首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous investigations of the incompatibility group F, P, and I plasmid systems revealed the important role of the outer membrane components in the conjugal transfer of these plasmids. We have observed variability in transfer frequency of three incompatibility group H plasmids (IncHI1 plasmid R27, IncHI2 plasmid R478, and a Tn7 derivative of R27, pDT2454) upon transfer into various Salmonella typhimurium lipopolysaccharide (LPS) mutants derived from a common parental strain, SL1027. Recipients with truncated outer core via the rfaF LPS mutation increased the transfer frequency of the IncH plasmids by up to a factor of 10(3). Mutations which resulted in the truncation of the residues following 3-deoxy-D-manno-octulosonic acid, such as the rfaE and rfaD mutations, decreased the transfer frequency to undetectable levels. Addition of phosphorylethanolamine, a component of wild-type LPS, to the media decreased the frequency of transfer of R27 into wild-type and rfaF LPS mutant recipients tested. Reversing the direction of transfer, by mating LPS mutant donors with wild-type recipients, did not affect the frequency of transfer compared to the standard matings of wild-type donor with LPS mutant recipient. These findings demonstrate that conjugation interactions affected by LPS mutation are not specific for the recipient cell. Our results suggest that LPS mutation does not affect conjugation via altered pilus binding but affects some later steps in the conjugative process, and alteration of transfer frequency by O-phosphorylethanolamine and LPS truncation is due to charge-related interactions between the donor and recipient cell.  相似文献   

2.
Three I-like conjugative plasmids, ColIdrd1, R144drd3, and R64drd11, which are derepressed for functions involved in conjugation, were found to suppress at least partially the phenotype of temperature-sensitive dnaG mutants of Escherichia coli K-12, as judged from the kinetics of deoxyribonucleic acid synthesis at elevated temperature in newly formed and established plasmid-containing strains. In contrast, the corresponding wild-type plasmids and three F-like derepressed conjugative plasmids, F101, R100drd1, and R1drd16, all failed to suppress. Suppression is presumably caused by a different plasmid-determined function from that which promotes survival of ultraviolet-irradiated bacteria, because both the wild-type I-like plasmids and their drd mutants protected irradiated bacteria. One possible interpretation of these results is that the product of a gene carried by certain I-like plasmids can substitute for the bacterial dnaG gene product during ongoing deoxyribonucleic acid replication.  相似文献   

3.
The isolated plasmid DNA of clinical strains of Gram-negative bacteria were shown to have transforming activity when E. coli strain 0600 and S. typhimurium strain LT-2 were used as recipients. The frequency of transformation depended on the recipient strain and the character of the plasmids. The presence of deletion mutants was revealed among the transformants. Such mutants occurred with varying frequency, most often in S. typhimurium strain LT-20; the reason for this phenomenon is at present under discussion. The transformation of plasmids controlling lactose splitting and their conjugation transfer into recipient S. typhimurium strain LT-2 is possible only under condition of using recipient (R+). The possibility of the formation of the cointegrate (R and lac plasmids) in recipient S. typhimurium strain LT-2 is discussed.  相似文献   

4.
Physical Properties and Mechanism of Transfer of R Factors in Escherichia coli   总被引:26,自引:20,他引:6  
The physical properties of F-like and I-like R factors have been compared with those of the wild-type F factor in Escherichia coli K-12 unmated cells and after transfer to recipient cells by conjugation. The F-like R factor R538-1drd was found to have a molecular weight of 49 x 10(6), whereas the molecular weight of the I-like R factor R64drd11 was 76 x 10(6). The wild-type F factor, F1, had a molecular weight of 62 x 10(6). When conjugation experiments are performed by using donor strains carrying these derepressed F-like or I-like R factors, the transferred deoxyribonucleic acid can be isolated as a covalently closed circle from the recipient cells. This circular deoxyribonucleic acid was characterized by making use of the observation that the complementary strands of these R factors can be separated in a CsCl-poly (U, G) equilibrium gradient. The results of the strand-separation experiments show that only one of the complementary strands of the R factor is transferred from the donor to the recipient. With both the F-like and I-like R factors, this strand is the heavier strand in CsCl-poly (U, G). These results indicate that even though F-like and I-like R factors differ greatly in many properties (phage specificity, size, compatability, etc.), they are transferred by a similar mechanism.  相似文献   

5.
In experiments on conjugation the transfer of a number of R-plasmids having a wide range of hosts, such as plasmids RP1, R68.45, RP4, N3, RK2, S-a, those having a narrow range of hosts, such as plasmid R64, to strains of different Legionella species was shown. The frequency of transfer varied from 3.1 X 10(-3) to 9.4 X 10(-7). The fact that the conjugation transfer was confirmed by the reverse transfer of plasmids from Legionella transconjugates to Escherichia coli strain K12, as well as by the detection of the DNA of the transferred plasmid by means of electrophoresis in agar gel. Plasmid RP1 showed different behavior in transconjugates of various Legionella species after several passages in a medium free of antibiotics. In the Legionella strain under study the unstable preservation of plasmid R64 was observed.  相似文献   

6.
Summary Salmonella typhimurium Rc902 infected with derepressed ColIb mutants gave rise to changes in the composition of bacterial lipopolysaccharides (LPS). Bacteria carrying ColIbdrd7, derepressed in transfer, exhibited a marked decrease in the content of all 0-side-chain sugars of LPS. Similar effects were found upon the introduction of R64-11, also derepressed in transfer. In LPS of S. typhimurium containing ColIbdrd2, derepressed in colicin synthesis, a decrease of abequose content associated with an increase of glucose level was observed. Bacteria carrying the wild-type ColIb, the revertant of a drd mutant to the wild type, or the non colicinogenic strain resulting from the elimination of ColIbdrd2, showed no changes in the sugar composition of LPS.  相似文献   

7.
Molecular Studies on Entry Exclusion in Escherichia coli Minicells   总被引:11,自引:9,他引:2       下载免费PDF全文
Minicells produced by abnormal cell division in a strain of Escherichia coli (K-12) have been employed here to investigate the phenomenon of "entry exclusion." When purified minicells from strains containing F' or R factors, or both, are mated with radioactive thymidine-labeled Hfr or R(+) donors, the recipient minicells can be conveniently separated from normal-sized donors following mating, and the products of conjugation can be analyzed in the absence of donors and of further growth of the recipients. Transmissible plasmids or episomes are transferred less efficiently to purified minicells derived from strains carrying similar or related elements than to strains without them. Measurement of deoxyribonucleic acid (DNA) degradation and determination of weight-average molecular weights following transfer indicate that degradation of transferred DNA or transfer of smaller pieces cannot account for the comparative reduction in transfer to entry-excluding recipients. Therefore, we conclude that entry exclusion operates to prevent the physical entry of DNA into recipients expressing the exclusion phenotype. The R-produced repressor (product of the drd(+) gene), which represses fertility (i.e., ability to act as donor), reduces exclusion mediated by R or F factor, or both, in matings between strains carrying homologous elements. Furthermore, the data suggest that the presence of the F pilus or F-like R pilus on recipient cells ensures maximum expression of the exclusion phenotype but is not essential for its expression. In contrast to previous suggestions, we found no evidence for a reduction of entry exclusion attributable to the DNA temperature-sensitive chromosomal mutation dnaB(TS).  相似文献   

8.
The carbazole-degradative plasmid pCAR2 was isolated from Pseudomonas putida and had a genetic structure similar to that of pCAR1, the IncP-7 archetype plasmid. Mating analyses of pCAR2 with various recipient strains showed that it could transfer from HS01 to Pseudomonas recipients: P. chlororaphis, P. fluorescens, P. putida, P. resinovorans and P. stutzeri. The range of recipients changed when different hosts were used as a donor of pCAR2. The range of the plasmid from strain HS01 was broader than that using P. resinovorans CA10dm4 or P. putida KT2440. When pCAR1 or pCAR2 was transferred from the same cell background, the range and frequency of conjugation were now similar. Quantitative RT-PCR analyses indicated that tra/trh genes on both plasmids were similarly transcribed in each donor strain suggesting that the conjugative machinery of both plasmids may function similarly, and that other host factors are affecting the recipient range and frequency of conjugation.  相似文献   

9.
Plasmid aggregate (R387, R64) was constructed in E. coli K12 strain. Plasmid R387 Inc K was stimulated to conjugational transfer by plasmid R64 Inc I. This stimulation was caused neither by recombination between both plasmids nor by trans-complementation of R387 conjugational systems by gene(s) product(s) of R64 plasmid. The observed phenomenon resembled rather mobilization of nonconjugative plasmids by conjugative ones. As in mobilization, the observed increase in R387 transfer frequency could take place only when both interacting plasmids were present in donor cells. Moreover, the entry exclusion system functioning in recipient cells, toward stimulating R64 plasmid affected strongly the conjugational transfer of stimulated R387 plasmid. Analogous phenomenon was observed during mobilization of nonconjugative plasmids by conjugative ones.  相似文献   

10.
Strain T1K, reported to be Rhizobium trifolii strain T1 carrying the drug resistance plasmid RU-1drd, was able to transfer a cluster of nif+ genes to Escherichia coli K-12. Additional genetic material, resembling the gal-chlA region of E. coli, was also transferred from strain T1K. The segregation pattern of these transferred genes suggested that they were on a plasmid. Although strain TIK was able to nodulate red and white clover, it also formed very slow-growing galls on tomato stems and shared many physiological properties with Agrobacterium tumefaciens, to which it seemed more closely related than to R. trifolii. The R. trifolii hybrid T1 (R1-19drd), constructed by conjugation, did not share any of these properties of both A. tumefaciens. Thus, strain T1K appears to be a bacterium with properties of both A. tumefaciens and R. trifolii and with the capacity to transfer nif+ genes and other functions which it may have "cloned" from another bacterium such as Klebsiella.  相似文献   

11.
Conjugal transfer of cloning vectors derived from ColE1.   总被引:1,自引:0,他引:1  
I G Young  M I Poulis 《Gene》1978,4(2):175-179
The transfer properties of five cloning vectors derived from ColE1 were studied. Two of the vectors (pSF2124 and pGM706) behaved like wild type ColE1 in that they could be transferred efficiently in the presence of the conjugative plasmid F. The mobilization of the remaining three vectors (pMB9, PBR313 and pBR322) by F was barely detectable. The transfer defect in pBR313 and pBR322 could be complemented by ColK when R64drd11, but not F, was used as the conjugative plasmid. The transferred plasmids could be recovered unchanged from recipients. Conjugal transfer is a potentially useful technique for screening hybrid plasmids in low-risk cloning experiments involving poorly transformable strains.  相似文献   

12.
Reisner A  Wolinski H  Zechner EL 《Plasmid》2012,67(2):155-161
Most natural conjugative IncF plasmids encode a fertility inhibition system that represses transfer gene expression in the majority of plasmid-carrying cells. The successful spread of these plasmids in clinically relevant bacteria has been suggested to be supported by a transitory derepression of transfer gene expression in newly formed transconjugants. In this study, we aimed to monitor the extent of transitory derepression during agar surface matings in situ by comparing plasmid spread of the IncF plasmid R1 and its derepressed mutant R1drd19 at low initial cell densities. A zygotic induction strategy was used to visualize the spatial distribution of fluorescent transconjugants within the heterogeneous environment. Epifluorescence and confocal microscopy revealed different transfer patterns for both plasmids, however, spread beyond the first five recipient cell layers adjacent to the donor cells was not observed. Similar results were observed for other prototypical conjugative plasmids. These results cannot rule out that transitory derepression contributes to the limited R1 plasmid invasion, but other factors like nutrient availability or spatial structure seem to limit plasmid spread.  相似文献   

13.
Summary Conjugation, the process of genetic transfer requiring cell-to-cell contact, has been the focus of many investigations. In recent years, the molecular aspect of conjugation has been questioned. Since it has been shown that during exponential growth plasmid DNA forms a complex with the folded chromosomal complex (FCC), the relationship of R64drd11 plasmid DNA to the FCC (chromosome plus membrane) during conjugal replication was examined. A cell system was used which allowed specific observation of conjugal events as they occurred in the donor cell. Evidence is presented to show that conjugally replicating R64drd11 covalently closed circular molecules co-sediment with the FCC in neutral sucrose gradients. The use of density gradients to separate DNA from membrane-bound DNA from free membrane, indicate that the membrane is the preferential structure for conjugally replicating plasmid DNA association.  相似文献   

14.
CS1 is one of a limited number of serologically distinct pili found in enterotoxigenic Escherichia coli (ETEC) strains associated with disease in people. The genes for the CS1 pilus are on a large plasmid, pCoo. We show that pCoo is not self-transmissible, although our sequence determination for part of pCoo shows regions almost identical to those in the conjugative drug resistance plasmid R64. When we introduced R64 into a strain containing pCoo, we found that pCoo was transferred to a recipient strain in mating. Most of the transconjugant pCoo plasmids result from recombination with R64, leading to acquisition of functional copies of all of the R64 transfer genes. Temporary coresidence of the drug resistance plasmid R64 with pCoo leads to a permanent change in pCoo so that it is now self-transmissible. We conclude that when R64-like plasmids are transmitted to an ETEC strain containing pCoo, their recombination may allow for spread of the pCoo plasmid to other enteric bacteria.  相似文献   

15.
Transfer of broad host-range plasmids to sulphate-reducing bacteria   总被引:3,自引:0,他引:3  
Abstract The broad-host-range, IncQ, plasmid R300B (Sm, Su) has been stably transferred to two strains of sulphate-reducing bacteria ( Desulfovibrio sp. 8301 and Desulfovibrio desulfuricans 8312), using the IncP1 transfer system of the helper plasmid pRK2013 and cocultivation of sulphate-reducing bacteria with facultative anaerobes in media provided with sulphate and nitrate ions as electron acceptors. R300B was transferred at a frequency of 10−2 to 1 per acceptor cell. The SmR marker was expressed in both sulphate-reducing bacteria strains while the SuR was expressed only in strain 8301. R300B can also be transferred back to E. coli strains provided with IncP1 plasmids taking advantage of the retrotransfer ability of these plasmids. This occurs at a frequency up to 10−4 by recipient E. coli cell.  相似文献   

16.
R64-11(+) donor cells that are thermosensitive for vegetative DNA replication will synthesize DNA at the restrictive temperature when recipient minicells are present. This is conjugal DNA replication because it is R64-11 DNA that is being synthesized and there is no DNA synthesis if minicells that cannot be recipients of R64-11 DNA are used. The plasmid DNA present in the donor cells before mating is transferred to recipient minicells within the first 20 min of mating, but additional copies of plasmid DNA synthesized during the mating continue to be transferred for at least 90 min. However, the transfer of R64-11 DNA to minicells is not continuous because the plasmid DNA in minicells is the size of one R64-11 molecule or smaller, and there are delays between the rounds of plasmid transfer. DNA is synthesized in minicells during conjugation, but this DNA has a molecular weight much smaller than that of R64-11. Thus, recipient minicells are defective and are not able to complete the synthesis of a DNA strand complementary to the single-stranded R64-11 DNA received from the donor cell.  相似文献   

17.
Horizontal transfer of antibiotic resistance genes carried by conjugative plasmids poses a serious health problem. As conjugative relaxases are transported to recipient cells during bacterial conjugation, we investigated whether blocking relaxase activity in the recipient cell might inhibit conjugation. For that purpose, we used an intrabody approach generating a single-chain Fv antibody library against the relaxase TrwC of conjugative plasmid R388. Recombinant single-chain Fv antibodies were engineered for cytoplasmic expression in Escherichia coli cells and either selected in vitro for their specific binding to TrwC, or in vivo by their ability to interfere with conjugation using a high-throughput mating assay. Several intrabody clones were identified showing specific inhibition against R388 conjugation upon cytoplasmic expression in the recipient cell. The epitope recognized by one of these intrabodies was mapped to a region of TrwC containing Tyr-26 and involved in the conjugative DNA-processing termination reaction. These findings demonstrate that the transferred relaxase plays an important role in the recipient cell and open a new approach to identify specific inhibitors of bacterial conjugation.  相似文献   

18.
A stable virulent donor strain (EA 178R1-99) of Erwinia amylovora can transfer, by conjugation during a 3-h mating period, the gene or genes which determine(s) plant virulence to avirulent recipient strains (EA178-M64S1 and EA178-M173S1) of Escherichia amylovora. The virulence of over 200 recombinant clones was tested; they all were as virulent on immature Bartlett pear fruits (and, in the smaller series of strains tested, also, on Pyracantha twigs) as was the parent donor strain. Although the avirulent recipeint strains are amino acid auxotrophs, addition of the required amino acids to the inocula in plant virulence trials does not of itself restore virulence. Two small series of prototrophic revertant clones were selected from the auxotrophic avirulent recipient strains; only nine of the 21 prototrophic revertant clones regained virulence, whereas the other 12 prototrophic revertant clones remained avirulent, again suggesting a lack of parallelism between nutritional status and virulence in this system. Preliminary interrupted mating trials, carried out at 15-min intervals over 3 h, show that ser is transferred during the first 15 min, that pro starts entering at about 75 min (and with a higher frequency later), and that lac (originating from an integrated Escherichia coli F'lac) enters toward the end of the 3-h mating period and at a reduced frequency compared to the other markers. The gene or genes which determine(s) plant virulence in this Escherichia amylovora donor strain appear(s) to be transferred readily and seemingly completely to recipient strains during the first 15 min of a 3-h mating period. Exposure of the virulent donor strain to acridine orange or ethidium bromide does not result in loss of virulence, suggesting (but, of course, not proving conclusively) that the determinant(s) of virulence in Escherichia amylovora might be chromosomal rather than extrachromosomal.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号