首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gene regulatory networks exhibit complex, hierarchical features such as global regulation and network motifs. There is much debate about whether the evolutionary origins of such features are the results of adaptation, or the by-products of non-adaptive processes of DNA replication. The lack of availability of gene regulatory networks of ancestor species on evolutionary timescales makes this a particularly difficult problem to resolve. Digital organisms, however, can be used to provide a complete evolutionary record of lineages. We use a biologically realistic evolutionary model that includes gene expression, regulation, metabolism and biosynthesis, to investigate the evolution of complex function in gene regulatory networks. We discover that: (i) network architecture and complexity evolve in response to environmental complexity, (ii) global gene regulation is selected for in complex environments, (iii) complex, inter-connected, hierarchical structures evolve in stages, with energy regulation preceding stress responses, and stress responses preceding growth rate adaptations and (iv) robustness of evolved models to mutations depends on hierarchical level: energy regulation and stress responses tend not to be robust to mutations, whereas growth rate adaptations are more robust and non-lethal when mutated. These results highlight the adaptive and incremental evolution of complex biological networks, and the value and potential of studying realistic in silico evolutionary systems as a way of understanding living systems.  相似文献   

2.
Systems biology is today such a widespread discipline that it becomes difficult to propose a clear definition of what it really is. For some, it remains restricted to the genomic field. For many, it designates the integrated approach or the corpus of computational methods employed to handle the vast amount of biological or medical data and investigate the complexity of the living. Although defining systems biology might be difficult, on the other hand its purpose is clear: systems biology, with its emerging subfields systems medicine and systems pharmacology, clearly aims at making sense of complex observations/experimental and clinical datasets to improve our understanding of diseases and their treatments without putting aside the context in which they appear and develop. In this short review, we aim to specifically focus on these new subfields with the new theoretical tools and approaches that were developed in the context of cancer. Systems pharmacology and medicine now give hope for major improvements in cancer therapy, making personalized medicine closer to reality. As we will see, the current challenge is to be able to improve the clinical practice according to the paradigm shift of systems sciences.  相似文献   

3.
Here we discuss the challenge posed by self-organization to the Darwinian conception of evolution. As we point out, natural selection can only be the major creative agency in evolution if all or most of the adaptive complexity manifest in living organisms is built up over many generations by the cumulative selection of naturally occurring small, random mutations or variants, i.e., additive, incremental steps over an extended period of time. Biological self-organization—witnessed classically in the folding of a protein, or in the formation of the cell membrane—is a fundamentally different means of generating complexity. We agree that self-organizing systems may be fine-tuned by selection and that self-organization may be therefore considered a complementary mechanism to natural selection as a causal agency in the evolution of life. But we argue that if self-organization proves to be a common mechanism for the generation of adaptive order from the molecular to the organismic level, then this will greatly undermine the Darwinian claim that natural selection is the major creative agency in evolution. We also point out that although complex self-organizing systems are easy to create in the electronic realm of cellular automata, to date translating in silico simulations into real material structures that self-organize into complex forms from local interactions between their constituents has not proved easy. This suggests that self-organizing systems analogous to those utilized by biological systems are at least rare and may indeed represent, as pre-Darwinists believed, a unique ascending hierarchy of natural forms. Such a unique adaptive hierarchy would pose another major challenge to the current Darwinian view of evolution, as it would mean the basic forms of life are necessary features of the order of nature and that the major pathways of evolution are determined by physical law, or more specifically by the self-organizing properties of biomatter, rather than natural selection.  相似文献   

4.
5.
Recent successes of systems biology clarified that biological functionality is multilevel. We point out that this fact makes it necessary to revise popular views about macromolecular functions and distinguish between local, physico-chemical and global, biological functions. Our analysis shows that physico-chemical functions are merely tools of biological functionality. This result sheds new light on the origin of cellular life, indicating that in evolutionary history, assignment of biological functions to cellular ingredients plays a crucial role. In this wider picture, even if aggregation of chance mutations of replicator molecules and spontaneously self-assembled proteins led to the formation of a system identical with a living cell in all physical respects but devoid of biological functions, it would remain an inanimate physical system, a pseudo-cell or a zombie-cell but not a viable cell. In the origin of life scenarios, a fundamental circularity arises, since if cells are the minimal units of life, it is apparent that assignments of cellular functions require the presence of cells and vice versa. Resolution of this dilemma requires distinguishing between physico-chemical and biological symbols as well as between physico-chemical and biological information. Our analysis of the concepts of symbol, rule and code suggests that they all rely implicitly on biological laws or principles. We show that the problem is how to establish physico-chemically arbitrary rules assigning biological functions without the presence of living organisms. We propose a solution to that problem with the help of a generalized action principle and biological harnessing of quantum uncertainties. By our proposal, biology is an autonomous science having its own fundamental principle. The biological principle ought not to be regarded as an emergent phenomenon. It can guide chemical evolution towards the biological one, progressively assigning greater complexity and functionality to macromolecules and systems of macromolecules at all levels of organization. This solution explains some perplexing facts and posits a new context for thinking about the problems of the origin of life and mind.  相似文献   

6.
7.
Assuming that the repertoire of responses by living systems to perturbation gives a measure of their Darwinian fitness in a rapidly fluctuating environment, those that fulfill allometries (power laws) are described by means of catastrophes, whose variables and parameters are smooth functions of biological attributes. Using empirical allometries from a given system as input, a method is proposed to construct its associated catastrophe, allowing specific predictions on its susceptibility to perturbation and related properties, based on general results from catastrophe theory. The method is discussed within the macroecological context, and an example is provided by applying it to ecological systems that satisfy the self-thinning rule.  相似文献   

8.
Setzkorn C  Paton RC 《Bio Systems》2005,81(2):101-112
Extracting comprehensible and general classifiers from data in the form of rule systems is an important task in many problem domains. This study investigates the utility of a multi-objective evolutionary algorithm (MOEA) for this task. Multi-objective evolutionary algorithms are capable of finding several trade-off solutions between different objectives in a single run. In the context of the present study, the objectives to be optimised are the complexity of the rule systems, and their fit to the data. Complex rule systems are required to fit the data well. However, overly complex rule systems often generalise poorly on new data. In addition they tend to be incomprehensible. It is, therefore, important to obtain trade-off solutions that achieve the best possible fit to the data with the lowest possible complexity. The rule systems produced by the proposed multi-objective evolutionary algorithm are compared with those produced by several other existing approaches for a number of benchmark datasets. It is shown that the algorithm produces less complex classifiers that perform well on unseen data.  相似文献   

9.
The paper deals with the concept of the identity of living organisms, a concept used up until now very ambiguously. The discussion rests on the combination of two concepts, one proposed by Munzer (1993) and another derived from the considerations of Riedl (1975). The first is the proposal that the identity of living organisms depends on the properties of their elementary constituents, such as cells and tissues, and that these properties, in turn, depend on those of their DNA and RNA. It follows that the identity of a living organism remains constant or changes during life according to whether its DNA and RNA content also remains constant or changes. The second is the consideration that, during duplication of a cell population, the informational content of the population does not increase if the duplicated cells are identical (increase only of redundant DNA). On the other hand the informational content of the cell population increases if the duplicated cells are the result of a variation-selection process (increase of essential DNA). The changes of DNA and RNA content, occurring in the germinal cells during phylogenesis and in the somatic cells of the evolutionary systems during ontogenesis, lead, therefore, to the generation of new identities. Living organisms are suggested to reflect two types of identity, that of the deterministic and that of the evolutionary systems. Since the informational content of the deterministic systems (the essential DNA content) remains approximately constant during life, their identity also remains constant. The changes in the number of elementary constituents and cell volumes during the processes of hypertrophy and atrophy are accompanied only by changes in the amount of DNA (the redundant DNA). On the other hand the informational content of the evolutionary systems (the essential DNA), such as the brain-mind system, the immunological system and some receptor systems, undergo a marked increase during the ontogenic development: this leads to changes of identity of these systems. For example, in the immunological system the process of mutation and recombination of the DNA of the immunological cells leads to the generation of new proteins in the amount about 10,000 times larger than that produced through the decodification of the genome. Also the construction of the neural network, and of a number of synapses much larger than that of the neuronal cells, requires the generation of an amount of new information much larger than that contained in the genome. In short, the attribution of a double identity to living organisms reflects the simultaneous presence of systems developing either within strictly programmed limits or without programs and limits, say as closed or open projects. The difference between the two types of systems explains the different effects in the case of the transplants. The identity of the recipient of transplants is not altered in the case of transplants of a deterministic system but is so in case of transplants of evolutionary systems. There is now a widespread fear of the possibility of human cloning. It is argued that this fear is unjustified because a cloning process can never succeed in duplicating those parts which are essential for the characters of humans, namely those concerned with the properties of the evolutionary systems.  相似文献   

10.
Pogun S 《Bio Systems》2001,63(1-3):101-114
Interesting and intriguing questions involve complex systems whose properties cannot be explained fully by reductionist approaches. Last century was dominated by physics, and applying the simple laws of physics to biology appeared to be a practical solution to understand living organisms. However, although some attributes of living organisms involve physico-chemical properties, the genetic program and evolutionary history of complex biological systems make them unique and unpredictable. Furthermore, there are and will be 'unobservable' phenomena in biology which have to be accounted for.  相似文献   

11.
Ecology Letters (2011) 14: 841-851 ABSTRACT: Ecological specialisation concerns all species and underlies many major ecological and evolutionary patterns. Yet its status as a unifying concept is not always appreciated because of its similarity to concepts of the niche, the many levels of biological phenomena to which it applies, and the complexity of the mechanisms influencing it. The evolution of specialisation requires the coupling of constraints on adaptive evolution with covariation of genotype and environmental performance. This covariation itself depends upon organismal properties such as dispersal behaviour and life history and complexity in the environment stemming from factors such as species interactions and spatio-temporal heterogeneity in resources. Here, we develop a view on specialisation that integrates across the range of biological phenomena with the goal of developing a more predictive conceptual framework that specifically accounts for the importance of biotic complexity and coevolutionary events.  相似文献   

12.
Genotype-to-phenotype maps exhibit complexity. This genetic complexity is mentioned frequently in the literature, but a consistent and quantitative definition is lacking. Here, we derive such a definition and investigate its consequences for model genetic systems. The definition equates genetic complexity with a surplus of genotypic diversity over phenotypic diversity. Applying this definition to ensembles of Boolean network models, we found that the in-degree distribution and the number of periodic attractors produced determine the relative complexity of different topology classes. We found evidence that networks that are difficult to control, or that exhibit a hierarchical structure, are genetically complex. We analyzed the complexity of the cell cycle network of Sacchoromyces cerevisiae and pinpointed genes and interactions that are most important for its high genetic complexity. The rigorous definition of genetic complexity is a tool for unraveling the structure and properties of genotype-to-phenotype maps by enabling the quantitative comparison of the relative complexities of different genetic systems. The definition also allows the identification of specific network elements and subnetworks that have the greatest effects on genetic complexity. Moreover, it suggests ways to engineer biological systems with desired genetic properties.  相似文献   

13.
Biological complexity is a key component of evolvability, yet its study has been hampered by a focus on evolutionary trends of complexification and inconsistent definitions. Here, we demonstrate the utility of bringing complexity into the framework of epigenetics to better investigate its utility as a concept in evolutionary biology. We first analyze the existing metrics of complexity and explore the link between complexity and adaptation. Although recently developed metrics allow for a unified framework, they omit developmental mechanisms. We argue that a better approach to the empirical study of complexity and its evolution includes developmental mechanisms. We then consider epigenetic mechanisms and their role in shaping developmental and evolutionary trajectories, as well as the development and organization of complexity. We argue that epigenetics itself could have emerged from complexity because of a need to self‐regulate. Finally, we explore hybridization complexes and hybrid organisms as potential models for studying the association between epigenetics and complexity. Our goal is not to explain trends in biological complexity but to help develop and elucidate novel questions in the investigation of biological complexity and its evolution.  相似文献   

14.
The reductionist approach of dissecting biological systems into their constituents has been successful in the first stage of the molecular biology to elucidate the chemical basis of several biological processes. This knowledge helped biologists to understand the complexity of the biological systems evidencing that most biological functions do not arise from individual molecules; thus, realizing that the emergent properties of the biological systems cannot be explained or be predicted by investigating individual molecules without taking into consideration their relations. Thanks to the improvement of the current -omics technologies and the increasing understanding of the molecular relationships, even more studies are evaluating the biological systems through approaches based on graph theory. Genomic and proteomic data are often combined with protein-protein interaction (PPI) networks whose structure is routinely analyzed by algorithms and tools to characterize hubs/bottlenecks and topological, functional, and disease modules. On the other hand, co-expression networks represent a complementary procedure that give the opportunity to evaluate at system level including organisms that lack information on PPIs. Based on these premises, we introduce the reader to the PPI and to the co-expression networks, including aspects of reconstruction and analysis. In particular, the new idea to evaluate large-scale proteomic data by means of co-expression networks will be discussed presenting some examples of application. Their use to infer biological knowledge will be shown, and a special attention will be devoted to the topological and module analysis.  相似文献   

15.
Bioinformatics is a central discipline in modern life sciences aimed at describing the complex properties of living organisms starting from large-scale data sets of cellular constituents such as genes and proteins. In order for this wealth of information to provide useful biological knowledge, databases and software tools for data collection, analysis and interpretation need to be developed. In this paper, we review recent advances in the design and implementation of bioinformatics resources devoted to the study of metals in biological systems, a research field traditionally at the heart of bioinorganic chemistry. We show how metalloproteomes can be extracted from genome sequences, how structural properties can be related to function, how databases can be implemented, and how hints on interactions can be obtained from bioinformatics.  相似文献   

16.
Life is a complex phenomenon that not only requires individual self-producing and self-sustaining systems but also a historical-collective organization of those individual systems, which brings about characteristic evolutionary dynamics. On these lines, we propose to define universally living beings as autonomous systems with open-ended evolution capacities, and we claim that all such systems must have a semi-permeable active boundary (membrane), an energy transduction apparatus (set of energy currencies) and, at least, two types of functionally interdependent macromolecular components (catalysts and records). The latter is required to articulate a 'phenotype-genotype' decoupling that leads to a scenario where the global network of autonomous systems allows for an open-ended increase in the complexity of the individual agents. Thus, the basic-individual organization of biological systems depends critically on being instructed by patterns (informational records) whose generation and reliable transmission cannot be explained but take into account the complete historical network of relationships among those systems. We conclude that a proper definition of life should consider both levels, individual and collective: living systems cannot be fully constituted without being part of the evolutionary process of a whole ecosystem. Finally, we also discuss a few practical implications of the definition for different programs of research.  相似文献   

17.
Knowledge-making distinctions in synthetic biology   总被引:1,自引:0,他引:1  
Synthetic biology is an increasingly high-profile area of research that can be understood as encompassing three broad approaches towards the synthesis of living systems: DNA-based device construction, genome-driven cell engineering and protocell creation. Each approach is characterized by different aims, methods and constructs, in addition to a range of positions on intellectual property and regulatory regimes. We identify subtle but important differences between the schools in relation to their treatments of genetic determinism, cellular context and complexity. These distinctions tie into two broader issues that define synthetic biology: the relationships between biology and engineering, and between synthesis and analysis. These themes also illuminate synthetic biology's connections to genetic and other forms of biological engineering, as well as to systems biology. We suggest that all these knowledge-making distinctions in synthetic biology raise fundamental questions about the nature of biological investigation and its relationship to the construction of biological components and systems.  相似文献   

18.
The curative properties of garlic in medicine have been known for a long time. But, it was only in the last three decades when garlic properties were seriously investigated confirming its potential as therapeutic agent. Allicin, ajoene, thiosulfinates and a wide range of other organosulphurate compounds, are known to be the constituents linked to the garlic properties. Regarding the biochemical properties of these compounds, ajoene [(E,Z)-4,5,9 Trithiadodeca 1,6,11 Triene 9-oxide] is stable in water, and it can be obtained by chemical synthesis. There is evidence that some of the garlic constituents exert a wide variety of effects on different biological systems. However, ajoene is the garlic compound related to more biological activities, as showed in in vitro and in vivo systems. Those studies found that ajoene has antithrombotic, anti-tumoral,antifungal, and antiparasitic effects. This study deals with a recently described antifungal property of ajoene, and its potential use in clinical trails to treat several fungal infections.  相似文献   

19.
Embryonic development is underpinned by ~50 core processes that drive morphogenesis, growth, patterning and differentiation, and each is the functional output of a complex molecular network. Processes are thus the natural and parsimonious link between genotype and phenotype and the obvious focus for any discussion of biological change. Here, the implications of this approach are explored. One is that many features of developmental change can be modeled as mathematical graphs, or sets of connected triplets of the general form <noun><verb><noun>. In these, the verbs (edges) are the outputs of the processes that drive change and the nouns (nodes) are the time-dependent states of biological entities (from molecules to tissues). Such graphs help unpick the multi-level complexity of developmental phenomena and may help suggest new experiments. Another comes from analyzing the effect of mutation that lead to tinkering with the dynamic properties of these processes and to congenital abnormalities; if these changes are both inherited and advantageous, they become evolutionary modifications. In this context, protein networks often represents what classical evolutionary genetics sees as genes, and the realization that traits reflect the output processes of complex networks, particularly for growth, patterning and pigmentation, rather than anything simpler clarifies some problems that the evolutionary synthesis of the 1950s has found hard to solve. In the wider context, most processes are used many times in development and cooperate to produce tissue modules (bones, branching duct systems, muscles etc.). Their underlying generative networks can thus be thought of as genomic modules or subroutines.  相似文献   

20.
Freeman WJ  Kozma R  Werbos PJ 《Bio Systems》2001,59(2):109-123
Existing methods of complexity research are capable of describing certain specifics of bio systems over a given narrow range of parameters but often they cannot account for the initial emergence of complex biological systems, their evolution, state changes and sometimes-abrupt state transitions. Chaos tools have the potential of reaching to the essential driving mechanisms that organize matter into living substances. Our basic thesis is that while established chaos tools are useful in describing complexity in physical systems, they lack the power of grasping the essence of the complexity of life. This thesis illustrates sensory perception of vertebrates and the operation of the vertebrate brain. The study of complexity, at the level of biological systems, cannot be completed by the analytical tools, which have been developed for non-living systems. We propose a new approach to chaos research that has the potential of characterizing biological complexity. Our study is biologically motivated and solidly based in the biodynamics of higher brain function. Our biocomplexity model has the following features, (1) it is high-dimensional, but the dimensionality is not rigid, rather it changes dynamically; (2) it is not autonomous and continuously interacts and communicates with individual environments that are selected by the model from the infinitely complex world; (3) as a result, it is adaptive and modifies its internal organization in response to environmental factors by changing them to meet its own goals; (4) it is a distributed object that evolves both in space and time towards goals that is continually re-shaping in the light of cumulative experience stored in memory; (5) it is driven and stabilized by noise of internal origin through self-organizing dynamics. The resulting theory of stochastic dynamical systems is a mathematical field at the interface of dynamical system theory and stochastic differential equations. This paper outlines several possible avenues to analyze these systems. Of special interest are input-induced and noise-generated, or spontaneous state-transitions and related stability issues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号