of oxidative stress in neuronal cell cultures. Toxic lots of Aβ form free radical species in aqueous solution. It was proposed that Aβ-derived free radicals can directly damage cell proteins via oxidative modification. Recently we reported that synthetic Aβ can interact with glutamine synthetase (GS) and induce inactivation of this enzyme. In the present study we present the evidence that toxic Aβ(25-35) induces the oxidation of pure GS in vitro. It was found that inactivation of GS by Aβ, as well as the oxidation of GS by metal-catalyzed oxidation system, is accompanied by an increase of protein carbonyl content. As it was reported previously by our laboratory, radicalization of Aβ is not iron or peroxide-dependent. Our present observations consistently show that toxic Aβ does not need iron or peroxide to oxidize GS. However, treatment of GS with the peptide, iron and peroxide together significantly stimulates the protein carbonyl formation. Here we report also that Aβ(25-35) induces carbonyl formation in BSA. Our results demonstrate that P-peptide, as well as other free radical generators, induces carbonyl formation when brought into contact with different proteins.  相似文献   

10.
The amyloid precursor protein (APP) and its proteolytic product amyloid beta (Aβ) are associated with both familial and sporadic forms of Alzheimer disease (AD). Aberrant expression and function of microRNAs has been observed in AD. Here, we show that in rat hippocampal neurons cultured in vitro, the down-regulation of Argonaute-2, a key component of the RNA-induced silencing complex, produced an increase in APP levels. Using site-directed mutagenesis, a microRNA responsive element (RE) for miR-101 was identified in the 3′-untranslated region (UTR) of APP. The inhibition of endogenous miR-101 increased APP levels, whereas lentiviral-mediated miR-101 overexpression significantly reduced APP and Aβ load in hippocampal neurons. In addition, miR-101 contributed to the regulation of APP in response to the proinflammatory cytokine interleukin-1β (IL-lβ). Thus, miR-101 is a negative regulator of APP expression and affects the accumulation of Aβ, suggesting a possible role for miR-101 in neuropathological conditions.  相似文献   

11.
Knowledge of the detailed mechanism by which proteins such as human αB- crystallin and human lysozyme inhibit amyloid beta (Aβ) peptide aggregation is crucial for designing treatment for Alzheimer''s disease. Thus, unconstrained, atomistic molecular dynamics simulations in explicit solvent have been performed to characterize the Aβ17–42 assembly in presence of the αB-crystallin core domain and of lysozyme. Simulations reveal that both inhibitor proteins compete with inter-peptide interaction by binding to the peptides during the early stage of aggregation, which is consistent with their inhibitory action reported in experiments. However, the Aβ binding dynamics appear different for each inhibitor. The binding between crystallin and the peptide monomer, dominated by electrostatics, is relatively weak and transient due to the heterogeneous amino acid distribution of the inhibitor surface. The crystallin-bound Aβ oligomers are relatively long-lived, as they form more extensive contact surface with the inhibitor protein. In contrast, a high local density of arginines from lysozyme allows strong binding with Aβ peptide monomers, resulting in stable complexes. Our findings not only illustrate, in atomic detail, how the amyloid inhibitory mechanism of human αB-crystallin, a natural chaperone, is different from that of human lysozyme, but also may aid de novo design of amyloid inhibitors.  相似文献   

12.
13.
14.
The transmembrane protein plasticity-related genes 3 and 5 (PRG3 and PRG5) increase filopodial formation in various cell lines, independently of Cdc42. However, information on the effects of PRG5 during neuronal development is sparse. Here, we present several lines of evidence for the involvement of PRG5 in the genesis and stabilization of dendritic spines. First, PRG5 was strongly expressed during mouse brain development from embryonic day 14 (E14), peaked around the time of birth, and remained stable at least until early adult stages (i.e. P30). Second, on a subcellular level, PRG5 expression shifted from an equal distribution along all neurites toward accumulation only along dendrites during hippocampal development in vitro. Third, overexpression of PRG5 in immature hippocampal neurons induced formation of spine-like structures ahead of time. Proper amino acid sequences in the extracellular domains (D1 to D3) of PRG5 were a prerequisite for trafficking and induction of spine-like structures, as shown by mutation analysis. Fourth, at stages when spines are present, knockdown of PRG5 reduced the number but not the length of protrusions. This was accompanied by a decrease in the number of excitatory synapses and, consequently, by a reduction of miniature excitatory postsynaptic current frequencies, although miniature excitatory postsynaptic current amplitudes remained similar. In turn, overexpressing PRG5 in mature neurons not only increased Homer-positive spine numbers but also augmented spine head diameters. Mechanistically, PRG5 interacts with phosphorylated phosphatidylinositols, phospholipids involved in dendritic spine formation by different lipid-protein assays. Taken together, our data propose that PRG5 promotes spine formation.  相似文献   

15.
Small proteins like amyloid beta (Aβ) monomers are related to neurodegenerative disorders by aggregation to insoluble fibrils. Small angle neutron scattering (SANS) is a nondestructive method to observe the aggregation process in solution. We show that SANS is able to resolve monomers of small molecular weight like Aβ for aggregation studies. We examine Aβ monomers after prolonged storing in d-hexafluoroisopropanol (dHFIP) by using SANS and dynamic light scattering (DLS). We determined the radius of gyration from SANS as 1.0±0.1 nm for Aβ1–40 and 1.6±0.1 nm for Aβ1–42 in agreement with 3D NMR structures in similar solvents suggesting a solvent surface layer with 5% increased density. After initial dissolution in dHFIP Aβ aggregates sediment with a major component of pure monomers showing a hydrodynamic radius of 1.8±0.3 nm for Aβ1–40 and 3.2±0.4 nm for Aβ1–42 including a surface layer of dHFIP solvent molecules.  相似文献   

16.
N-acetyl-D-glucosamine kinase (NAGK) plays an enzyme activity-independent, non-canonical role in the dendritogenesis of hippocampal neurons in culture. In this study, we investigated its role in axonal development. We found NAGK was distributed throughout neurons until developmental stage 3 (axonal outgrowth), and that its axonal expression remarkably decreased during stage 4 (dendritic outgrowth) and became negligible in stage 5 (mature). Immunocytochemistry (ICC) showed colocalization of NAGK with tubulin in hippocampal neurons and with Golgi in somata, dendrites, and nascent axons. A proximity ligation assay (PLA) for NAGK and Golgi marker protein followed by ICC for tubulin or dynein light chain roadblock type 1 (DYNLRB1) in stage 3 neurons showed NAGK-Golgi complex colocalized with DYNLRB1 at the tips of microtubule (MT) fibers in axonal growth cones and in somatodendritic areas. PLAs for NAGK-dynein combined with tubulin or Golgi ICC showed similar signal patterns, indicating a three way interaction between NAGK, dynein, and Golgi in growing axons. In addition, overexpression of the NAGK gene and of kinase mutant NAGK genes increased axonal lengths, and knockdown of NAGK by small hairpin (sh) RNA reduced axonal lengths; suggesting a structural role for NAGK in axonal growth. Finally, transfection of ‘DYNLRB1 (74–96)’, a small peptide derived from DYNLRB1’s C-terminal, which binds with NAGK, resulted in neurons with shorter axons in culture. The authors suggest a NAGK-dynein-Golgi tripartite interaction in growing axons is instrumental during early axonal development.  相似文献   

17.
The deposition of Aβ peptide in the brain is the key event in Alzheimer disease progression. Therefore, the prevention of Aβ self assembly into disease-associated oligomers is a logical strategy for treatment. π stacking is known to provide structural stability to many amyloids; two phenylalanine residues within the Aβ 14–23 self recognition element are in such an arrangement in many solved structures. Therefore, we targeted this structural stacking by substituting these two phenylalanine residues with their D-enantiomers. The resulting peptides were able to modulate Aβ aggregation in vitro and reduce Aβ cytotoxicity in primary neuronal cultures. Using kinetic analysis of fibril formation, electron microscopy and dynamic light scattering characterization of oligomer size distributions, we demonstrate that, in addition to altering fibril structural characteristics, these peptides can induce the formation of larger amorphous aggregates which are protective against toxic oligomers, possibly because they are able to sequester the toxic oligomers during co-incubation. Alternatively, they may alter the surface structure of the oligomers such that they can no longer interact with cells to induce toxic pathways.  相似文献   

18.
Amyloid beta peptide implicated in Alzheimers disease is cleaved by insulin degrading enzyme (IDE). Abnormal cholinesterases similar to butyrylcholinesterase (BChE) are found in Alzheimer brain. The similarities between IDE and BChE (which is known to have an arylacylamidase and a metallocarboxypeptidase-like activity) such as their zinc metalloenzyme nature, their localization in glia and their ability to bind amyloid peptide in Alzheimers disease raise interesting questions.  相似文献   

19.
20.

Background

The clinical uses of 2-chloro-2′-deoxyadenosine (2-CDA) or cladribine which was initially prescribed to patients with hematological and lymphoid cancers is now extended to treat patients with multiple sclerosis (MS). Previous data has shown that 2-CDA has high affinity to the brain and readily passes through the blood brain barrier reaching CSF concentrations 25% of that found in plasma. However, whether long-term administration of 2-CDA can lead to any adverse effects in patients or animal models is not yet clearly known.

Methodology

Here we show that exposure of 2-CDA to CHO cells stably expressing wild-type APP751 increased generation and secretion of amyloid β peptide (Aβ) in to the conditioned medium. Interestingly, increased Aβ levels were noticed even at non-toxic concentrations of 2-CDA. Remarkably, chronic treatment of APdE9 mice, a model of Alzheimer''s disease with 2-CDA for 60 days increased amyloid plaque burden by more than 1-fold. Increased Aβ generation appears to result from increased turnover of APP as revealed by cycloheximide-chase experiments. Additionally, surface labeling of APP with biotin and immunoprecipitation of surface labeled proteins with anti-biotin antibody also indicated increased APP at the cell surface in 2-CDA treated cells compared to controls. Increased turnover of APP by 2-CDA in turn might be a consequence of decreased protein levels of PIN 1, which is known to regulate cis-trans isomerization and phosphorylation of APP. Most importantly, like many other oncology drugs, 2-CDA administration led to significant delay in acquiring a reward-based learning task in a T maze paradigm.

Conclusions

Taken together, these data provide compelling evidence for the first time that chronic 2-CDA administration can increase amyloidogenic processing of APP leading to robustly increased plaque burden which may be responsible for the observed deficits in learning skills. Thus chronic treatment of mice with 2-CDA can have deleterious effects in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号