首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Tumour metastasis in the lymphatics is a crucial step in the progression of breast cancer. The dynamics by which breast cancer cells (BCCs) travel in the lymphatics remains poorly understood. The goal of this work is to develop a model capable of predicting the shear stresses metastasising BCCs experience using numerical and experimental techniques. This paper models the fluidic transport of large particles (\(\eta =d_{\mathrm{p}}/W=0.1-0.4\) where \(d_{\mathrm{p}}\) is the particle diameter and W is the channel width) subjected to lymphatic flow conditions (\({ Re}=0.04\)), in a \(100\times 100\,\upmu \hbox {m}\) microchannel. The feasibility of using the dynamic fluid body interaction (DFBI) method to predict particle motion was assessed, and particle tracking experiments were performed. The experiments found that particle translational velocity decreased from the undisturbed fluid velocity with increasing particle size (5–14% velocity lag for \(\eta =0.1-0.3\)). DFBI simulations were found to better predict particle behaviour than theoretical predictions; however, mesh restrictions in the near-wall region (\(0.2\,\mathrm{W}>y>0.8\,\mathrm{W}\)) result in computationally expensive models. The simulations were in good agreement with the experiments (\(<12\%\) difference) across the channel (\(0.2\,\mathrm{W}\le y\le 0.8\,\mathrm{W}\)), with differences up to 25% in the near-wall region. Particles experience a range of shear stresses (0.002–0.12 Pa) and spatial shear gradients (\(0.004-0.137\,\hbox {Pa}/\upmu \hbox {m}\)) depending on their size and radial position. The predicted shear gradients are far in excess of values associated with BCC apoptosis (\(0.004-0.023\,\hbox {Pa}/\upmu \hbox {m}\)). Increasing our understanding of the shear stress magnitudes and gradients experienced by BCCs could be leveraged to elucidate whether a particular BCC size or location exists that encourages metastasis within the lymphatics.  相似文献   

2.
Aberrant NSD2 methyltransferase activity is implicated as the oncogenic driver in multiple myeloma, suggesting opportunities for novel therapeutic intervention. The methyltransferase activity of NSD2 resides in its catalytic SET domain, which is conserved among most lysine methyltransferases. Here we report the backbone \(\hbox {H}^{\mathrm{N}}\), N, C\(^{\prime }\), \(\hbox {C}^\alpha\) and side-chain \(\hbox {C}^\beta\) assignments of a 25 kDa NSD2 SET domain construct, spanning residues 991–1203. A chemical shift analysis of C\(^{\prime }\), \(\hbox {C}^\alpha\) and \(\hbox {C}^\beta\) resonances predicts a secondary structural pattern that is in agreement with homology models.  相似文献   

3.
The Pacinian corpuscle (PC) is the cutaneous mechanoreceptor responsible for sensation of high-frequency (20–1000 Hz) vibrations. PCs lie deep within the skin, often in multicorpuscle clusters with overlapping receptive fields. We developed a finite-element mechanical model of one or two PCs embedded within human skin, coupled to a multiphysics PC model to simulate action potentials elicited by each PC. A vibration was applied to the skin surface, and the resulting mechanical signal was analyzed using two metrics: the deformation amplitude ratio (\({\rho }_{\mathrm{1S}} \), \({\rho }_{\mathrm{2S}} )\) and the phase shift of the vibration (\({\delta }_{\mathrm{S}1}^{\mathrm{mech}} \), \({\delta }_{\mathrm{S}2}^{\mathrm{mech}} )\) between the stimulus and the PC. Our results showed that the amplitude attenuation and phase shift at a PC increased with distance from the stimulus to the PC. Differences in amplitude (\(\rho _{12} )\) and phase shift (\({\delta }_{12}^{\mathrm{mech}} )\) between the two PCs in simulated clusters directly affected the interspike interval between the action potentials elicited by each PC (\({\delta }_{12}^{\mathrm{spike}} )\). While \({\delta }_{12}^{\mathrm{mech}} \) had a linear relationship with \({\delta }_{12}^{\mathrm{spike}} \), \(\rho _{12} \)’s effect on \({\delta }_{12}^{\mathrm{spike}} \) was greater for lower values of \(\rho _{12} \). In our simulations, the separation between PCs and the distance of each PC from the stimulus location resulted in differences in amplitude and phase shift at each PC that caused \({\delta }_{12}^{\mathrm{spike}} \) to vary with PC location. Our results suggest that PCs within a cluster receive different mechanical stimuli which may enhance source localization of vibrotactile stimuli, drawing parallels to sound localization in binaural hearing.  相似文献   

4.
5.
6.
We develop a mathematical model of a salivary gland acinar cell with the objective of investigating the role of two \(\mathrm{Cl}^-/\mathrm{HCO}_3^-\) exchangers from the solute carrier family 4 (Slc4), Ae2 (Slc4a2) and Ae4 (Slc4a9), in fluid secretion. Water transport in this type of cell is predominantly driven by \(\mathrm{Cl}^-\) movement. Here, a basolateral \(\mathrm{Na}^+/ \mathrm{K}^+\) adenosine triphosphatase pump (NaK-ATPase) and a \(\mathrm{Na}^+\)\(\mathrm{K}^+\)\(2 \mathrm{Cl}^-\) cotransporter (Nkcc1) are primarily responsible for concentrating the intracellular space with \(\mathrm{Cl}^-\) well above its equilibrium potential. Gustatory and olfactory stimuli induce the release of \(\mathrm{Ca}^{2+}\) ions from the internal stores of acinar cells, which triggers saliva secretion. \(\mathrm{Ca}^{2+}\)-dependent \(\mathrm{Cl}^-\) and \(\mathrm{K}^+\) channels promote ion secretion into the luminal space, thus creating an osmotic gradient that promotes water movement in the secretory direction. The current model for saliva secretion proposes that \(\mathrm{Cl}^-/ \mathrm{HCO}_3^-\) anion exchangers (Ae), coupled with a basolateral \(\mathrm{Na}^+/\hbox {proton}\) (\(\hbox {H}^+\)) (Nhe1) antiporter, regulate intracellular pH and act as a secondary \(\mathrm{Cl}^-\) uptake mechanism (Nauntofte in Am J Physiol Gastrointest Liver Physiol 263(6):G823–G837, 1992; Melvin et al. in Annu Rev Physiol 67:445–469, 2005.  https://doi.org/10.1146/annurev.physiol.67.041703.084745). Recent studies demonstrated that Ae4 deficient mice exhibit an approximate \(30\%\) decrease in gland salivation (Peña-Münzenmayer et al. in J Biol Chem 290(17):10677–10688, 2015). Surprisingly, the same study revealed that absence of Ae2 does not impair salivation, as previously suggested. These results seem to indicate that the Ae4 may be responsible for the majority of the secondary \(\mathrm{Cl}^-\) uptake and thus a key mechanism for saliva secretion. Here, by using ‘in-silico’ Ae2 and Ae4 knockout simulations, we produced mathematical support for such controversial findings. Our results suggest that the exchanger’s cotransport of monovalent cations is likely to be important in establishing the osmotic gradient necessary for optimal transepithelial fluid movement.  相似文献   

7.
Previous genomewide association studies (GWAS) and meta-analyses have enumerated several genes/loci in major histocompatibility complex region, which are consistently associated with rheumatoid arthritis (RA) in different ethnic populations. Given the genetic heterogeneity of the disease, it is necessary to replicate these susceptibility loci in other populations. In this case, we investigate the analysis of two SNPs, rs13192471 and rs6457617, from the human leukocyte antigen (HLA) region with the risk of RA in Tunisian population. These SNPs were previously identified to have a strong RA association signal in several GWAS studies. A case–control sample composed of 142 RA patients and 123 healthy controls was analysed. Genotyping of rs13192471 and rs6457617 was carried out using real-time PCR methods by TaqMan allelic discrimination assay. A trend of significant association was found in rs6457617 TT genotype with susceptibility to RA (\(P = 0.04\), \(p_{c} = 0.08\), \(\hbox {OR} = 1.73\)). Moreover, using multivariable analysis, the combination of rs6457617*TT–HLA-DRB1*\(04^{+}\) increased risk of RA (\(\hbox {OR} = 2.38\)), which suggest a gene–gene interaction event between rs6457617 located within the HLA-DQB1 and HLA-DRB1. Additionally, haplotypic analysis highlighted a significant association of rs6457617*T–HLA-DRB1*\(04^{+}\) haplotype with susceptibility to RA (\(P = 0.018\), \(p_{c} = 0.036\), \(\hbox {OR} = 1.72\)). An evidence of association was shown subsequently in \(\hbox {antiCCP}^{+}\) subgroup with rs6457617 both in T allele and TT genotype (\(P = 0.01\), \(p_{c} = 0.03\), \(\hbox {OR} = 1.66\) and \(P = 0.008\), \(p_{c} = 0.024\), \(\hbox {OR} = 1.28\), respectively). However, no association was shown for rs13192471 polymorphism with susceptibility and severity to RA. This study suggests the involvement of rs6457617 locus as risk variant for susceptibility/severity to RA in Tunisian population. Secondly, it highlights the gene–gene interaction between HLA-DQB1 and HLA-DRB1.  相似文献   

8.
We developed a dynamic model of a rat proximal convoluted tubule cell in order to investigate cell volume regulation mechanisms in this nephron segment. We examined whether regulatory volume decrease (RVD), which follows exposure to a hyposmotic peritubular solution, can be achieved solely via stimulation of basolateral K\(^+\) and \(\hbox {Cl}^-\) channels and \(\hbox {Na}^+\)\(\hbox {HCO}_3^-\) cotransporters. We also determined whether regulatory volume increase (RVI), which follows exposure to a hyperosmotic peritubular solution under certain conditions, may be accomplished by activating basolateral \(\hbox {Na}^+\)/H\(^+\) exchangers. Model predictions were in good agreement with experimental observations in mouse proximal tubule cells assuming that a 10% increase in cell volume induces a fourfold increase in the expression of basolateral K\(^+\) and \(\hbox {Cl}^-\) channels and \(\hbox {Na}^+\)\(\hbox {HCO}_3^-\) cotransporters. Our results also suggest that in response to a hyposmotic challenge and subsequent cell swelling, \(\hbox {Na}^+\)\(\hbox {HCO}^-_3\) cotransporters are more efficient than basolateral K\(^+\) and \(\hbox {Cl}^-\) channels at lowering intracellular osmolality and reducing cell volume. Moreover, both RVD and RVI are predicted to stabilize net transcellular \(\hbox {Na}^+\) reabsorption, that is, to limit the net \(\hbox {Na}^+\) flux decrease during a hyposmotic challenge or the net \(\hbox {Na}^+\) flux increase during a hyperosmotic challenge.  相似文献   

9.
Despite major strides in the treatment of cancer, the development of drug resistance remains a major hurdle. One strategy which has been proposed to address this is the sequential application of drug therapies where resistance to one drug induces sensitivity to another drug, a concept called collateral sensitivity. The optimal timing of drug switching in these situations, however, remains unknown. To study this, we developed a dynamical model of sequential therapy on heterogeneous tumors comprised of resistant and sensitive cells. A pair of drugs (DrugA, DrugB) are utilized and are periodically switched during therapy. Assuming resistant cells to one drug are collaterally sensitive to the opposing drug, we classified cancer cells into two groups, \(A_\mathrm{R}\) and \(B_\mathrm{R}\), each of which is a subpopulation of cells resistant to the indicated drug and concurrently sensitive to the other, and we subsequently explored the resulting population dynamics. Specifically, based on a system of ordinary differential equations for \(A_\mathrm{R}\) and \(B_\mathrm{R}\), we determined that the optimal treatment strategy consists of two stages: an initial stage in which a chosen effective drug is utilized until a specific time point, T, and a second stage in which drugs are switched repeatedly, during which each drug is used for a relative duration (i.e., \(f \Delta t\)-long for DrugA and \((1-f) \Delta t\)-long for DrugB with \(0 \le f \le 1\) and \(\Delta t \ge 0\)). We prove that the optimal duration of the initial stage, in which the first drug is administered, T, is shorter than the period in which it remains effective in decreasing the total population, contrary to current clinical intuition. We further analyzed the relationship between population makeup, \(\mathcal {A/B} = A_\mathrm{R}/B_\mathrm{R}\), and the effect of each drug. We determine a critical ratio, which we term \(\mathcal {(A/B)}^{*}\), at which the two drugs are equally effective. As the first stage of the optimal strategy is applied, \(\mathcal {A/B}\) changes monotonically to \(\mathcal {(A/B)}^{*}\) and then, during the second stage, remains at \(\mathcal {(A/B)}^{*}\) thereafter. Beyond our analytic results, we explored an individual-based stochastic model and presented the distribution of extinction times for the classes of solutions found. Taken together, our results suggest opportunities to improve therapy scheduling in clinical oncology.  相似文献   

10.
Muscle and joint contact force influence stresses at the proximal growth plate of the femur and thus bone growth, affecting the neck shaft angle (NSA) and femoral anteversion (FA). This study aims to illustrate how different muscle groups’ activation during gait affects NSA and FA development in able-bodied children. Subject-specific femur models were developed for three able-bodied children (ages 6, 7, and 11 years) using magnetic resonance images. Contributions of different muscle groups—hip flexors, hip extensors, hip adductors, hip abductors, and knee extensors—to overall hip contact force were computed. Specific growth rate for the growth plate was computed, and the growth was simulated in the principal stress direction at each element in the growth front. The predicted growth indicated decreased NSA and FA (of about \(0.1 {^{\circ }}\) over a four-month period) for able-bodied children. Hip abductors contributed the most, and hip adductors, the least, to growth rate. All muscles groups contributed to a decrease in predicted NSA (\(\sim \)0.01\({^{\circ }}\)–0.04\({^{\circ }})\) and FA (\(\sim \)0.004\({^{\circ }}\)\(0.2{^{\circ }}\)), except hip extensors and hip adductors, which showed a tendency to increase the FA (\(\sim \)0.004\({^{\circ }}\)\(0.02{^{\circ }}\)). Understanding influences of different muscle groups on long bone growth tendency can help in treatment planning for growing children with affected gait.  相似文献   

11.
The present study aimed to investigate the association of \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) and \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) polymorphisms of GSTP1 with coronary artery disease (CAD) in a subgroup of north Indian population. In the present case–control study, CAD patients (\(n = 200\)) and age-matched, sex-matched and ethnicity-matched healthy controls (\(n = 200\)) were genotyped for polymorphisms in GSTP1 using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Genotype distribution of \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) and \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) polymorphisms of GSTP1 gene was significantly different between cases and controls (\(P = 0.005\) and 0.024, respectively). Binary logistic regression analysis showed significant association of A/G (odds ratio (OR): 1.6, 95% CI: 1.08–2.49, \(P = 0.020\)) and G/G (OR: 3.1, 95% CI: 1.41–6.71, P \(=\) 0.005) genotypes of GSTP1 \(\hbox {g}.313\hbox {A}{\!>\!}\hbox {G}\), and C/T (OR: 5.8, 95% CI: 1.26–26.34, \(P = 0.024\)) genotype of GSTP1 \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) with CAD. The A/G and G/G genotypes of \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) and C/T genotype of \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) conferred 6.5-fold increased risk for CAD (OR: 6.5, 95% CI: 1.37–31.27, \(P = 0.018\)). Moreover, the recessive model of GSTP1 \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) is the best fit inheritance model to predict the susceptible gene effect (OR: 2.3, 95% CI: 1.11–4.92, \(P = 0.020\)). In conclusion, statistically significant associations of GSTP1 \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) (A/G, G/G) and \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) (C/T) genotypes with CAD were observed.  相似文献   

12.
To facilitate the development of new materials for use in batteries, it is necessary to develop ab initio full-electron computational techniques for modeling potential new battery materials. Here, we tested density functional theory procedures that are accurate enough to obtain the energetics of a zinc/copper voltaic cell. We found the magnitude of the zero-point energy correction to be 0.01–0.2 kcal/mol per atom or molecule and the magnitude of the dispersion correction to be 0.1–0.6 kcal/mol per atom or molecule for Zn n , (H2O) n , \( \mathrm{Zn}{\left({\mathrm{H}}_2\mathrm{O}\right)}_n^{2+} \), \( \mathrm{Cu}{\left({\mathrm{H}}_2\mathrm{O}\right)}_n^{2+} \), and Cu n . Counterpoise correction significantly affected the values of ?\( {E}_n^{\mathrm{abs}} \), ?\( {E}_n^{\mathrm{coh}} \), and ?Esolv by 1.0–3.1 kcal/mol per atom or molecule at the B3PW91/6-31G(d) level of theory, but by only 0.04–0.4 kcal/mol per atom or molecule at the B3PW91/cc-pVTZ level of theory. The application of B3PW91/6-31G(d) yielded results that differed from macroscopic experimental values by 0.1–7.1 kcal/mol per atom or molecule, whereas applying B3PW91/cc-pVTZ produced results that differed from macroscopic experimental values by 0.1–4.8 kcal/mol per atom or molecule, with the smallest differences occurring for reactions with a small macroscopic experimental ?E and the largest differences occurring for reactions with a large macroscopic experimental ?E, implying size consistency.  相似文献   

13.
This study presents a framework for a direct comparison of experimental vocal fold dynamics data to a numerical two-mass-model (2MM) by solving the corresponding inverse problem of which parameters lead to similar model behavior. The introduced 2MM features improvements such as a variable stiffness and a modified collision force. A set of physiologically sensible degrees of freedom is presented, and three optimization algorithms are compared on synthetic vocal fold trajectories. Finally, a total of 288 high-speed video recordings of six excised porcine larynges were optimized to validate the proposed framework. Particular focus lay on the subglottal pressure, as the experimental subglottal pressure is directly comparable to the model subglottal pressure. Fundamental frequency, amplitude and objective function values were also investigated. The employed 2MM is able to replicate the behavior of the porcine vocal folds very well. The model trajectories’ fundamental frequency matches the one of the experimental trajectories in \(98.6\%\) of the recordings. The relative error of the model trajectory amplitudes is on average \(9.5\%\). The experiments feature a mean subglottal pressure of 10.16 (SD \(= 2.31\)) \({\text {cmH}}_2{\text {O}}\); in the model, it was on average 7.61 (SD \(= 2.40\)) \({\text {cmH}}_2{\text {O}}\). A tendency of the model to underestimate the subglottal pressure is found, but the model is capable of inferring trends in the subglottal pressure. The average absolute error between the subglottal pressure in the model and the experiment is 2.90 (SD \(= 1.80\)) \({\text {cmH}}_2{\text {O}}\) or \(27.5\%\). A detailed analysis of the factors affecting the accuracy in matching the subglottal pressure is presented.  相似文献   

14.
Changes in land use affect the terrestrial carbon stock through changes in the land cover. Research on land use and analysis of variations in carbon stock have practical applications in the optimization of land use and the mitigation of climate change effects. This study was conducted in Baixiang and Julu counties in the Taihang Piedmont by employing the trend analysis method to characterize the variation in county land use and carbon stock. The findings show that in both counties, agricultural and unused land areas decreased while built-up land area increased, and the reduction in cropland was the main reason behind the agricultural land reduction. An inflection point appeared on the cropland curves of Julu, because the cropland area decreased by 1576.97 hm\(^{2}\) from 2004 to 2006. Cropland area in Baixiang decreased from 1996 to 1998 by a total of 129.89 hm\(^{2}\) and then remained relatively stable after 1998. The total carbon storage and variation in land use in the two counties displayed similar trends. Total carbon reserves in Julu increased by 2.76 \(\times \) 10\(^{4}\) tC (carbon equivalent), while those in Baixiang decreased by 0.63 \(\times \) 10\(^{4}\) tC. Carbon stock of built-up land in Julu and Baixiang increased by 2.44 \(\times \) 10\(^{4}\) and 1.22 \(\times \) 10\(^{4}\) tC, respectively.  相似文献   

15.
In this paper, we propose a novel multi-objective ant colony optimizer (called iMOACO\(_{\mathbb {R}}\)) for continuous search spaces, which is based on ACO\(_{\mathbb {R}}\) and the R2 performance indicator. iMOACO\(_{\mathbb {R}}\) is the first multi-objective ant colony optimizer (MOACO) specifically designed to tackle continuous many-objective optimization problems (i.e., multi-objective optimization problems having four or more objectives). Our proposed iMOACO\(_{\mathbb {R}}\) is compared to three state-of-the-art multi-objective evolutionary algorithms (NSGA-III, MOEA/D and SMS-EMOA) and a MOACO algorithm called MOACO\(_{\mathbb {R}}\) using standard test problems and performance indicators taken from the specialized literature. Our experimental results indicate that iMOACO\(_{\mathbb {R}}\) is very competitive with respect to NSGA-III and MOEA/D and it is able to outperform SMS-EMOA and MOACO\(_{\mathbb {R}}\) in most of the test problems adopted.  相似文献   

16.
Identifying the best performing hybrid without a field test was essential to save resources and time. In this study, the genetic divergence was estimated using morphological and expressed sequence tag (EST)-derived simple sequence repeats (SSR) markers. Cluster analysis showed that APMS6A and RPHR 1005 belong to groups I and II, respectively, and the hybrid combination recorded the highest mean grain yield of 32.25 g among generated 40 \(\hbox {F}_{1}\hbox {s}\) with standard heterosis of 8.4% over hybrid check, KRH2. The coefficient of marker polymorphism (CMP) value was calculated based on EST-SSR markers; it ranged from 0.40 to 0.80, and a higher CMP value of 0.80 was obtained for the parental combination APMS6A \(\times \) RPHR1005. We predicted heterosis for 40 \(\hbox {F}_{1}\hbox {s}\) based on correlation between CMP and standard heterosis in different traits with standard varietal and hybrid checks indicating positive correlation and significant value for grain yield per plant (\(r=0.58\)**), productivity per day (\(r=0.54\)**), productive tillers (\(r=0.34\)*) and panicle weight (\(r=0.42\)**). This study revealed that the relationship of molecular marker heterozygosity, along with the combining ability, high mean value of different traits, grouping of parental lines based on morphological and molecular characterization is helpful to identify heterotic patterns in rice.  相似文献   

17.
NMR relaxometry plays crucial role in studies of protein dynamics. The measurement of longitudinal and transverse relaxation rates of \(^{15}\)N is the main source of information on backbone motions. However, even the most basic approach exploiting a series of \(^{15}\)N HSQC spectra can require several hours of measurement time. Standard non-uniform sampling (NUS), i.e. random under-sampling of indirect time domain, typically cannot reduce this by more than 2–4\(\times\) due to relatively low “compressibility” of these spectra. In this paper we propose an extension of NUS to relaxation delays. The two-dimensional space of \(t_1\)/\(t_{relax}\) is sampled in a way similar to NUS of \(t_1\)/\(t_2\) domain in 3D spectra. The signal is also processed in a way similar to that known from 3D NUS spectra i.e. using one of the most popular compressed sensing algorithms, iterative soft thresholding. The 2D Fourier transform matrix is replaced with mixed inverse Laplace-Fourier transform matrix. The peak positions in resulting 3D spectrum are characterized by two frequency coordinates and relaxation rate and thus no additional fitting of exponential curves is required. The method is tested on three globular proteins, providing satisfactory results in a time corresponding to acquisition of two conventional \(^{15}\)N HSQC spectra.  相似文献   

18.
Myocardial stiffness is a valuable clinical biomarker for the monitoring and stratification of heart failure (HF). Cardiac finite element models provide a biomechanical framework for the assessment of stiffness through the determination of the myocardial constitutive model parameters. The reported parameter intercorrelations in popular constitutive relations, however, obstruct the unique estimation of material parameters and limit the reliable translation of this stiffness metric to clinical practice. Focusing on the role of the cost function (CF) in parameter identifiability, we investigate the performance of a set of geometric indices (based on displacements, strains, cavity volume, wall thickness and apicobasal dimension of the ventricle) and a novel CF derived from energy conservation. Our results, with a commonly used transversely isotropic material model (proposed by Guccione et al.), demonstrate that a single geometry-based CF is unable to uniquely constrain the parameter space. The energy-based CF, conversely, isolates one of the parameters and in conjunction with one of the geometric metrics provides a unique estimation of the parameter set. This gives rise to a new methodology for estimating myocardial material parameters based on the combination of deformation and energetics analysis. The accuracy of the pipeline is demonstrated in silico, and its robustness in vivo, in a total of 8 clinical data sets (7 HF and one control). The mean identified parameters of the Guccione material law were \(C_1=3000\pm 1700\,\hbox {Pa}\) and \(\alpha =45\pm 25\) (\(b_f=25\pm 14\), \(b_{ft}=11\pm 6\), \(b_{t}=9\pm 5\)) for the HF cases and \(C_1=1700\,\hbox {Pa}\) and \(\alpha =15\) (\(b_f=8\), \(b_{ft}=4\), \(b_{t}=3\)) for the healthy case.  相似文献   

19.
In this work we studied the structural and electronic properties of the metal–Schiff base complexes Ni\( {\mathrm{L}}_2^2 \) (1), Pd\( {\mathrm{L}}_2^1 \) (2), Zn\( {\mathrm{L}}_2^2 \) (3), and Ni\( {\mathrm{L}}_2^1 \)(4), where L1 and L2 are Schiff bases synthesized from salicylaldehyde and 2-hydroxy-5-methylbenzaldehyde, respectively. Natural bond analysis showed that in complexes 1 and 2, the metal ion coordinates to the ligands through electron donation from lone pairs on ligand nitrogen and oxygen atoms to s and d orbitals on the metal ion. In complex 3, metal–N and metal–O bonds are formed through charge transfer from the lone pairs on nitrogen and oxygen atoms to an s orbital of Zn. Dimethylation of the phenolate rings in the ligands decreases the energy gap and redshifts the spectrum of the nickel complex. The main absorptions observed were assigned on the basis of singlet-state transitions. The simulated spectra of the two complexes 1 and 2 are characterized by excited states with ligand-to-ligand charge-transfer (LLCT), metal-to-ligand charge-transfer (MLCT), ligand-to-metal charge-transfer (LMCT), and metal-centered (MC) character.
Graphical abstract Geometric structure of the palladium complex.
  相似文献   

20.
A micro-finite element-based method to estimate the bone loading history based on bone architecture was recently presented in the literature. However, a thorough investigation of the parameter sensitivity and plausibility of this method to predict joint loads is still missing. The goals of this study were (1) to analyse the parameter sensitivity of the joint load predictions at one proximal femur and (2) to assess the plausibility of the results by comparing load predictions of ten proximal femora to in vivo hip joint forces measured with instrumented prostheses (available from www.orthoload.com). Joint loads were predicted by optimally scaling the magnitude of four unit loads (inclined \(-20^{\circ }\) to \(100^{\circ }\) with respect to the vertical axis) applied to micro-finite element models created from high-resolution computed tomography scans (\(30.3~\upmu \)m voxel size). Parameter sensitivity analysis was performed by varying a total of nine parameters and showed that predictions of the peak load directions (range 10\(^{\circ }\)\(30^{\circ }\)) are more robust than the predicted peak load magnitudes (range 2344.8–4689.5 N). Comparing the results of all ten femora with the in vivo loading data of ten subjects showed that peak loads are plausible both in terms of the load direction (in vivo: \(18.2\pm 2.0^{\circ }\), predicted: \(20.0^{\circ }\)) and magnitude (in vivo: \(2707.6\pm 443.3~\hbox {N}\), predicted: \(3372.2\pm 597.9~\hbox {N}\)). Overall, this study suggests that micro-finite element-based joint load predictions are both plausible and robust in terms of the predicted peak load direction, but predicted load magnitudes should be interpreted with caution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号