首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A polypeptide having the repealing sequence (Tyr-Ala-Glu)n was synthesized by the polymerization of the N-hydroxysuccinimide ester of O-benzyl-L -tyrosyl-L -alanyl-γ-benzyl-L -glutamate, followed by the removal of the benzyl groups by means of hydrogen bromide. The main fraction obtained on gel filtration had an average molecular weight of over 60, 000, corresponding to over 500 amino acid residues per polypcptide chain. The polymer is soluble in water above pH 5.5, and precipitates on lowering the pH. The x-ray powder photographs show features of an α-helical structure. The dependence of the ultraviolet absorption spectrum, the optical rotatory dispersion, and the fluorescence of poly(Tyr-Ala-Glu) on pH, in salt-free as well as in salt-containing aqueous solutions, was compared with the corresponding properties of a copolymer containing equimolar proportions of tyrosine, alanine, and glutamic acid in a random sequence. From these measurements it was concluded that poly(Tyr-Ala-Glu ) has a helical con formation at low pH and a random coil conformation at high pH, the transition taking place at pH 6 in the absence of salt and pH II in the presence of salt. Thus, in the range pH 7 to l0. random coil-to-helix transition can be achieved by merely increasing the ionic strength. A model is proposed for the structure of the helical poly peptide which accounts for the Stability of the helical conformation by assuming hydrogen bonding between the carboxylate group of the ith glutamic acid residue and the hydroxyl group of the (i + 4 )th tyrosine residue. The complex ORD of helical poly(Tyr-Ala-Glu) is explained as being due to a superposition of the ORD of an α-helix and that of a regular array of phenolic ehroniopholes originating from the immobilization of the aromatic rings in the specific structure of the polymer.  相似文献   

2.
Three-state denaturation of alpha-lactalbumin by guanidine hydrochloride.   总被引:1,自引:0,他引:1  
The reversible unfolding of α-lactalbumin by guanidine hydrochloride has been studied at 25.0 °C by means of ultraviolet circular dichroism measurements. The non-coincidence of the apparent transition curves obtained from the ellipticity changes at far (222 nm) and at near (270 nm and 296 nm) ultraviolet wave-lengths demonstrates the presence of at least one intermediate in the denaturation process. The aromatic residues which contribute to the Cotton effects at 270 nm and at 296 nm appear to be exposed to solvent in the first stage of a two-stage process, while the helical regions of the polypeptide chain appear to be destroyed in the second stage. Earlier work has demonstrated an acid transition between two compact forms of α-lactalbumin, a native (neutral pH) form and an acid form. Results presented here suggest that the acid form is produced as an intermediate in the first stage of total unfolding at neutral pH.Lysozyme and α-lactalbumin are known to have similar primary structures and are expected to have similar tertiary structures, but several differences in their properties have been described. The comparison of the unfolding transitions of α-lactalbumin and lysozyme provides a result compatible with similar tertiary structures, although the free energy of stabilization of the native state is 3 to 5 kcal/mol smaller for α-lactalbumin than for lysozyme. The pH dependence of the unfolding reaction can be described in terms of abnormal histidyl and carboxyl residues. The presence of a stable intermediate in the denaturation process may cause a difference in dynamic character in the native state between the two proteins and thus provide a reasonable interpretation for their known differences in chemical reactivity.  相似文献   

3.
The dielectric features of poly(L -glutamic acid) are studied by the Fourier synthesized pseudorandom noise method in a time domain combined with a four-electrode cell. Polymer concentration dependence, the effect of the solvent viscosity, salt effects, and pH dependence are studied concomitantly with measurements of CD. A helix-to-coil transition occurs near pH 5.6 for a salt-free solution; at higher pH values, the polymer has an ionized random-coil conformation, and at lower pH, it has a deionized α-helical conformation. When it is in the ionized random-coil conformation, with the usual features of an electrolytic polymer, the solution shows a relaxation spectrum with a large dielectric increment at low frequencies. In the deionized α-helical state, no distinct relaxation curves are obtained, which does not deny the existence of a permanent peptide dipole. The pH dependence of the dielectric increment does not mainly correspond to the conformational change from helix to coil, but rather corresponds to the change of chain expansion on account of a charge–charge interaction under low ionic strength, which is conceived of by a viscosity measurement.  相似文献   

4.
The solution characterization of poly(Lys-Ala-Glu) is described. This polytripeptide is zwitterionic at neutral pH and is shown to take on a conformation which is dictated by the state of ionization, molecular weight, temperature, and solvent. The polypeptide is almost entirely α-helical at low pH and temperature for polymers of greater than 25,000 molecular weight. Melting profiles for these conditions show tm ~ 20°C. Analysis of circular dichroism curves shows the α-helical content to vary in a linear manner with molecular weight in the range 3000–30,000. At neutral pH the charged polypeptide is essentially random, but substantial α-helix could be induced by addition of methanol or trifluoroethanol. At temperatures where the sequential polypeptide is a random coil, addition of trifluoroethanol produces a polymer which is mostly α-helical but also contains an appreciable ammount of β-structure. The infrared spectrum of a low-molecular-weight fraction assumed to be cyclo(Lys-Ala-Glu)2 was tentatively assigned a β-pleated sheet structure. A comparison of this polytripeptide in various ionization states with other polytripeptides containing L -alanine and L -glutamate or L -lysine shows the α-helix directing properties for the (uncharged) residues to lie in the order Ala > Glu > Lys.  相似文献   

5.
The backbone CD spectrum from 250 to 212 nm for the kinetic folding intermediate of αα-tropomyosin (αα-Tm) and nonpolymerizable αα-Tm was obtained. The spectrum shows that the intermediate is indeed α-helical with about 70% of the equilibrium α-helix content. Subsequence 142Tm281 of the α-tropomyosin chain has five tyrosine residues (at positions 162, 214, 221, 261, 267). Stopped flow CD at the negative peak in the tyrosine spectral region (280 nm) shows that any tyrosine residues that contribute to the spectrum in the region have already reached their final state in the fast phase of folding ( < 0.04 s). © 1993 John Wiley & Sons, Inc.  相似文献   

6.
In the present study, structural aspects of the two soluble transducers, HtrX and HtrXI, from the archaeon H. salinarum have been examined using UV circular dichroism and steady-state fluorescence spectroscopies. Circular dichroism (CD) data indicate that both HtrX and HtrXI exhibit salt-dependent protein folding. Under low-ionic-strength conditions (0.2 M NaCl or KCl) the CD spectra of HtrXI is similar to that of the Gdn-HCl- or urea-denatured forms and is indicative of random coil structure. In contrast, the CD spectrum of HtrX under low-ionic-strength conditions contains roughly 85% α-helical character, indicating a significant degree of folding. Addition of NaCl or KCl to solutions of HtrX or HtrXI results in CD features consistent with predominately α-helical character (>95%) for both proteins. In addition, the transition points (i.e., ionic strengths at which the protein converts from random coil to α-helical character) are quite distinct and dependent upon the type of salt present (i.e., either NaCl or KCl). Accessibility of tryptophan residues to the solvent was also examined for both HtrX and HtrXI in both folded and unfolded states using Kl quenching. The Stern–Volmer constants obtained suggest that the tryptophans (Trp35 in HtrX and both Trp47 and Trp74 in HtrXI) are partially exposed to the solvent, indicating that they are located near the surface of the protein in all three cases. Furthermore, fluorescence quenching with the single Trp mutants Trp74AIa and Trp47AIa of HtrXI indicates different environments for these two residues.  相似文献   

7.
An increasing number of experimental and theoretical studies have demonstrated the importance of the 3(10)-helix/ alpha-helix/coil equilibrium for the structure and folding of peptides and proteins. One way to perturb this equilibrium is to introduce side-chain interactions that stabilize or destabilize one helix. For example, an attractive i, i + 4 interaction, present only in the alpha-helix, will favor the alpha-helix over 3(10), while an i, i + 4 repulsion will favor the 3(10)-helix over alpha. To quantify the 3(10)/alpha/coil equilibrium, it is essential to use a helix/coil theory that considers the stability of every possible conformation of a peptide. We have previously developed models for the 3(10)-helix/coil and 3(10)-helix/alpha-helix/ coil equilibria. Here we extend this work by adding i, i + 3 and i, i + 4 side-chain interaction energies to the models. The theory is based on classifying residues into alpha-helical, 3(10)-helical, or nonhelical (coil) conformations. Statistical weights are assigned to residues in a helical conformation with an associated helical hydrogen bond, a helical conformation with no hydrogen bond, an N-cap position, a C-cap position, or the reference coil conformation plus i, i + 3 and i, i + 4 side-chain interactions. This work may provide a framework for quantitatively rationalizing experimental work on isolated 3(10)-helices and mixed 3(10)-/alpha-helices and for predicting the locations and stabilities of these structures in peptides and proteins. We conclude that strong i, i + 4 side-chain interactions favor alpha-helix formation, while the 3(10)-helix population is maximized when weaker i, i + 4 side-chain interactions are present.  相似文献   

8.
The Raman spectrum of poly-DL -alanine (PDLA) in the solid state is interpreted in terms of the disordered chain conformation, in analogy with the spectrum of mechanically deformed poly-L -alanine. The polymer is largely disordered with only a small α-helical content in the solid state. When PDLA is dissolved in water, the spectra suggest that short α-helical segments are formed upon dissolution. These helical regions might be stabilized by hydrophobic bonds between side-chain methyl groups. Addition of methanol to the aqueous PDLA solutions results in a Raman spectrum resembling that of solid PDLA. This result suggests that the methanol disrupts the helical regions by breaking the hydrophobic bonds. The Raman spectra of poly-DL -leucine (PDLL) and poly-L -leucine (PLL) are compared and only slight differences are observed in the amide I and III regions, indicating that PDLL does not have an appreciable disordered chain content. Significant differences are observed in the skeletal regions. The 931-cm?1 lines in the PLL and PDLL spectra are assigned to residues in α-helical segments of the preferred screw sense, i.e., L -residues in right-handed segments and D -residues in left-handed segments (in PDLL). On the other hand, the 890-cm?1 line in the spectrum of PDLL is assigned to residues not in the preferred helical sence, i.e., L -residues in left-handed segments and D -residues in right-handed ones. The Raman spectra of poly-DL -lysine and poly-L -lysine in salt-free water at pH 7.0 are compared. The Raman spectra of the two polymers are very similar. However, this does not negate the hypothesis of local order in poly-L -lysine because the distribution of the residues in poly-DL -lysine probably tends towards blocks, and the individual blocks may take up the 31 helix.  相似文献   

9.
10.
The interactions between chondroitin-6-sulfate and poly-L -arginine in aqueous salt solution have been investigated by circular dichroism techniques. In the presence of chondroitin-6-sulfate, at neutral pH, poly-L -arginine adopts the α-helical conformation rather than “charged coil” form observed in the absence of mucopolysaccharide. This interaction is at a maximum when the ratio of arginine to disaccharide residues is 2:1. Elevation of the temperature leads to a sharp melting transition at 76.0 ± 1.0°C. This behavior is in marked contrast to that for poly-L -lysine-chondroitin-6-sulfate interactions, which are at a maximum at a 1:1 residue ratio and have a melting transition at 47.0 ± 1.0°C. These results indicate a stronger interaction for poly-L -arginine than for poly-L -lysine. The positive arginine side chains appear to interact with both the negative sulfate and carboxyl residues, while those of the lysines are involved only with the sulfates. Poly-L -ornithine at neutral pH shows no conformation directing interaction with chondroitin-6-sulfate, although a small proportion of α-helix is formed on dilution of the mixture with methanol. The extent of the interaction of cationic polypeptides with chondroitin-6-sulfate increases in the order poly-L -ornithine, poly-L -lysine, poly-L -arginine, i.e., in the order of increasing side-chain length.  相似文献   

11.
The energetics and hydrogen bonding profiles of the helix-to-coil transition were found to be an additive property and to increase linearly with chain length, respectively, in alanine-rich α-helical peptides. A model system of polyalanine repeats was used to establish this hypothesis for the energetic trends and hydrogen bonding profiles. Numerical measurements of a synthesized polypeptide Ac-Y(AEAAKA)kF-NH2 and a natural α-helical peptide a2N (1–17) provide evidence of the hypothesis’s generality. Adaptive steered molecular dynamics was employed to investigate the mechanical unfolding of all of these alanine-rich polypeptides. We found that the helix-to-coil transition is primarily dependent on the breaking of the intramolecular backbone hydrogen bonds and independent of specific side-chain interactions and chain length. The mechanical unfolding of the α-helical peptides results in a turnover mechanism in which a 310-helical structure forms during the unfolding, remaining at a near constant population and thereby maintaining additivity in the free energy. The intermediate partially unfolded structures exhibited polyproline II helical structure as previously seen by others. In summary, we found that the average force required to pull alanine-rich α-helical peptides in between the endpoints—namely the native structure and free coil—is nearly independent of the length or the specific primary structure.  相似文献   

12.
The native tropomyosin molecule is a parallel, registered, α-helical coiled coil made from two 284-residiic chains. Long excised subsequences (≥ 95 residues) form the same structure with comparable thermal stability. Here, we investigate local stability using shorter subsequences (20-50 residues) that are chemically synthesized or excised from various regions along the protein chain. Thermal unfolding studies of such shorter peptides by CD in the same solvent medium used in extant studies of the parent protein indicate very low helix content, almost no coiled-coil formation, and high thermal lability of such secondary structure as does form. This behavior is in stark contrast to extant data on leucine-zipper peptides and short “designed” synthetic peptides, many of which have high α-helix content and form highly stable coiled coils. The existence of short coiled coils calls into question the older idea that short subsequences of a protein have little structure. The present study supports the older view, at least in its application to tropomyosin. The intrinsic local α-helical propensity and helix–helix interaction in this prototypical α-helical protein is sufficiently weak as to require not only dimerization, but macro-molecular amplification in order to attain its native conformation in common benign media near neutral pH. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
A new approach for evaluating the secondary structure of proteins by CD spectroscopy of overlapping peptide segments is applied to porcine adenylate kinase (AK1) and yeast guanylate kinase (GK3). One hundred seventy-six peptide segments of a length of 15 residues, overlapping by 13 residues and covering the complete sequences of AK1 and GK3, were synthesized in order to evaluate their secondary structure composition by CD spectroscopy. The peptides were prepared by solid phase multiple peptide synthesis method using the 9-fluorenylmethoxycarbonyl/tert-butyl strategy. The individual peptide secondary structures were studied with CD spectroscopy in a mixture of 30% trifluoroethanol in phosphate buffer (pH 7) and subsequently compared with x-ray data of AK1 and GK3. Peptide segments that cover α-helical regions of the AK1 or GK3 sequence mainly showed CD spectra with increasing and decreasing Cotton effects that were typical for appearing and disappearing α-helical structures. For segments with dominating β-sheet conformation, however, the application of this method is limited due to the stability and clustering of β-sheet segments in solution and due to the difficult interpretation of random-coiled superimposed β-sheet CD signals. Nevertheless, the results of this method especially for α-helical segments are very impressive. All α-helical and 71% of the β-sheet containing regions of the AK1 and GK3 could be identified. Moreover, it was shown that CD spectra of consecutive peptide content reveal the appearance and disappearance of α-helical secondary structure elements and help localizing them on the sequence string. © 1997 John Wiley & Sons, Inc. Biopoly 41: 213–231, 1997  相似文献   

14.
Pyridine interactions with phenol, substituted phenol, tyrosine and poly(Glu50,Tyr50) in aqueous solutions have been studied by ultraviolet (UV) difference spectroscopy, spectrophotometric pH titration, circular dichroism (CD) and proton magnetic resonance (PMR) spectroscopy. A red shift and spectral sharpening of the near-UV spectrum of phenol in water was noted at pyridine concentrations greater than 0.25 M. In addition, the spectrophotometric equivalence point for the phenol- or substituted phenol-phenolate equilibrium was increased about 0.5 pH units upon the addition of 1.0 M pyridine. PMR studies were consistent with the formation of a 1 : 1 phenol-pyridine hydrogen bonded complex. The equilibrium constant derived for this interaction, 0.6-0.7 M-1, is greater than the corresponding value for phenol-acetate hydrogen bonding in water. Enhancement of thepyridine hydrogen bond interaction with Tyr within poly(Glu50,Tyr50) was observed at pH greater than 12 due to a hydrophobic microenvironment produced by pyridine molecules intercalating between neighboring tyrosyl residues.  相似文献   

15.
A R Zeiger  J S Ellis  P H Maurer 《Biopolymers》1985,24(7):1215-1232
Six sequential polytetrapeptides containing equimolar amounts of tyrosine, glutamic acid, alanine, and glycine were characterized by CD and difference spectroscopy over a wide range of pH. As the pH was lowered from physiological values, each of the polymers underwent pH-sensitive transitions. The CD spectra indicated that two polymers, poly(Tyr-Glu-Ala-Gly) and poly(Tyr-Ala-Glu-Gly), had some α-helical conformation at pH 7.0 and approached maximum helicity around pH 6.0; two others, poly(Ala-Tyr-Glu-Gly) and poly(Glu-Ala-Tyr-Gly), had no α-helical conformation at pH 7.0 and about one-third of the ellipticities of the above two polymers at pH 5.5; and the remaining two, poly(Ala-Glu-Tyr-Gly) and poly(Glu-Tyr-Ala-Gly) had little or no α-helix, even at pH 5.5. Difference spectroscopy at 286 nm yielded results quite different. The molar extinction coefficients for poly(Tyr-Glu-Ala-Gly) and poly(Tyr-Ala-Glu-Gly) continued to change, even below pH 5.5, and the total changes in absorbance between pH 8.0 and 4.5 were of intermediate magnitudes among the six polymers. Poly(Ala-Tyr-Glu-Gly) and poly(Glu-Ala-Tyr-Gly), which had similar CD spectra, had the lowest and highest pH-related changes in the molar extinction coefficients. It thus appears that amino acid composition alone cannot account for the apparent differences in conformation among the polytetrapeptides. Other factors, such as amno acid sequence, must play a major role in the determination of conformation. The intrinsic viscosity of poly(Tyr-Glu-Ala-Gly) increased markedly between pH 6.0 and 5.5, which was below the pH of the CD transition but above the pH at which the largest absorption perturbation change, at 286 nm, took place. The model that can best account for the relatively low pH at which the absorption transition of tyrosine occurred is a progressive immobilization of side chains in the α-helix as the pH decreases.  相似文献   

16.
Ultraviolet difference spectra of pepsin   总被引:1,自引:1,他引:0       下载免费PDF全文
A shift of pH of pepsin solutions from 4.6 to 1.0 gives rise to spectral displacements in the ultraviolet. If represented as difference spectra three peaks with maxima at 2770, 2850, and 2930 Ångströms are present which can be attributed to the tyrosine and tryptophan residues in the protein. On mild autolysis of pepsin at pH 2.0 the absorbancy in the ultraviolet further decreases. Although some of these effects can be ascribed to the occurrence of hydrogen bonding between the aromatic residues and a carboxylate ion, those observed on autolysis are caused by charge effects of newly formed polar groups in the vicinity of a chromophore. No direct relation between the optical properties described here and enzymic activity of pepsin has been observed.  相似文献   

17.
The conformation of native pertussis toxin has been investigated by secondary structure prediction and by circular dichroism, fluorescence and second-derivative ultraviolet absorption spectroscopy. The far-ultraviolet circular dichroic spectrum is characteristic of a protein of high beta-sheet and low alpha-helix content. This is also shown by an analysis of the circular dichroic spectrum with the Contin programme which indicates that the toxin possesses 53% beta-sheet, 10% alpha-helix and 37% beta-turn/loop secondary structure. Second-derivative ultraviolet absorption spectroscopy suggests that 34 tyrosine residues are solvent-exposed and quenching of tryptophan fluorescence emission has shown that 4 tryptophan residues are accessible to iodide ions. One of these tryptophans appears to be in close proximity to a positively charged side-chain, since only 3 tryptophans are accessible to caesium ion fluorescence quenching. When excited at 280 nm, the emission spectrum contains a significant contribution from tyrosine fluorescence, which may be a consequence of the high proportion (55%) of surface-exposed tyrosines. No changes in the circular dichroic spectra of the toxin were found in the presence of the substrate NAD. However, NAD did quench both tyrosine and tryptophan fluorescence emission but did not change the shape of the emission spectrum, or the accessibility of the tryptophans to either the ionic fluorescence quenchers or the neutral quencher acrylamide.  相似文献   

18.
In order to study the state of tyrosyl residues in a ribouuclease from bovine semina vesicles [EC 3.1.4.22, RNase Vs1] several lines of experiments were carried out. Spectrophotometric titration of RNase Vs1 indicated that two out of 8 tyrosine residues were titrated very easily and their apparent pKa values were about 9.8. Next, about 4 residues were titrated at pH up to 13.5. The remaining 2 residues were titrated time-dependently at pH 13.5. In 8 M urea, about 6 tyrosine residues were titrated with apparent pK4 values of about 11.2 and about 2 residues were titrated time-dependently at pH 13.5. Acetylation of RNase Vs1 with N-acetylimidazole was studied at pH 7.5. In aqueous solution, about 1.1-3.5 tyrosine residues were acetylated, depending on the experimental conditions, and in 8 M urea, 5.3 tyrosine residues were modified. RNase Vs1 was nitrated with tetranitromethane at pH 7.5. In aqueous solution, about 2.5 tyrosine residues were nitrated very easily; the enzymatic activity of the modified enzymes was 130-200% of that of the native enzyme. In 8 M urea, the reactivity of the tyrosine residues increased and about 4-5.5 residues were modified. The results of chemical modification and spectrophotometric titration indicated that about two tyrosine residues in RNase Vs1 were exposed to the solvent and were more reactive to various reagents, and 3-4 tyrosine residues were less reactive. The final 2 residues were not accessible to the reagent even in the presence of urea, but were titraten at pH 13.5. The solvent perturbation difference spectrum using ethylene glycol as a perturbant indicated that about 4 tyrosine residues were perturbed. When the pH of the enzyme solution was changed from 7.0 to 1.0, the change in optical density of RNase Vs1 due to denaturation blue shift was about 1,600 at 287nm. The optical density change at 287 nm of native RNase Vs1 on exposure to 8 M urea and 6 M guanidine-HCl indicated that the environments of 2-3 and 4 tyrosine residues were changed by the addition of the denaturants, urea and guanidine-HCl, respectively. In RNase Vs1 having about four nitrotyrosine residues, the two most inaccessible tyrosine residues remained resistant to titration with alkali. On adding nucleotide, nitrated RNase Vs1 gave a difference spectrum in the ultraviolet region but not in 320-460 nm region, where nitrotyrosine residues absorb light. This may indicate that tyrosine residues located relatively near the surface of the molecule are not perturbed directly by nucleotide binding.  相似文献   

19.
Woody AY  Woody RW 《Biopolymers》2003,72(6):500-513
Experimental and theoretical studies using site-directed mutants of ribonuclease A (RNase A) offer more extensive information on the tyrosine side-chain contributions to the circular dichroism (CD) of the enzyme. Bovine pancreatic RNase A has three exposed tyrosine residues (Tyr73, Tyr76, and Tyr115) and three buried tyrosine residues (Tyr25, Tyr92 and Tyr97). The difference CD spectra between the wild type and the mutants at pH 7.0 (Deltaepsilon(277,wt) - Deltaepsilon(277,mut)) show bands with more negative DeltaDeltaepsilon(277) values for Y73F and Y115F than those for Y25F and Y92F and bands with positive DeltaDeltaepsilon(277) values for Y76F and Y97F. The theoretical calculations are in good semiquantitative agreement for all the mutants. The pH difference spectrum (pH 11.3-7.0) for the wild type shows a negative band at 295 nm and an enhanced positive band at 245 nm. The three mutants at buried tyrosine sites and one mutant at an exposed tyrosine site (Y76F) exhibit pH-difference spectra that are similar to that of the wild type. In contrast, two mutants at exposed tyrosine sites (Y73F and Y115F) exhibit diminished 295-nm negative bands and, instead of positive bands at 245 nm, negative bands are observed. Our results indicate that Tyr73 and Tyr115, two of the exposed tyrosine residues, are the largest contributors to the 277- and 245-nm CD bands of RNaseA, but the buried tyrosine residues and the one remaining exposed residue also contribute to these bands. Disulfide contributions to the 277- and 240-nm bands and the peptide contribution to the 240-nm band are confirmed theoretically.  相似文献   

20.
The molecular basis for heparin interactions with proteins has been explored with l-lysine copolymer: heparin complexes, measuring the conformational change and charge neutralization which accompany the complexation, using optical methods. Previous studies had shown that the basic homopolypeptides (poly-l-lysine, poly-l-arginine) assume α-helical conformation upon interaction with numerous glycosaminoglycans (including heparin). Thus, the unique specificity for heparin in the anticoagulation system (which involves two or more lysine residues on the antithrombin molecule) is not paralleled by the findings with the basic homopolymers.Results with mixed polypeptides, poly(lysine: tyrosine, 1:1) and poly(lysine: phenylalanine, 1.4:1), show that these protein models assume different conformational forms upon complexation with heparin, the former shows a poly-l-lysine-like β-structure circular dichroism spectrum and the latter an α-helical structure. The change in circular dichroism spectra increases with the addition of heparin until the ratio of positive to negative charge is about one. Dye-binding studies of the two copolymer systems reveal that the charged groups of reactants are largely blocked in the polypeptide complexes at a calculated charge ratio equal to one. The data indicate that heparin interaction with the cationic polypeptides causes them to assume either the α-helical or β-structure depending upon the nature of the neighboring uncharged amino acid and its proclivity for α-helix or β-structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号