首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maturation time is a pivotal life-history trait of parasitic nematodes, determining adult body size, as well as daily and total fecundity. Recent theoretical work has emphasized the influence of prematurational mortality on the optimal values of age and size at maturity in nematodes. Eosinophils are a family of white blood cells often associated with infections by parasitic nematodes. Although the role of eosinophils in nematode resistance is controversial, recent work has suggested that the action of these immune effectors might be limited to the larval stages of the parasite. If eosinophils act on larval survival, one might predict, in line with theoretical models, that nematode species living in hosts with large eosinophil numbers should show reduced age and size at maturity. We tested this prediction using the association between the pinworms (Oxyuridae, Nematoda) and their primate hosts. Pinworms are highly host specific and are expected to be involved in a coevolutionary process with their hosts. We found that the body size of female parasites was negatively correlated with eosinophil concentration, whereas the concentration of two other leucocyte families-neutrophils and lymphocytes-was unrelated to female body size. Egg size of parasites also decreased with host eosinophil concentration, independently of female size. Male body size was unrelated to host immune parameters. Primates with the highest immune defence, therefore, harbour small female pinworms laying small eggs. These results are in agreement with theoretical expectations and suggest that life histories of oxyurid parasites covary with the immune defence of their hosts. Our findings illustrate the potential for host immune defence as a factor driving parasite life-history evolution.  相似文献   

2.
Coevolution with parasites has been implicated as an important factor driving the evolution of host diversity. Studies to date have focussed on gross effects of parasites: how host diversity differs in the presence vs. absence of parasites. But parasite-imposed selection is likely to show rapid variation through time. It is unclear whether short-term fluctuations in the strength of parasite-imposed selection tend to affect host diversity, because increases in host diversity are likely to be constrained by both the supply of genetic variation and ecological processes. We followed replicate populations of coevolving, initially isogenic, bacteria and phages through time, measuring host diversity (with respect to bacterial colony morphologies), host density and rates of parasite evolution. Both host density and time-lagged rates of parasite evolution were good independent predictors of the magnitude of bacterial within- and between-population diversities. Rapid parasite evolution and low host density decreased host within-population diversity, but increased between-population diversity. This study demonstrates that short-term changes in the rate of parasite evolution can predictably drive patterns of host diversity.  相似文献   

3.
We investigate the evolution of manipulation of host dispersal behaviour by parasites using spatially explicit individual-based simulations. We find that when dispersal is local, parasites always gain from increasing their hosts' dispersal rate, although the evolutionary outcome is determined by the costs-to-benefits ratio. However, when dispersal can be non-local, we show that parasites investing in an intermediate dispersal distance of their hosts are favoured even when the manipulation is not costly, due to the intrinsic spatial dynamics of the host-parasite interaction. Our analysis highlights the crucial importance of ecological spatial dynamics in evolutionary processes and reveals the theoretical possibility that parasites could manipulate their hosts' dispersal.  相似文献   

4.
Whilst it is well known that many parasites occasionally switch from one host species to another and thus spread within a host clade, the patterns of spread and the observed heterogeneity in parasite incidence between host taxa are not well understood. Here, we develop a simple stochastic model as a first attempt to understand these ‘incidence dynamics’. Based on the empirically supported assumption that the probability of successful transmission from an infected to a new host species declines with increasing genetic distance between them, we study the impact of different phylogenetic histories of the host clade on the pattern of spread and the average incidence of the parasites. Our results suggest that host phylogeny alone can lead to heterogeneous parasite incidence.  相似文献   

5.
Infestations by dipterous larvae that feed on dead or living vertebrate tissues for a variable period are known as myiases; these infestations reduce host physiological functions, destroy host tissues and cause significant economic losses to livestock worldwide. Recent advances in understanding the specific and nonspecific immune responses of hosts to infestation by myiasis-causing larvae and the immunological strategies evolved by larvae against the host are reviewed here. The practical implications of immunological knowledge for diagnostic and vaccination strategies are also discussed, with a view to developing environmentally sustainable control methods to be used as an alternative to chemical treatments.  相似文献   

6.
We analyze the evolutionary consequences of host resistance (the ability to decrease the probability of being infected by parasites) for the evolution of parasite virulence (the deleterious effect of a parasite on its host). When only single infections occur, host resistance does not affect the evolution of parasite virulence. However, when superinfections occur, resistance tends to decrease the evolutionarily stable (ES) level of parasite virulence. We first study a simple model in which the host does not coevolve with the parasite (i.e., the frequency of resistant hosts is independent of the parasite). We show that a higher proportion of resistant host decreases the ES level of parasite virulence. Higher levels of the efficiency of host resistance, however, do not always decrease the ES parasite virulence. The implications of these results for virulence management (evolutionary consequences of public health policies) are discussed. Second, we analyze the case where host resistance is allowed to coevolve with parasite virulence using the classical gene-for-gene (GFG) model of host-parasite interaction. It is shown that GFG coevolution leads to lower parasite virulence (in comparison with a fully susceptible host population). The model clarifies and relates the different components of the cost of parasitism: infectivity (ability to infect the host) and virulence (deleterious effect) in an evolutionary perspective.  相似文献   

7.
A host’s first line of defense in response to the threat of parasitic infection is behavior, yet the efficacy of anti-parasite behaviors in reducing infection are rarely quantified relative to immunological defense mechanisms. Larval amphibians developing in aquatic habitats are at risk of infection from a diverse assemblage of pathogens, some of which cause substantial morbidity and mortality, suggesting that behavioral avoidance and resistance could be significant defensive strategies. To quantify the importance of anti-parasite behaviors in reducing infection, we exposed larval Pacific chorus frogs (Pseudacris regilla) to pathogenic trematodes (Ribeiroia and Echinostoma) in one of two experimental conditions: behaviorally active (unmanipulated) or behaviorally impaired (anesthetized). By quantifying both the number of successful and unsuccessful parasites, we show that host behavior reduces infection prevalence and intensity for both parasites. Anesthetized hosts were 20–39% more likely to become infected and, when infected, supported 2.8-fold more parasitic cysts. Echinostoma had a 60% lower infection success relative to the more deadly Ribeiroia and was also more vulnerable to behaviorally mediated reductions in transmission. For Ribeiroia, increases in host mass enhanced infection success, consistent with epidemiological theory, but this relationship was eroded among active hosts. Our results underscore the importance of host behavior in mitigating disease risk and suggest that, in some systems, anti-parasite behaviors can be as or more effective than immune-mediated defenses in reducing infection. Considering the severe pathologies induced by these and other pathogens of amphibians, we emphasize the value of a broader understanding of anti-parasite behaviors and how co-occurring stressors affect them.  相似文献   

8.
9.
10.
11.
Disease can generate intense selection pressure on host populations, but here we show that acquired immunity in a population subject to repeated disease outbreaks can impede the evolution of genetic disease resistance by maintaining susceptible genotypes in the population. Interference between the life-history schedule of a species and periodicity of the disease has unintuitive effects on selection intensity, and stochasticity in outbreak period further reduces the rate of spread of disease-resistance alleles. A general age-structured population genetic model was developed and parameterized using empirical data for phocine distemper virus (PDV) epizootics in harbor seals. Scenarios with acquired immunity had lower levels of epizootic mortality compared with scenarios without acquired immunity for the first PDV outbreaks, but this pattern was reversed after about five disease cycles. Without acquired immunity, evolution of disease resistance was more rapid, and long-term population size variation is efficiently dampened. Acquired immunity has the potential to significantly influence rapid evolutionary dynamics of a host population in response to age-structured disease selection and to alter predicted selection intensities compared with epidemiological models that do not consider such feedback. This may have important implications for evolutionary population dynamics in a range of human, agricultural, and wildlife disease settings.  相似文献   

12.
We investigated the role of kinship in intraspecific nest parasitismof wood ducks (Aix sponsa). Among waterfowl, female philopatrycreates the potential for female relatives to nest in proximity.Costs of intraspecific nest parasitism to host females may bereduced if parasites lay eggs with kin. However, previous observationsof marked wood ducks indicated that females avoided parasitizingclutch mates or the female that incubated them. To further examinethe role of kinship, we determined the genotypes of 27 host-parasitepairs at five microsatellite loci. Average relatedness betweenhosts and all females laying parasitic eggs was only 0.04 ±0.03. Parasites appeared to choose hosts randomly with respectto kinship from among females with nests in the neighborhoodand those within the entire study area. However, host relatednessto the parasite with the greatest number of young leaving thenest was 0.11 ± 0.03, which was greater than expectedif eggs were accepted randomly from neighboring females or fromfemales present on the entire study area (p = .03 and p = .02,respectively). These patterns may reflect parasitism of randomlyselected nests followed by differential acceptance by hosts,differential hatching success of related parasites (e.g., dueto greater laying synchrony), or a mixture of parasitic strategies,one with a focus on related hosts and the other on unrelatedhosts. Genetic data revealed that social relationships did notalways reflect true relatedness and that success of primaryparasites was associated with kinship to hosts.  相似文献   

13.
寄生虫与宿主的关系   总被引:1,自引:0,他引:1  
对寄生虫与宿主的关系进行论述,探求寄生关系的实质,明确这二者之间的关系是认识寄生虫病发生发展规律,更好地防治寄生虫病的基础.  相似文献   

14.
Leishmania donovani causes human visceral leishmaniasis. The parasite infectious cycle comprises extracellular flagellated promastigotes that proliferate inside the insect vector, and intracellular nonmotile amastigotes that multiply within infected host cells. Using primary macrophages infected with virulent metacyclic promastigotes and high spatiotemporal resolution microscopy, we dissect the dynamics of the early infection process. We find that motile promastigotes enter macrophages in a polarized manner through their flagellar tip and are engulfed into host lysosomal compartments. Persistent intracellular flagellar activity leads to reorientation of the parasite flagellum toward the host cell periphery and results in oscillatory parasite movement. The latter is associated with local lysosomal exocytosis and host cell plasma membrane wounding. These findings implicate lysosome recruitment followed by lysosome exocytosis, consistent with parasite-driven host cell injury, as key cellular events in Leishmania host cell infection. This work highlights the role of promastigote polarity and motility during parasite entry.  相似文献   

15.
In response to parasitic infection, hosts may evolve defences that reduce the deleterious effects on survivorship. This may be interpreted as a form of resistance, as long as infected hosts are able to either recover or reproduce. Here we distinguish two important routes to this form of resistance. An infected host may either: (1) tolerate pathogen damage, or (2) control the pathogen by inhibiting its growth. A model is constructed to examine the evolutionary dynamics of tolerance and control to a free-living microparasite, where both forms of resistance are costly in terms of other life-history traits. We do not observe polymorphism of tolerant genotypes. In contrast, the evolution of control may lead to disruptive selection, and ultimately dimorphism of extreme strains. The optimal host genotype also varies with the type of resistance-individuals invest more in tolerance and pay a greater cost. The free-living framework used makes the distinction between tolerance and control explicit but the distinction applies equally to directly transmitted parasites. Due to the evolutionary differences exhibited, it is important to design experiments that distinguish between the two forms of resistance.  相似文献   

16.
Many host‐parasite models assume that transmission increases linearly with host population density (‘density‐dependent transmission’), but various alternative transmission functions have been proposed in an effort to capture the complexity of real biological systems. The most common alternative (usually applied to sexually transmitted parasites) assumes instead that the rate at which hosts contact one another is independent of population density, leading to ‘frequency‐dependent’ transmission. This straight‐forward distinction generates fundamentally different dynamics (e.g. deterministic, parasite‐driven extinction with frequency‐ but not density‐dependence). Here, we consider the situation where transmission occurs through two different types of contact, one of which is density‐dependent (e.g. social contacts), the other density‐independent (e.g. sexual contacts). Drawing on a range of biological examples, we propose that this type of contact structure may be widespread in natural populations. When our model is characterized mainly by density‐dependent transmission, we find that allowing even small amounts of transmission to occur through density‐independent contacts leads to the possibility of deterministic, parasite‐driven extinction (and lowers the threshold for parasite persistence). Contrastingly, allowing some density‐dependent transmission to occur in a model characterized mainly by density‐independent contacts (i.e. by frequency‐dependent transmission) does not affect the extinction threshold, but does increase the likelihood of parasite persistence. The idea that directly transmitted parasites exploit different types of host contact is not new, but here we show that the impact on dynamics can be fundamental even in the simplest cases. For example, in systems where density‐dependent transmission is normally assumed de facto, we show that parasite‐driven extinction can occur if a small amount of transmission occurs through density‐independent contacts. Many empirical studies are still guided by the traditional density/frequency dichotomy, but our combined transmission function may provide a better model for systems in which both types of transmission occur.  相似文献   

17.
18.
19.
The establishment of Trichostrongylus colubriformis was estimated in helminthologically naive 20-week-old Merino sheep given third stage infective larvae (L3) at rates of 2000, 632 or 200 L3 per day, 5 days per week. After varying periods of continuous L3 intake, a levamisole-susceptible strain of T. colubriformis was replaced with a highly resistant strain for 1 week. The animals were then treated with levamisole to remove the susceptible population, and establishment of the cohort of resistant worms was estimated. In previously uninfected sheep, approximately 65% of the L3 given in the first week became established as adults. This fell to low levels (less than 5%) after 7, 10 and 14 weeks of continuous L3 intake for the high, medium and low infection rates, respectively. At the low infection rate, establishment remained at maximum levels for the first 4 weeks, but then fell at a rate similar to that observed for the higher infection rates. This implied that a threshold of worm exposure was required before resistance to establishment developed. Parasite egg production, expressed as eggs per gram of faeces, was proportional to infection rate and is explained by higher worm burdens occurring at high infection rates. However, estimates of fecundity in eggs per female per day showed the opposite relationship with rate of infection. Fecundity stayed high (approximately 600) for 5 weeks at the low infection rate but only maintained this level for 3 weeks and 1 week at the medium and high rates, respectively. This suggests that fecundity, like establishment, was similarly affected at threshold levels of immunological recognition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号