首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small RNAs regulate gene expression and most genes in the worm Caenorhabditis elegans are subject to their regulation. Here, we analyze small RNA data sets and use reproducible features of RNAs present in multiple data sets to discover a new class of small RNAs and to reveal insights into two known classes of small RNAs—22G RNAs and 26G RNAs. We found that reproducibly detected 22-nt RNAs, although are predominantly RNAs with a G at the 5′ end, also include RNAs with A, C, or U at the 5′ end. These RNAs are synthesized downstream from characteristic sequence motifs on mRNA and have U-tailed derivatives. Analysis of 26G RNAs revealed that they are processed from a blunt end of double-stranded RNAs and that production of one 26G RNA generates a hotspot immediately downstream for production of another. To our surprise, analysis of RNAs shorter than 18 nt revealed a new class of RNAs, which we call NU RNAs (pronounced “new RNAs”) because they have a NU bias at the 5′ end, where N is any nucleotide. NU RNAs are antisense to genes and originate downstream from U bases on mRNA. Although many genes have complementary NU RNAs, their genome-wide distribution is distinct from that of previously known classes of small RNAs. Our results suggest that current approaches underestimate reproducibly detected RNAs that are shorter than 18 nt, and theoretical considerations suggest that such shorter RNAs could be used for sequence-specific gene regulation in organisms like C. elegans that have small genomes.  相似文献   

2.
3.
Generalized structures of the 5S ribosomal RNAs.   总被引:15,自引:14,他引:1       下载免费PDF全文
The sequences of 5S ribosomal RNAs from a wide-range of organisms have been compared. All sequences fit a generalized 5S RNA secondary structural model. Twenty-three nucleotide positions are found universally, i.e., in 5S RNAs of eukaryotes, prokaryotes, archaebacteria, chloroplasts and mitochondria. One major distinguishing feature between the prokaryotic and eukaryotic 5S RNAs is the number of nucleotide positions between certain universal positions, e.g., prokaryotic 5S RNAs have three positions between the universal positions PuU40 and G44 (using the E. coli numbering system) and eukaryotic 5S RNAs have two. The archaebacterial 5S RNAs appear to resemble the eukaryotic 5S RNAs to varying degrees depending on the species of archaebacteria although all the RNAs conform with the prokaryotic "rule" of chain length between PuU40 and G44. The green plant chloroplast and wheat mitochondrial 5S RNAs appear prokaryotic-like when comparing the number of positions between universal nucleotides. Nucleotide positions common to eukaryotic 5S RNAs have been mapped; in addition, nucleotide sequences, helix lengths and looped-out residues specific to phyla are proposed. Several of the common nucleotides found in the 5S RNAs of metazoan somatic tissue differ in the 5S RNAs of oocytes. These changes may indicate an important functional role of the 5S RNA during oocyte maturation.  相似文献   

4.
Transcriptome-wide discovery of circular RNAs in Archaea   总被引:3,自引:0,他引:3  
  相似文献   

5.
Noncoding regulatory RNAs database   总被引:11,自引:2,他引:9  
  相似文献   

6.
Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants   总被引:2,自引:0,他引:2  
Small, non-coding RNAs are a distinct class of regulatory RNAs in plants and animals that control a variety of biological processes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved through a series of pathways. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs control the expression of cognate target genes by binding to reverse complementary sequences, resulting in cleavage or translational inhibition of the target RNAs. siRNAs have a similar structure, function, and biogenesis as miRNAs but are derived from long double-stranded RNAs and can often direct DNA methylation at target sequences. Besides their roles in growth and development and maintenance of genome integrity, small RNAs are also important components in plant stress responses. One way in which plants respond to environmental stress is by modifying their gene expression through the activity of small RNAs. Thus, understanding how small RNAs regulate gene expression will enable researchers to explore the role of small RNAs in biotic and abiotic stress responses. This review focuses on the regulatory roles of plant small RNAs in the adaptive response to stresses. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.  相似文献   

7.
Non-coding small RNAs (19-24 nucleotide long) have recently been recognized as the important regulator of gene expression in both plants and animals. Several classes of endogenous short RNAs have partial or near perfect complementarity to mRNAs and a protein complex is guided by short RNAs to target mRNAs. The targeted mRNA is either cleaved or its translation is suppressed. Initially, short RNAs were believed to primarily regulate the normal development of plants and animals, but recent advances implicate short RNAs in environmental adaptation.  相似文献   

8.
Small RNAs in sea urchins were examined in order to characterize developmental changes in their level, subcellular localization, synthesis, and association with proteins and other RNAs. Small RNAs such as the U snRNAs, 5S and 5.8S rRNAs, and 7S RNAs were identified by their mobility on highly cross-linked acrylamide gels. In addition, 7SL and U1 RNAs were identified by northern blot hybridization to cloned human and sea urchin probes, respectively. The level, subcellular localization, and association with proteins or RNA do not change for most small RNAs from fertilization to blastula, even though this is the time when the stored maternal pool of many small RNAs is being supplemented and replaced by embryonically synthesized RNAs. New embryonic synthesis of small RNAs was first detected at the 8-12 hr blastula stage. Although the predicted subsets of the total small RNA pool can be found in the appropriate subcellular compartments, newly synthesized small RNAs have a predominantly cytoplasmic localization: All of the newly synthesized small RNAs were found to be constituents of small RNPs. The RNPs containing newly synthesized small RNAs had sedimentation rates indistinguishable from their maternal counterparts. Thus, on the basis of sedimentation rate, no gross differences could be detected between maternal and embryonic small RNP pools. These small RNPs include a cytoplasmic RNP containing newly synthesized U1 snRNA and the sea urchin signal recognition particle (SRP) containing the 7SL, RNA. We have also identified a small RNP bearing the 5S rRNA which is present in both eggs and embryos. The presence of multiple, abundant, small RNAs and RNPs that are maintained at constant levels in particular subcellular fractions throughout development suggests that small RNAs may be involved in many more cellular activities than have so far been described.  相似文献   

9.
Micros for microbes: non-coding regulatory RNAs in bacteria   总被引:24,自引:0,他引:24  
  相似文献   

10.
11.
Brantl S 《Plasmid》2002,48(3):165-173
The search for small RNAs which might act as riboregulators became successful over the past two years both in prokaryotes and in eukaryotes. Moreover, artificially designed antisense RNAs have become powerful tools to downregulate the expression of targeted genes. It seems that antisense RNAs as regulatory molecules are most likely to be found everywhere. However, the first naturally occuring antisense RNAs were identified in plasmids and other prokaryotic accessory DNA elements. The thorough and detailed analyses of these systems have provided deep insights into structure and function of prokaryotic antisense RNAs and the kinetics of antisense/sense RNA interaction. Here, I focus on the role of antisense RNAs in plasmid replication and maintenance.  相似文献   

12.
13.
以模式植物拟南芥为例, 建立了一种克隆small RNA 分子的技术平台, 为今后开展small RNA 分子的生物学功能研究提供技术支撑。通过用抗病信号分子水杨酸(SA) 处理拟南芥叶片后, 进行small RNA 分子群体的分离与接头连接、PCR 扩增、T - 载体克隆与检测、测序分析和生物信息学分析等一系列实验, 成功地克隆了一些small RNAs, 并对其表达和功能进行了分析。  相似文献   

14.
伴随着高通量测序技术的飞速发展,许多新型的非编码RNA陆续被发现,比如长链非编码RNA(lncRNA)和环状RNA(Circular RNA)。先前的研究已经表明这些非编码RNA在基因表达调控过程中起着很重要的作用,并且与癌症的发生有着很密切的联系。但是,由于研究者们仍然对它们行使何种功能知之甚少,鉴定这些非编码RNA是否与人类癌症存在密切的相互关系仍然是一个巨大的挑战。为了促进这一领域的研究,这篇文章的作者分析了大规模的RNA相互作用数据,然后建立了数据库nc2Cancer(http://www.bioinfo.tsinghua.edu.cn/nc2Cancer/index.php)。这个数据库的目标便是提供非编码RNA与癌症之间的全面关系。现在,该nc2Cancer数据库包括了三种类型的非编码RNA分子:长链非编码RNA,环状RNA以及由假基因转录而成的RNA。这项研究将有助于研究者更好地去理解非编码RNA的功能以及它们在人类癌症发生过程中所起到的作用。  相似文献   

15.
Functional noncoding RNAs have distinct roles in epigenetic gene regulation. Large RNAs have been shown to control gene expression from a single locus (Tsix RNA), from chromosomal regions (Air RNA), and from entire chromosomes (roX and Xist RNAs). These RNAs regulate genes in cis; although the Drosophila roX RNAs can also function in trans. The chromatin modifications mediated by these RNAs can increase or decrease gene expression. These results suggest that the primary role of RNA molecules in epigenetic gene regulation is to restrict chromatin modifications to particular regions of the genome. However, given that RNA has been shown to be at the catalytic core of other ribonucleoprotein complexes, it is also possible that RNA also plays a role in modulating changes in chromatin structure.  相似文献   

16.
Many small RNAs have been cloned from animal gonads, for example, endogenous small interfering RNAs (endo-siRNAs) were found in oocytes and piwi-interacting RNAs (piRNAs) were found in testis. Gallus gallus (chicken) is an important model organism, but few small RNAs have been identified from its gonads. In this study, we isolated and cloned 156 small RNAs from adult chicken testes. Since there is a reasonably even distribution from 22 to 33 nt, these small RNAs are slightly longer than miRNAs and endo-siRNAs. Genome mapping indicated that these small RNAs were derived from intergenic regions, exons, introns, and repetitive elements including chicken repeat 1, long terminal repeats, and simple repeats. Since they are similar with piRNAs, we named them piRNA-like RNAs (pil-RNAs). Northern blotting of 16 selected sequences showed that nine are specifically expressed in the adult testis. The vast majority of these pil-RNAs are poorly conserved between species, suggesting that they are unique to the adult chicken testis. Further analysis of the cloned pil-RNAs will improve our understanding of the function of small RNAs in animal gonad development.  相似文献   

17.
Selfish genetic elements called transposons can insert themselves at new locations in host genomes to modify gene structure and alter gene expression. Expansion of transposons can occur when novel transposition events are transmitted to subsequent generations after germline hopping. Therefore, organisms seem likely to have evolved defense mechanisms to silence transposons in the germline. Recently, small RNAs interacting with Piwi proteins (piwi-interacting RNAs: piRNAs) have been demonstrated to be involved in genomic defense mechanism against transposons. Here, we show that piRNA-like small RNAs are present abundantly in the Bombyx ovary. We cloned 38,493 kinds of Bombyx small RNA from the ovary and performed functional characterization. Bombyx small RNAs showed a unimodal length distribution with a peak at 28nt and a strong bias for U at the 5' end. We found that 12,869 kinds of Bombyx small RNAs were associated with transposons or repetitive sequences. We classified them as repeat-associated small interfering RNAs (rasiRNAs), a subclass of piRNAs. Notably, antisense rasiRNAs have a strong bias toward U at 5' ends; in contrast, sense rasiRNAs have a strong bias toward A at nucleotide position 10, indicating that the piRNA amplification loop proposed in Drosophila is evolutionarily conserved in Bombyx. These results suggest that Bombyx small RNAs regulate transposon activity.  相似文献   

18.
Identification and cloning of localized maternal RNAs from Xenopus eggs   总被引:59,自引:0,他引:59  
A central question in developmental biology is to explain how cells in different regions of an embryo acquire different developmental fates. We have begun to address this question by investigating whether specific RNAs are localized within a frog egg. Differential screening of a cDNA library shows that most maternal RNAs are uniformly distributed along the animal-vegetal axis. However, we find that a rare class of maternal RNAs is localized. cDNA clones of four localized RNAs have been characterized. Three of these cDNAs are derived from maternal RNAs that are concentrated in the animal hemisphere of unfertilized eggs and remain localized through the early blastula stage. One cDNA is derived from a maternal RNA found almost exclusively in the vegetal hemisphere at both stages. These studies show that some informational molecules, specifically RNAs, are localized in eggs and are inherited by particular blastomeres.  相似文献   

19.
The nucleotide sequences of 4.5S RNAs associated with poly-(A)-containing RNAs of mouse and hamster cells were determined. These RNAs have 91 to 94 nucleotides, a high content of G (almost 40%) and no modified nucleoside. The 5'-termini are pppG, but the 3'-termini lack uniformity in the number of uridylate residues. These molecules contain two sets of repeating sequences, and a central purine-rich sequence. There is only one base exchange between mouse and hamster 4.5S RNAs. Possible binding sites of these RNAs to poly(A)-containing RNAs are discussed.  相似文献   

20.
The Ro autoantigen is a mammalian cellular ribonucleoprotein (RNP) of unknown function. We have demonstrated that hY1 and hY4 Ro RNAs are associated with erythrocyte Ro RNPs and represent a subset of the four hY RNAs found in HeLa cell and leukocyte Ro RNPs. We have cloned and sequenced hY4 RNA, the only hY RNA not sequenced previously, from a polymerase chain reaction amplified erythrocyte hY cDNA library. Sequencing of the erythrocyte hY RNAs in conjunction with Northern blot analysis confirms that the erythrocyte hY RNAs contain the same sequences as the respective HeLa cell RNAs of similar mobility. Ribonuclease inhibition activity has been found in erythrocytes and this activity inhibits the degradation of hY3 and hY5 in leukocyte lysates thereby favoring the possibility that the presence of hY1 and hY4 in erythrocytes is the result of differential expression of the hY RNAs in erythrocyte precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号