首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xin  Chengqi  Liu  Jing 《Neurochemical research》2021,46(5):1031-1042

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder and is associated with a range of motor and non-motor clinical symptoms. The underlying molecular pathogenesis of PD involves a variety of pathways and mechanisms, including α-synuclein proteostasis, mitochondrial dysfunction, oxidative stress, autophagy and apoptosis, neuroinflammation, and epigenetic regulation. Long non-coding RNAs (lncRNAs) are involved in the regulation of multiple pathological processes of PD. In this review, we provide an overview of large-scale studies on lncRNA expression profiling in PD patients and models, as well as highlight the impacts of lncRNAs on the pathogenesis of PD, which could provide basic information regarding the putative lncRNA-based biomarkers and therapeutic targets for the early diagnosis and treatment strategies for PD.

  相似文献   

2.
Genetics is considered as an important risk factor in the pathological changes of Parkinson’s disease (PD). Substantia nigra (SN) is thought to be the most vulnerable area in this process. In recent decades, however, few related long non-coding RNAs (lncRNAs) in the SN of PD patients had been identified and the functions of those lncRNAs had been studied even less. In this study, we sought to investigate the lncRNA expression profiles and their potential functions in the SN of PD patients. We screened lncRNA expression profiles in the SN of PD patients using the lncRNA mining approach from the ArrayExpress database, which included GSE20295. The samples were from 11 of PD and 14 of normal tissue samples. We identified 87 lncRNAs that were altered significantly in the SN during the occurrence of PD. Among these lncRNAs, lncRNA AL049437 and lncRNA AK021630 varied most dramatically. AL049437 was up-regulated in the PD samples, while AK021630 was down-regulated. Based on the results, we focused on the potential roles of the two lncRNAs in the pathogenesis of PD by the knockdown of the expression of AL049437 or AK021630 in human neuroblastoma SH-SY5Y cell line. Results indicated that the reduction in AL049437 level increased cell viability, mitochondrial transmembrane potential (Δψm), mitochondrial mass, and tyrosine hydroxylase (TyrH) secretion. By contrast, the knockdown of AK021630 resulted in the opposite effect. Based on these results, we speculated that lncRNA AL049437 likely contributed to the risk of PD, while lncRNA AK021630 likely inhibited the occurrence of PD.  相似文献   

3.
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by cognitive decline and neurodegeneration in the hippocampus. Despite the pathological importance of the hippocampal degeneration in AD, little topographical evidence exists of impaired hippocampal connectivity in patients with AD. To investigate the anatomical connections of the hippocampus, we injected the neurotracer 1,1′-dioctadecyl-3,3,3′3,3′-tetramethyl-indocarbocyanine perchlorate (DiI) into the hippocampi of 5XFAD mice, which were used as an animal model of AD. In wild-type controls, DiI-containing cells were found in the entorhinal cortex, medial septum, locus coeruleus, dorsal raphe, substantia nigra pars compacta, and olfactory bulb. Hippocampal inputs were decreased in multiple brain regions in the 5XFAD mice compared to wild-type littermate mice. These results are the first to reveal alterations at the cellular level in hippocampal connectivity in the brains of 5XFAD mice. These results suggest that anatomical mapping of hippocampal connectivity will elucidate new pathogenic mechanisms and therapeutic targets for AD treatment.  相似文献   

4.

Here we demonstrate for the first time that cannabidiol (CBD) acts to protect synaptic plasticity in an in vitro model of Alzheimer’s disease (AD). The non-psycho active component of Cannabis sativa, CBD has previously been shown to protect against the neurotoxic effects of beta amyloid peptide (Aβ) in cell culture and cognitive behavioural models of neurodegeneration. Hippocampal long-term potentiation (LTP) is an activity dependent increase in synaptic efficacy often used to study cellular mechanisms related to memory. Here we show that acute application of soluble oligomeric beta amyloid peptide (Aβ1–42) associated with AD, attenuates LTP in the CA1 region of hippocampal slices from C57Bl/6 mice. Application of CBD alone did not alter LTP, however pre-treatment of slices with CBD rescued the Aβ1–42 mediated deficit in LTP. We found that the neuroprotective effects of CBD were not reversed by WAY100635, ZM241385 or AM251, demonstrating a lack of involvement of 5HT1A, adenosine (A2A) or Cannabinoid type 1 (CB1) receptors respectively. However in the presence of the PPARγ antagonist GW9662 the neuroprotective effect of CBD was prevented. Our data suggests that this major component of Cannabis sativa, which lacks psychoactivity may have therapeutic potential for the treatment of AD.

  相似文献   

5.
Blood-borne small non-coding (sncRNAs) are among the prominent candidates for blood-based diagnostic tests. Often, high-throughput approaches are applied to discover biomarker signatures. These have to be validated in larger cohorts and evaluated by adequate statistical learning approaches. Previously, we published high-throughput sequencing based microRNA (miRNA) signatures in Alzheimer’s disease (AD) patients in the United States (US) and Germany. Here, we determined abundance levels of 21 known circulating miRNAs in 465 individuals encompassing AD patients and controls by RT-qPCR. We computed models to assess the relation between miRNA expression and phenotypes, gender, age, or disease severity (Mini-Mental State Examination; MMSE). Of the 21 miRNAs, expression levels of 20 miRNAs were consistently de-regulated in the US and German cohorts. 18 miRNAs were significantly correlated with neurodegeneration (Benjamini-Hochberg adjusted P < 0.05) with highest significance for miR-532-5p (Benjamini-Hochberg adjusted P = 4.8 × 10−30). Machine learning models reached an area under the curve (AUC) value of 87.6% in differentiating AD patients from controls. Further, ten miRNAs were significantly correlated with MMSE, in particular miR-26a/26b-5p (adjusted P = 0.0002). Interestingly, the miRNAs with lower abundance in AD were enriched in monocytes and T-helper cells, while those up-regulated in AD were enriched in serum, exosomes, cytotoxic t-cells, and B-cells. Our study represents the next important step in translational research for a miRNA-based AD test.  相似文献   

6.
Late onset Alzheimer’s disease (LOAD) etiology is influenced by complex interactions between genetic and environmental risk factors. Large-scale genome wide association studies (GWAS) for LOAD have identified 10 novel risk genes: ABCA7, BIN1, CD2AP, CD33, CLU, CR1, EPHA1, MS4A6A, MS4A6E, and PICALM. We sought to measure the influence of GWAS single nucleotide polymorphisms (SNPs) and gene expression levels on clinical and pathological measures of AD in brain tissue from the parietal lobe of AD cases and age-matched, cognitively normal controls. We found that ABCA7, CD33, and CR1 expression levels were associated with clinical dementia rating (CDR), with higher expression being associated with more advanced cognitive decline. BIN1 expression levels were associated with disease progression, where higher expression was associated with a delayed age at onset. CD33, CLU, and CR1 expression levels were associated with disease status, where elevated expression levels were associated with AD. Additionally, MS4A6A expression levels were associated with Braak tangle and Braak plaque scores, with elevated expression levels being associated with more advanced brain pathology. We failed to detect an association between GWAS SNPs and gene expression levels in our brain series. The minor allele of rs3764650 in ABCA7 is associated with age at onset and disease duration, and the minor allele of rs670139 in MS4A6E was associated with Braak tangle and Braak plaque score. These findings suggest that expression of some GWAS genes, namely ABCA7, BIN1, CD33, CLU, CR1 and the MS4A family, are altered in AD brains.  相似文献   

7.
8.
Although some epidemiological investigations showed a potential association between long-term exposure of extremely low frequency electromagnetic fields (ELF-EMF) and Alzheimer’s disease (AD), no reasonable mechanism can explain this association, and the related animal experiments are rare. In this study, ELF-EMF exposure (50Hz 400µT 60d) combined with D-galactose intraperitoneal (50mg/kg, q.d., 42d) and Aβ25–35 hippocampal (5μl/unilateral, bilateral, single-dose) injection was implemented to establish a complex rat model. Then the effects of ELF-EMF exposure on AD development was studied by using the Morris water maze, pathological analysis, and comparative proteomics. The results showed that ELF-EMF exposure delayed the weight gain of rats, and partially improved cognitive and clinicopathologic symptoms of AD rats. The differential proteomic analysis results suggest that synaptic transmission, oxidative stress, protein degradation, energy metabolism, Tau aggregation, and inflammation involved in the effects mentioned above. Therefore, our findings indicate that certain conditions of ELF-EMF exposure could delay the development of AD in rats.  相似文献   

9.
Alzheimer’s disease (AD), a progressive neurodegenerative disorder and the most common form of dementia and cognitive impairment is usually characterized by neuritic amyloid plaques, cerebrovascular amyloidosis and neurofibrillary tangles. In order to find out the pathological protein expression, a quantitative proteome analysis of AD hippocampus, substantia nigra and cortex was performed and the extent of protein expression variation not only in contrast to age-matched controls but also among the understudied regions was analyzed. Expression alterations of 48 proteins were observed in each region along with significant co/contra regulation of malate dehydrogenase, lactate dehydrogenase B chain, aconitate hydratase, protein NipSnap homolog 2, actin cytoplasmic 1, creatine kinase U-type and glyceraldehyde-3-phosphate dehydrogenase. These differentially expressed proteins are mainly involved in energy metabolism, cytoskeleton integration, apoptosis and several other potent cellular/molecular processes. Interaction association network analysis further confirms the close interacting relationship between the co/contra regulated differentially expressed proteins among all the three regions. Elucidation of co/contra regulation of differentially expressed proteins will be helpful to understand disease progression and functional alterations associated with AD.  相似文献   

10.
Alzheimer’s disease (AD) is characterized by the presence of neuropathological lesions containing amyloid plaques (APs) and neurofibrillary tangles (NFTs) associated with neuroinflammation and neuronal degeneration. Hippocampus is one of the earliest and severely damaged areas in AD brain. Glia maturation factor (GMF), a known proinflammatory molecule is up-regulated in AD. Here, we have investigated the expression and distribution of GMF in relation to the distribution of APs and NFTs in the hippocampus of AD brains. Our immunohistochemical results showed GMF is expressed specifically in the vicinity of high density of APs and NFTs in the hippocampus of AD patients. Moreover, reactive astrocytes and activated microglia surrounds the APs and NFTs. We further demonstrate that GMF immunoreactive glial cells were increased at the sites of Tau containing NFTs and APs of hippocampus in AD brains. In conclusion, up-regulated expression of GMF in the hippocampus, and the co-localization of GMF and thioflavin-S stained NFTs and APs suggest that GMF may play important role in the pathogenesis of AD.  相似文献   

11.
12.
Manganese (Mn) is an essential trace element, while excessive expose may induce neurotoxicity. Recently, lncRNAs have been extensively studied and it has been confirmed that lncRNAs participate in neural functions and aberrantly expressed lncRNAs are involved in neurological diseases. However, the pathological effects of lncRNAs on Mn-induced neurotoxicity remain unclear. In this study, the expression profiles of lncRNAs and messenger RNAs (mRNAs) were identified in Mn-treated hippocampal neurons and control neurons via microarray. Bioinformatic methods and intersection analysis were also employed. Results indicated that 566, 1161, and 1474 lncRNAs meanwhile 1848, 3228, and 4022 mRNAs were aberrantly expressed in low, intermediate, and high Mn-exposed groups compared with the control group, respectively. Go analysis determined that differentially expressed mRNAs were targeted to biological processes, cellular components, and molecular functions. Pathway analysis indicated that these mRNAs were enriched in insulin secretion, cell cycle, and DNA replication. Intersection analysis denominated that 135 lncRNAs and 373 mRNAs were consistently up-regulated while 150 lncRNAs and 560 mRNAs were consistently down-regulated. Meanwhile, lncRNA BC079195 was significantly up-regulated while lncRNAs uc.229- and BC089928 were significantly down-regulated in three comparison groups. The relative expression levels of 3 lncRNAs and 4 mRNAs were validated through qRT-PCR. To the best of our knowledge, this study is the first to identify the expression patterns of lncRNAs and mRNAs in hippocampal neurons of Sprague–Dawley rats. The results may provide evidence on underlying mechanisms of Mn-induced neurotoxicity, and aberrantly expressed lncRNAs/mRNAs may be useful in further investigations to detect early symptoms of Mn-induced neuropsychiatric disorders in the central nervous system.  相似文献   

13.
Alzheimer’s disease (AD) is characterized by neurofibrillary tangle and neuropil thread deposition, which ultimately results in neuronal loss. A large number of magnetic resonance imaging studies have reported a smaller hippocampus in AD patients as compared to healthy elderlies. Even though this difference is often interpreted as atrophy, it is only an indirect measurement. A more direct way of measuring the atrophy is to use repeated MRIs within the same individual. Even though several groups have used this appropriate approach, the pattern of hippocampal atrophy still remains unclear and difficult to relate to underlying pathophysiology. Here, in this longitudinal study, we aimed to map hippocampal atrophy rates in patients with AD, mild cognitive impairment (MCI) and elderly controls. Data consisted of two MRI scans for each subject. The symmetric deformation field between the first and the second MRI was computed and mapped onto the three-dimensional hippocampal surface. The pattern of atrophy rate was similar in all three groups, but the rate was significantly higher in patients with AD than in control subjects. We also found higher atrophy rates in progressive MCI patients as compared to stable MCI, particularly in the antero-lateral portion of the right hippocampus. Importantly, the regions showing the highest atrophy rate correspond to those that were described to have the highest burden of tau deposition. Our results show that local hippocampal atrophy rate is a reliable biomarker of disease stage and progression and could also be considered as a method to objectively evaluate treatment effects.  相似文献   

14.
Receptor for advanced glycation end products (RAGE) is a receptor of the immunoglobulin super family that plays various important roles under physiological and pathological conditions. Compelling evidence suggests that RAGE acts as both an inflammatory intermediary and a critical inducer of oxidative stress, underlying RAGE-induced Alzheimer-like pathophysiological changes that drive the process of Alzheimer’s disease (AD). A critical role of RAGE in AD includes beta-amyloid (Aβ) production and accumulation, the formation of neurofibrillary tangles, failure of synaptic transmission, and neuronal degeneration. The steady-state level of Aβ depends on the balance between production and clearance. RAGE plays an important role in the Aβ clearance. RAGE acts as an important transporter via regulating influx of circulating Aβ into brain, whereas the efflux of brain-derived Aβ into the circulation via BBB is implemented by LRP1. RAGE could be an important contributor to Aβ generation via enhancing the activity of β- and/or γ-secretases and activating inflammatory response and oxidative stress. However, sRAGE–Aβ interactions could inhibit Aβ neurotoxicity and promote Aβ clearance from brain. Meanwhile, RAGE could be a promoting factor for the synaptic dysfunction and neuronal circuit dysfunction which are both the material structure of cognition, and the physiological and pathological basis of cognition. In addition, RAGE could be a trigger for the pathogenesis of Aβ and tau hyper-phosphorylation which both participate in the process of cognitive impairment. Preclinical and clinical studies have supported that RAGE inhibitors could be useful in the treatment of AD. Thus, an effective measure to inhibit RAGE may be a novel drug target in AD.  相似文献   

15.
Neurophysiology - The plant Teucrium polium (T.p.) possesses a wide range of pharmacological activities due to the presence, in particular, of different phytochemicals, phenols and flavonoids. We...  相似文献   

16.
Alzheimer’s disease (AD) is characterized by the presence of neuropathological lesions containing amyloid plaques (APs) and hyperphosphorylated Tau containing neurofibrillary tangles (NFTs) and is associated with neuroinflammation and neurodegeneration. Entorhinal cortex (Brodmann’s area 28) is involved in memory associated functions and is one of the first brain areas targeted to form the neuropathological lesions and also severely affected cortical region in AD. Glia maturation factor (GMF), a central nervous system protein and a proinflammatory molecule is known to be up-regulated in the specific areas of AD brain. Our previous immunohistochemical studies using temporal cortex showed that GMF is expressed in the vicinity of APs and NFTs in AD brains. In the present study, we have analyzed the expression of GMF and its association with APs and NFTs in the entorhinal cortex of AD brains by using immunohistochemistry combined with thioflavin-S fluorescence labeling methods. Results showed that GMF immunoreactive glial cells, glial fibrillary acidic protein labeled reactive astrocytes and ionized calcium binding adaptor molecule-1 labeled activated microglia were increased in the entorhinal cortical layers especially at the sites of 6E10 labeled APs and Tau containing NFTs. In conclusion, increased expression of GMF by the glial cells in the entorhinal cortex region, and the co-localization of GMF with APs and NFTs suggest that GMF may play important proinflammatory roles in the pathogenesis of AD.  相似文献   

17.
18.
An initial step in amyloid-β (Aβ) production includes amyloid precursor protein (APP) cleavage via β-Site amyloid precursor protein cleaving enzyme 1 (BACE1). Increased levels of brain Aβ have been implicated in the pathogenesis of Alzheimer’s disease (AD). Thus, β-secretase represents a primary target for inhibitor drug development in AD. In this study, aptamers were obtained from combinatorial oligonucleotide libraries using a technology referred to as systematic evolution of ligands by exponential enrichment (SELEX). A purified human BACE1 extracellular domain was used as a target to conduct an in vitro selection process using SELEX. Two DNA aptamers were capable of binding to BACE1 with high affinity and good specificity, with Kd values in the nanomolar range. We subsequently confirmed that one aptamer, A1, exhibited a distinct inhibitory effect on BACE1 activity in an AD cell model. We detected the effects of M17-APPsw cells that stably expressed Swedish mutant APP after aptamer A1 treatment. Aβ40 and Aβ42 concentrations secreted by M17-APPsw cells decreased intracellularly and in culture media. Furthermore, Western blot analysis indicated that sAPPβ expression significantly decreased in the A1 treated versus control groups. These findings support the preliminary feasibility of an aptamer evolved from a SELEX strategy to function as a potential BACE1 inhibitor. To our knowledge, this is the first study to acquire a DNA aptamer that exhibited binding specificity to BACE1 and inhibited its activity.  相似文献   

19.
Parkinson’s disease (PD) is the most common motor neurodegenerative disorder. Olfactory dysfunction is a prevalent feature of PD. It often precedes motor symptoms by several years and is used in assisting PD diagnosis. However, the cellular and molecular bases of olfactory dysfunction in PD are not known. The fruit fly Drosophila melanogaster, expressing human alpha-synuclein protein or its mutant, A30P, captures several hallmarks of PD and has been successfully used to model PD in numerous studies. First, we report olfactory deficits in fly expressing A30P (A30P), showing deficits in two out of three olfactory modalities, tested – olfactory acuity and odor discrimination. The remaining third modality is odor identification/naming. Second, oxidative stress is an important environmental risk factor of PD. We show that oxidative stress exacerbated the two affected olfactory modalities in younger A30P flies. Third, different olfactory receptor neurons are activated differentially by different odors in flies. In a separate experiment, we show that the odor discrimination deficit in A30P flies is general and not restricted to a specific class of chemical structure. Lastly, by restricting A30P expression to dopamine, serotonin or olfactory receptor neurons, we show that A30P expression in dopamine neurons is necessary for development of both acuity and discrimination deficits, while serotonin and olfactory receptor neurons appeared not involved. Our data demonstrate olfactory deficits in a synuclein fly PD model for exploring olfactory pathology and physiology, and for monitoring PD progression and treatment.  相似文献   

20.
McGill-R-Thy1-APP rats express the human amyloid precursor protein carrying the Swedish and Indiana mutations. We examined the neurochemical content of the dorsal hippocampus in three-months-old male and female transgenic rats and healthy age- and gender-matched controls using in vivo 1H MRS in order to assess early metabolite alterations and whether these were similar for both genders. Whereas male and female controls had similar levels of all metabolites, differences were evident between male and female McGill-R-Thy1-APP rats. Compared with McGill-R-Thy1-APP females, McGill-R-Thy1-APP males had lower levels of myo-inositol and N-acetylaspartate (NAA). No differences in metabolite levels were evident when female control and McGill-R-Thy1-APP rats were compared, whereas McGill-R-Thy1-APP males had lower levels of glutamate, NAA and total choline compared with male controls. In addition to metabolite concentrations, metabolite ratios are reported as these are widely used. The results from this preliminary study demonstrate early metabolite alterations in the dorsal hippocampus of males in this rat model of Alzheimer’s disease, and imply that very early possible neurochemical markers of the disease are different for males and females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号