首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

An examination of the 1H NMR assignments and exchange properties of the amino resonances of the self-complementary tetramer, d(CGCG) was undertaken with regard to buffer effects, transfer of saturation from the water resonance and temperature dependence of amino 1H line shape and chemical shift. The lack of buffer effect on visible exchangeable proton resonances is evidence for the stringent requirement for nucleo-base protonation at pH values below neutrality, which is greatly reduced in the helical state. For this reason, sharp resonances are observed for both Watson-Crick and non-Watson-Crick cytosine amino protons for base-paired regions. Considerations of monomeric exchange mechanisms for the cytosine and guanine amino protons formed the basis for successful assignment and isolation of their resonances in the helical state by presaturation of the water resonance at selected pH values. Preirradiation of the water resonance at pH <6 would isolate the guanine amino 1H resonances of any self-complementary oligonucleotide, to exploit its high sensitivity as a useful proble of helix ? coil premelting.  相似文献   

2.
One-dimensional and two-dimensional (2D) nmr experiments were carried out on an oligonucleotide duplex that contains an unpaired cytosine, d(GCGAAC AAGCG)·d(CGCTTTTCGC), which will be referred to as the C-bulge decamer. Evidence from one-dimensional nuclear Overhauser effect (NOE) experiments on the exchangeable protons indicates that the unpaired cytosine is extrahelical. This conclusion is also supported by numerous cross-peaks in the 2D NOE spectroscopy (NOESY) spectrum of the nonexchangeable protons. The assignments for all of the resonances, with the exception of the H5′ and H5″ resonances, have been made through the use of 2D NOESY, correlated spectroscopy (COSY), and relayed COSY experiments. The temperature dependence of the C(H6) resonance chemical shifts indicates that the unpaired cytosine shows unusual behavior compared to other cytosines in the duplex. A comparison of chemical shifts for all, the assigned resonances of the duplexes with and without the unpaired cytosine suggests that the majority of the structural perturbation is localized in the A·T tract surrounding the unpaired base. The behavior of the imino resonances as a function of temperature also indicates that the perturbation to the duplex is localized and destabilizes the A·T base pairs adjacent to the unpaired base. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
Dinshaw J. Patel 《Biopolymers》1977,16(8):1635-1656
We have monitored the helix-coil transition of the self-complementary d-CpCpGpG and d-GpGpCpC sequences (20mM strand concentration) at the base pairs, sugar rings, and backbone phosphates by 360-MHz proton and 145.7-MHz phosphorus nmr spectroscopy in 0.1M phosphate solution between 5 and 95°C. The guanine 1-imino Watson-Crick hydrogen-bonded protons, characteristic of the duplex state, are observed below 10°C, with solvent exchange occurring by transient opening of the tetranucleotide duplexes. The cytosine 4-amino Watson-Crick hydrogen-bonded protons resonate 1.5 ppm downfield from the exposed protons at the same position in the tetranucleotide duplexes, with slow exchange indicative of restricted rotation about the C-N bond below 15°C. The guanine 2-amino exchangeable protons in the tetranucleotide sequence exhibit very broad resonances at low temperatures and narrow average resonances above 20°C, corresponding to intermediate and fast rotation about the C-N bond, respectively. Solvent exchange is slower at the amino protons compared to the imino protons since the latter broaden out above 10°C. The well-resolved nonexchangeable base proton chemical shifts exhibit helix-coil transition midpoints between 37 and 42°C. The transition midpoints and the temperature dependence of the chemical shifts at low temperatures were utilized to differentiate between resonances located at the terminal and internal base pairs while the H-5 and H-6 doublets of individual cytosines were related by spin decoupling studies. For each tetranucleotide duplex, the cytosine H-5 resonances exhibit the largest chemical shift change associated with the helix-coil transition, a result predicted from calculations based on nearest-neighbor atomic diamagnetic anisotropy and ring current contributions for a B-DNA duplex. There is reasonable agreement between experimental and calculated chemical shift changes for the helix-coil transition at the internal base pairs but the experimental shifts exceed the calculated values at the terminal base pairs due to end-to-end aggregation at low temperatures. Since the guanine H-8 resonances of the CpCpGpG and d-CpCpGpG sequences exhibit upfield shifts of 0.6–0.8 and <0.1 ppm, respectively, on duplex formation, these RNA and DNA tetranucleotides with the same sequence must adopt different base-pair overlap geometries. The large chemical shift changes associated with duplex formation at the sugar H-1′ triplets are not detected at the other sugar protons and emphasize the contribution of the attached base at the 1′ position. The coupling sum between the H-1′ and the H-2′ and H-2″ protons equals 15–17 Hz at all four sugar rings for the d-CpCpGpG and d-GpGpCpC duplexes (25°C), consistent with a C-3′ exo sugar ring pucker for the deoxytetranucleotides in solution. The temperature dependent phosphate chemical shifts monitor changes in the ω,ω′ angles about the O-P backbone bonds, in contrast to the base-pair proton chemical shifts, which monitor stacking interactions.  相似文献   

4.
We have studied the conformation of two hexanucleotides d(GGATCC) and d(GGm6ATCC) using proton nuclear magnetic resonance. Nuclear Overhauser effect measurements show that d(GGATCC) assumes a normal right handed B helix. The single and double strand resonances are in fast exchange on a proton nuclear magnetic resonance time scale. For d(GGm6ATCC), up to the Tm separate resonances are observed for each state, indicating slow exchange, though above the Tm it becomes more rapid. The orientation of the adenosine methyl-amino group, preferentiallycis to N1, hinders base pair formation.The connectivities of the resonances of the two states were established by saturation transfer experiments. At 0°C irradiation of the m6 A-T imino proton gives an nuclear Overhauser effect to AH2 showing that base pairing is Watson-Crick. Intra and interresidue nuclear Overhauser effects starting from the 3′ terminus show that the helix is right handed and in the B-form.The results on the two oligomers demonstrate that adenosine methylation induces little or no change in the conformation of the helix, but reduces the Tm from 45° to 32°C and slows the opening and closing of the m6A.T base pair by a factor of about 100.  相似文献   

5.
Large RNAs (>30 nucleotides) suffer from extensive resonance overlap that can seriously hamper unambiguous structural characterization. Here we present a set of 3D multinuclear NMR experiments with improved and optimized resolution and sensitivity for aiding with the assignment of RNA molecules. In all these experiments strong base and ribose carbon–carbon couplings are eliminated by homonuclear band-selective decoupling, leading to improved signal to noise and resolution of the C5, C6, and C1′ carbon resonances. This decoupling scheme is applied to base-type selective 13C-edited NOESY, 13C-edited TOCSY (HCCH, CCH), HCCNH, and ribose H1C1C2 experiments. The 3D implementation of the HCCNH experiment with both carbon and nitrogen evolution enables direct correlation of 13C and 15N resonances at different proton resonant frequencies. The advantages of the new experiments are demonstrated on a 36 nucleotides hairpin RNA from domain 5 (D5) of the group II intron Pylaiella littoralis using an abbreviated assignment strategy. These four experiments provided additional separation for regions of the RNA that have overlapped chemical shift resonances, and enabled the assignment of critical D5 bulge nucleotides that could not be assigned using current experimental schemes.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s10858-005-5093-6  相似文献   

6.
Abstract

The non-exchangeable and imino proton NMR resonances of the non self-complementary decadeoxyribonucleotide d-[(GATCCGTATG) · (GATACGGATC)] as well as those of the 1:1 complex of the monocatonic bis-imidazole lexitropsin 1 to this sequence have been assigned by using a combination of NOE difference, COSY and NOESY techniques. Confirmation of complete annealing of the two non self-complementary decamer strands to give the duplex decadeoxyribonucleotide is obtained by the detection of ten imino protons. It is established that the sugar-base orientations of all the bases in the duplex decamer are anti. From NOE studies, it is concluded that the duplex oligomer is right-handed and adopts a conformation in solution that belongs to the B family. A population analysis reveals that the sugar moieties exist predominantly in the S-form (2′-endo-3′-exo). Addition of 1 to the DNA solution leads to doubling of the resonances for CH6(4,5), GH8(6), TH6(7) and T-CH3(7). The base, anomeric H1′ and imino proton signals for the base sequence 5′-CCGT undergo the most marked drug-induced chemical shift changes. These results provide evidence that the lexitropsin is bound to the sequence 5′-CCGT in the minor groove of the DNA NOE measurements between the amide protons (NH1 and NH4) and the imino proton (IV and V) signals confirmed the location and orientation of 1 in the 1:1 complex, with the amino terminus oriented to C(4). The specific binding of 1 to the sequence 5′-CCGT-3′ deduced in this study is in agreement with the footprinting data obtained using the Hind III/Nci I fragment from pBR322 DNA [Kissinger et al. 1987 (13)]. Intramolecular NOEs observed between H4 and H9 of the lexitropsin suggest that the molecule is not planar, but subjected to propeller twisting, in both the free and bound forms. Furthermore, NOE measurements permit assignment of the DNA duplex in the 1:1 complex to the B-form, which is similar to that of the free DNA The [(T7A8T9)· (A12T13A14)] segment of the DNA shows better stacking, by propeller twisting, compared to the rest of the molecule in the free as well as the complex forms. The intermolecular rate of exchange of 1 between the equivalent 5′-CCGT sites, at a concentration of 12 mM, is estimated to be ~88s?1 at 308°K with ΔG≠ of 63±5 K.J mol?1.  相似文献   

7.
1H NMR has been used to study the interactions of ellipticine and the ellipticine analogues 2-3-dimethyl-6-(2-dimethylaminoethyl)6H-indolo-[2,3-b]quinoxaline and 6-(2-dimethylaminoethyl)6H-indolo-[2,3-b]quinoxaline with the self-complementary decadeoxyribonucleotide d(CGCGATCGCG)2. The Watson-Crick H-bonded imino proton resonances were studied. The drugs were shown to bind to the duplex by intercalation involving slow exchange kinetics for the imino proton resonances on the NMR time scale (500 MHz). Ellipticine and the 2,3-dimethyl analogue were found not to show strong base preferences, while the other analogue was found to have a preferred primary binding site between the A.T base pairs with a probable minor secondary binding site between the A.T and adjacent G.C base pairs. The new drug-shifted imino proton resonances were assigned through saturation transfer experiments. The base-specific interactions were accompanied by drug-induced non-uniform broadening of the resonances (due to intermediate chemical exchange kinetics), in the spectral region of the non-exchangeable aromatic and sugar H1' proton resonances of the oligonucleotide at 25 degrees C.  相似文献   

8.
Summary Novel HCCNH TOCSY NMR experiments are presented that provide unambiguous assignment of the exchangeable imino proton resonances by intranucleotide through-bond connectivities to the (assigned) nonexchangeable purine H8 and pyrimidine H6 protons in uniformly 15N-, 13C-labeled RNA oligonucleotides. The HCCNH TOCSY experiments can be arranged as a two-dimensional experiment, correlating solely GH8/UH6 and GH1/UH3 proton resonances (HCCNH), of as three-dimensional experiments, in which additional chemical shift labeling either by GN1/UN3 (HCCNH) or by GC8/UC6 (HCCNH) chemical shifts is introduced. The utility of these experiments for the assignment of relatively large RNA oligonucleotides is demonstrated for two different RNA molecules.To whom correspondence should be addressed.  相似文献   

9.
Coherences were observed between 15N3 of cytosine and its trans amino proton (H42) using a modified gradient-based heteronuclear single quantum coherence (HSQC) pulse sequence optimized for three-bond proton-nitrogen couplings. The method is demonstrated with a 22-nucleotide RNA fragment of the P5abc region of a group I intron uniformly labeled with 15N. Use of intraresidue 15 N3-amino proton couplings to assign cytosine 15 N3 signals complements the recently proposed JNN HNN COSY [Dingley, A.J. and Grzesiek, S. (1998) J. Am. Chem. Soc., 120, 8293–8297] method of identifying hydrogen-bonded base pairs in RNA.  相似文献   

10.
K L Wong  D R Kearns 《Biopolymers》1974,13(2):371-380
The high-resolution nmr spectrum of the anticodon hairpin from E. coli tRNAfMet has been obtained at a number of different temperatures. The positions of the resonances from interior Watson-Crick base pairs are well accounted for (within 0.1 ppm) by a semi-empirical ring current shift theory, but the terminal base pairs are susceptible to the exact orientation of adjacent bases in single-stranded regions. From a careful examination of the exact way in which resonances disappear at elevated temperatures, we conclude that melting in the nmr experiments occurs when the lifetime of a base pair is reduced to several milliseconds. On the basis of these experiments we are able to assign an nmr Tm to each individual base pair and these should be useful in interpreting the melting behavior of the intact molecule. An “extra” resonance is observed at ~11.3 ppm and, on the basis of its position and temperature sensitivity, it is tentatively assigned to the ring nitrogen proton of a “protected” U residue in the anticodon loop. A strong preference for stacking of a nonbase-paired A residue on an adjacent GC base pair is observed even at temperatures in excess of 52°C.  相似文献   

11.
Highly selective and efficient water signal suppression is indispensable in biomolecular 2D nuclear Overhauser effect spectroscopy (NOESY) experiments. However, the application of conventional water suppression schemes can cause a significant or complete loss of the biomolecular resonances at and around the water chemical shift (ω2). In this study, a new sequence, NOESY-WaterControl, was developed to address this issue. The new sequence was tested on lysozyme and bovine pancreatic trypsin inhibitor (BPTI), demonstrating its efficiency in both water suppression and, more excitingly, preserving water-proximate biomolecular resonances in ω2. The 2D NOESY maps obtained using the new sequence thus provide more information than the maps obtained with conventional water suppression, thereby lessening the number of experiments needed to complete resonance assignments of biomolecules. The 2D NOESY-WaterControl map of BPTI showed strong bound water and exchangeable proton signals in ω1 but these signals were absent in ω2, indicating the possibility of using the new sequence to discriminate bound water and exchangeable proton resonances from non-labile proton resonances with similar chemical shifts to water.  相似文献   

12.
D J Patel 《Biopolymers》1976,15(3):533-558
The Watson–Crick imino and amino exchangeable protons, the nonexchangeable base and sugar protons, and the backbone phosphates for d-CpG(pCpG)n, n = 1 and 2, have been monitored by high-resolution nmr spectroscopy in aqueous solution over the temperature range 0°–90°C. The temperature dependence of the chemical shifts of the tetramer and hexamer resonances is consistent with the formation of stable duplexes at low temperature in solution. Comparison of the spectral characteristics of the tetranucleotide with those of the hexanucleotide with temperature permits the differentiation and assignment of the cytosine proton resonances on base pairs located at the end of the helix from those in an interior position. There is fraying at the terminal base pairs in the tetranucleotide and hexanucleotide duplexes. The Watson–Crick ring imino protons exchange at a faster rate than the Watson–Crick side-chain amino protons, with exchange occurring by transient opening of the double helix. The structure of the d-CpG(pCpG)n double helices has been probed by proton relaxation time measurements, sugar proton coupling constants, and the proton chemical shift changes associated with the helix–coil transition. The experimental data support a structural model in solution, which incorporates an anti conformation about the glycosyl bonds, C(3) exo sugar ring pucker, and base overlap geometries similar to the B-DNA helix. Rotational correlation times of 1.7 and 0.9 × 10?9 sec have been computed for the hexanucleotide and tetranucleotide duplexes in 0.1 M salt, D2O, pH 6.25 at 27°C. The well-resolved 31P resonances for the internucleotide phosphates of the tetramer and hexamer sequences at superconducting fields shift upfield by 0.2–0.5 ppm on helix formation. These shifts reflect a conformational change about the ω,ω′ phosphodiester bonds from gauche-gauche in the duplex structure to a distribution of gauche-trans states in the coil structure. Significant differences are observed in the transition width and midpoint of the chemical shift versus temperature profiles plotted in differentiated form for the various base and sugar proton and internucleotide phosphorous resonances monitoring the d-CpG(pCpG)n helix–coil transition. The twofold symmetry of the d-CpGpCpG duplex is removed on complex formation with the antibiotic actinomycin-D. Two phosphorous resonances are shifted downfield by ~2.6 ppm and ~1.6 ppm on formation of the 1:2 Act-D:d-CpGpCpG complex in solution. Model studies on binding of the antibiotic to dinucleotides of varying sequence indicate that intercalation of the actinomycin-D occurs at the GpC site in the d-CpGpCpG duplex and that the magnitude of the downfield shifts reflects strain at the O-P-O backbone angles and hydrogen bonding between the phenoxazone and the phosphate oxygens. Actinomycin-D is known to bind to nucleic acids that exhibit a B-DNA conformation; this suggests that the d-CpG(pCpG)n duplexes exhibit a B-DNA conformation in solution.  相似文献   

13.
Summary A triple resonance HNC-TOCSY-CH experiment is described for correlating the guanosine imino proton and H8 resonances in 13C-/15N-labeled RNAs. Sequential assignment of the exchangeable imino protons in Watson-Crick base pairs is generally made independently of the assignment of the nonexchangeable base protons. This H(NC)-TOCSY-(C)H experiment makes it possible to unambiguously link the assignment of the guanosine H8 resonances with sequential assignment of the guanosine imino proton resonances. 2D H(NC)-TOCSY-(C)H spectra are presented for two isotopically labeled RNAs, a 30-nucleotide lead-dependent ribozyme known as the leadzyme, and a 48-nucleotide hammerhead ribozyme-RNA substrate complex. The results obtained on these two RNAs demonstrate that this HNC-TOCSY-CH experiment is an important tool for resonance assignment of isotopically labeled RNAs.  相似文献   

14.
The amino 1H resonances of oligonucleotide helices: d(CGCG)   总被引:5,自引:0,他引:5  
An examination of the 1H NMR assignments and exchange properties of the amino resonances of the self-complementary tetramer, d(CGCG) was undertaken with regard to buffer effects, transfer of saturation from the water resonance and temperature dependence of amino 1H line shape and chemical shift. The lack of buffer effect on visible exchangeable proton resonances is evidence for the stringent requirement for nucleo-base protonation at pH values below neutrality, which is greatly reduced in the helical state. For this reason, sharp resonances are observed for both Watson-Crick and non-Watson-Crick cytosine amino protons for base-paired regions. Considerations of monomeric exchange mechanisms for the cytosine and guanine amino protons formed the basis for successful assignment and isolation of their resonances in the helical state by presaturation of the water resonance at selected pH values. Preirradiation of the water resonance at pH less than 6 would isolate the guanine amino 1H resonances of any self-complementary oligonucleotide, to exploit its high sensitivity as a useful proble of helix in equilibrium coil premelting.  相似文献   

15.
Proton nuclear magnetic resonance (NMR) spectra of crotamine, a myotoxic protein from a Brazilian rattlesnake (Crotalus durissus terrificus), have been analyzed. All the aromatic proton resonances have been assigned to amino acid types, and those from Tyr-1, Phe-12, and Phe-25 to the individual residues. ThepH dependence of the chemical shifts of the aromatic proton resonances indicates that Tyr-1 and one of the two histidines (His-5 or His-10) are in close proximity. A conformational transition takes place at acidicpH, together with immobilization of Met-28 and His-5 or His-10. Two sets of proton resonances have been observed for He-17 and His-5 or His-10, which suggests the presence of two structural states for the crotamine molecule in solution.  相似文献   

16.
Intact keratan sulfate chains derived from bovine tracheal cartilage have been examined using both one-dimensional methods and the two-dimensional experiments COSY-45 and TOCSY for homonuclear shift correlations and a modified COLOC (correlated spectroscopy for long-range couplings) approach for 13C-1H shift correlations. Partial 1H and 13C NMR signal assignments for residues within the intact polymer chain are reported; data derived from the repeat region signals and from chain cap residues are assigned by comparison with published data derived from oligosaccharides obtained through cleavage of keratan sulfate polymer chains using keratanase and keratanase II and are discussed in detail. The one-dimensional spectra for both 1H and 13C nuclei contain highly crowded signal clusters for which data analysis is not directly possible. COSY-45 analysis allow the correlation and assignment of many proton resonances located within the 3.4-4.8 p.p.m. chemical shift region while from the C/H correlation spectrum data are assignable for some signals within the complex set of carbon resonances which fall in the region between 68 and 86 p.p.m., This work using material from tracheal cartilage has permitted the first detailed combined 1H and 13C NMR examination of the primary keratan sulfate polymer structure; this sequence forms the basis for the more complex members of the keratan sulfate family present in other tissues such as articular cartilage and cornea where further residues such as (alpha1-3)-linked fucose and (alpha2-6)-linked N-acetylneuraminic acid are also present. This nondestructive method of analysis complements the currently available degradative methods for structure determination which may then subsequently be utilized.  相似文献   

17.
Identification of I:A mismatch base-pairing structure in DNA   总被引:7,自引:0,他引:7  
Deoxyoligonucleotides containing deoxyinosine residues at positions corresponding to ambiguous nucleotides derived from an amino acid sequence have been successfully used as hybridization probes. It is assumed that the hypoxanthine residue can make base pairs with multiple bases. In order to obtain direct evidence for I:A base-pairing, a self-complementary deoxyoligonucleotide, d(G-G-I-A-C-C), was synthesized and its properties were examined by NMR spectroscopy. Three hydrogen-bonded imino proton resonances are observed at low temperatures in H2O suggesting the formation of a self-duplex with complete base pairing. Nuclear Overhauser effect (NOE) experiments showed that a signal at 15.1 ppm originated from the imino proton (H1) of the dI residue (I3) which is hydrogen-bonded to the dA residue (A4). Both the I3 and A4 residues were assumed to have taken an anti glycosidic conformation since irradiating the H1 of I3 gave NOEs both to its own H2 and to that of A4, an NOE also being observed between the H2 protons of I3 and A4. Comparison of the 31P NMR spectra of d(G-G-I-A-C-C) and d(G-G-I-C-C-C) showed the backbone structure of d(G-G-I-A-C-C) to have been disturbed by the presence of purine:purine base pairs in the middle of the hexamer duplex.  相似文献   

18.
The interactions of theω-amino acid ligandsε-aminocaproic acid andp-benzylaminesulphonic acid with the isolated kringle 4 domain from human plasminogen have been investigated by1H-nuclear magnetic resonance spectroscopy at 300 and 600 MHz. Overall, the data indicate that binding either ligand does not cause the kringle to undergo significant conformational changes. When p-benzylaminesulphonic acid is in excess relative to the kringles, progressive exchange-broadening and high field chemical shifts are observed for the proton resonances of the ligand. The largest effect is seen at the amino end of the molecule, which indicates that the — NH 3 + group of the ligand penetrates deeper into the binding site than does the — SO 3 - . Ligand-binding causes signals from the ring-current shifted Leu46 CH 3 δ .δ groups and from a number of aromatic side-chains to shift. Depending on the ligand, the latter include Tyr-II (Tyr50), Tyr-V (an immobile ring), His-II and His-III imidazole groups and the three Trp indole groups present in kringle 4. In particular,p-benzylaminesulphonic acid-binding induces large high field shifts on the Trp-II H6 triplet and the Trp-III (Trp72) H2 singlet. On the other hand,ε-aminocaproic acid bound to kringle 4 exhibits large chemical shifts of its CH2 proton resonances, which indicates that the lysine-binding site is rich in aromatic side chains. Overhauser experiments centered on thep-benzylaminesulphonic acid H2,6 and H3,5 aromatic transitions as well as on the shifted Trp-II and Trp-III signals reveal efficient cross-relaxation between these two indole side chains and thep-benzylaminesulphonic acid ring. These experiments also show that the side chains from Phe64, Tyr-II (Tyr50), Tyr-IV, and His-II (His31) interact with the ligand. In combination with reported chemical modification experiments that show requirement of Asp57, Arg71 and Trp72 integrity for ligand-binding, our study underscores the relevance of the Cys51-Cys75 loop in defining the kringles’ lysine-binding site. Furthermore, the Cys22-Cys63 loop is folded so as to place His31, His33, Tyr41 and Leu46 in proximity to the binding site. The involvement of residues within the Cys51-Cys75 loop in ligand-binding suggests that Trp-II and Tyr-IV may correspond to Trp62 and Tyr74, respectively. As shown by Overhauser experiments, these two residues are in close contact with each other. From these studies and from the shielding and deshielding effects caused byp-benzylaminesulphonic acid, we suggest that the ligand is sandwiched between the indole rings of Trp-II and Trp-III, which form part of the hydrophobic binding site.  相似文献   

19.
Summary We present here HSQC experiments with improved sensitivity for signals in the presence of exchange broadening. During periods of coherence transfer through scalar coupling the experiments employ CPMG-derived pulse trains to reduce loss of dephasing of spin coherence due to chemical exchange. 15N–1H gradient CPMG-HSQC and SE-CPMG-HSQC experiments have been developed and applied to complexes of lac repressor headpiece with operator DNA. Improved sensitivity is demonstrated for many protein backbone and side-chain resonances in the complex, markedly for signals of protons located at the protein-DNA interface. In addition, a significant increase in intensity is observed for arginine guanidino groups undergoing conformational exchange.  相似文献   

20.
Summary A new application of the HMBC experiment is presented that provides a useful means to discriminate between H2 and H8 proton resonances, to assign the base proton resonances to the various residue types and, most importantly, to correlate the H2 and H8 protons for adenine or inosine residues in natural abundance 13C fragments. The utility of this experiment is demonstrated for an unlabeled DNA 20-mer. Thanks to the obtained results, preliminary conclusions could be drawn regarding the molecular conformations of the non-canonical G/I-A base pairs in the hairpin formed by this fragment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号