首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Woo PC  Zhen H  Cai JJ  Yu J  Lau SK  Wang J  Teng JL  Wong SS  Tse RH  Chen R  Yang H  Liu B  Yuen KY 《FEBS letters》2003,555(3):469-477
We report the complete sequence of the mitochondrial genome of Penicillium marneffei, the first complete mitochondrial DNA sequence of a thermal dimorphic fungus. This 35 kb mitochondrial genome contains the genes encoding ATP synthase subunits 6, 8, and 9 (atp6, atp8, and atp9), cytochrome oxidase subunits I, II, and III (cox1, cox2, and cox3), apocytochrome b (cob), reduced nicotinamide adenine dinucleotide ubiquinone oxireductase subunits (nad1, nad2, nad3, nad4, nad4L, nad5, and nad6), ribosomal protein of the small ribosomal subunit (rps), 28 tRNAs, and small and large ribosomal RNAs. Analysis of gene contents, gene orders, and gene sequences revealed that the mitochondrial genome of P. marneffei is more closely related to those of molds than yeasts.  相似文献   

2.
Ctenophores are one of the most basally branching lineages of metazoans with the largest mitochondrial organelles in the animal kingdom. We sequenced the mitochondrial (mtDNA) genome from the Pacific cidipid ctenophore, Pleurobrachia bachei. The circular mitochondrial genome is 11,016 nts, with only 12 genes, and one of the smallest metazoan mtDNA genomes recorded. The protein coding genes are intronless cox1-3, cob, nad1, 3, 4, 4L and 5. The nad2 and 6 genes are represented as short fragments whereas the atp6 gene was found in the nuclear genome. Only the large ribosomal RNA subunit and two tRNAs were present with possibly the small subunit unidentifiable due to extensive fragmentation. The observed unique features of this mitochondrial genome suggest that nuclear and mitochondrial genomes have evolved at very different rates. This reduced mtDNA genome sharply contrasts with the very large sizes of mtDNA found in other basal metazoans including Porifera (sponges), and Placozoa (Trichoplax).  相似文献   

3.
The complete sequence of the Taenia saginata mitochondrial genome was determined, and its organization and structure were compared to other human-tropic Taenia tapeworms for which complete mitochondrial sequence data were available. The mitochondrial genome was 13,670 bp long, contained 12 protein-coding genes, two ribosomal RNAs (rRNAs, a small and a large subunit), and 22 transfer RNAs (tRNAs). It did not encode the atp8 gene. Overlapping regions were found between nad4L and nad4, nad1 and trnN, and cox1 and trnT. The ATG initiation codon was used for 10 protein-coding genes, and the GTG initiation codon was used for the remaining 2 genes (nad4 and atp6). The size of the protein-coding genes of the three human Taenia tapeworms did not vary, except for Taenia solium nad1 (891 aa) and nad4 (1212 aa) and Taenia asiatica cox2 (576 aa). The tRNA genes were 57-75 bp long, and the predicted secondary structures of 18 of these genes had typical clover-leaf shapes with paired dihydrouridine (DHU) arms. The genes in all human Taenia tapeworms for the two mitochondrial rRNA subunits rrnL and rrnS are separated by trnC. The putative T. saginata rrnL and rrnS are 972 and 732 bp long, respectively. The non-coding regions of the mt genome of T. saginata consisted of 2 regions: a short non-coding region (SNR, 66 nucleotides) and a long non-coding region (LNR, 159 nucleotides). The overall sequence difference in the full mitochondrial genome between T. saginata and T. asiatica was 4.6%, while T. solium differed by 11%. In conclusion, the complete sequence of the T. saginata mitochondrial genome will serve as a resource for comparative mitochondrial genomics and systematic studies of the parasitic cestodes.  相似文献   

4.
Yin J  Hong GY  Wang AM  Cao YZ  Wei ZJ 《Mitochondrial DNA》2010,21(5):160-169
We present the complete sequence of the mitochondrial genome (mitogenome) of the cotton bollworm Helicoverpa armigera. The 15,347-bp mitogenome of H. armigera was arranged in the same order described for all other sequenced lepidopterans, which differs from the most common type found in insects, due to the movement of trnM to a position 5'-upstream of trnI. The gene overlap in the H. armigera mitogenome is totally 23 bp in six locations. The H. armigera mitogenome has a total of 175 bp of intergenic spacer sequences spread over 14 regions ranging in size from 1 to 45 bp. The nucleotide composition of the whole mitogenome of H. armigera is highly A+T biased, accounting for 80.97%, with a slightly positive AT skewness and negative GC skewness, indicating the occurrence of more A than T, C more than G. The protein-encoding genes have typical mitochondrial start codons, except for cox1, which contains the unusual CGA. The cox1, cox2, and nad4 genes have incomplete stop codons (T). The lrRNA and srRNA genes are 1395 and 794-bp long, respectively. All tRNAs have a typical cloverleaf structure of mitochondrial tRNAs, except for trnS1(AGN), the dihydrouridine arm of which could not form a stable stem-loop structure. The H. armigera A+T-rich region contains a conserved structure combining the motif ATAGA and a 19-bp poly-T stretch, but absence of the 9-bp poly-A element upstream of trnM.  相似文献   

5.
The 22,704-bp circular mitochondrial DNA (mtDNA) of the chlamydomonad alga Chlorogonium elongatum was completely cloned and sequenced. The genome encodes seven proteins of the respiratory electron transport chain, subunit 1 of the cytochrome oxidase complex (cox1), apocytochrome b (cob), five subunits of the NADH dehydrogenase complex (nad1, nad2, nad4, nad5, and nad6), a set of three tRNAs (Q, W, M), and the large (LSU)- and small (SSU)-subunit ribosomal RNAs. Six group-I introns were found, two each in the cox1, cob, and nad5 genes. In each intron an open reading frame (ORF) related to maturases or endonucleases was identified. Both the LSU and the SSU rRNA genes are split into fragments intermingled with each other and with other genes. Although the average A + T content is 62.2%, GC-rich clusters were detected in intergenic regions, in variable domains of the rRNA genes, and in introns and intron-encoded ORFs. A comparison of the genome maps reveals that C. elongatum and Chlamydomonas eugametos mtDNAs are more closely related to one another than either is to Chlamydomonas reinhardtii mtDNA. Received: 3 November 1997 / Accepted: 12 January 1998  相似文献   

6.
7.
8.
We sequenced and annotated the complete mitochondrial (mt) genome of the priapulid Priapulus caudatus in order to provide a source of phylogenetic characters including an assessment of gene order arrangement. The genome was 14,919 bp in its entirety with few, short non-coding regions. A number of protein-coding and tRNA genes overlapped, making the genome relatively compact. The gene order was: cox1, cox2, trnK, trnD, atp8, atp6, cox3, trnG, nad3, trnA, trnR, trnN, rrnS, trnV, rrnL, trnL(yaa), trnL(nag), nad1, -trnS(nga), -cob, -nad6, trnP, -trnT, nad4L, nad4, trnH, nad5, trnF, -trnE, -trnS(nct), trnI, -trnQ, trnM, nad2, trnW, -trnC, -trnY; where '-' indicates genes transcribed on the opposite strand. The gene order, although unique amongst Metazoa, shared the greatest number of gene boundaries and the longest contiguous fragments with the chelicerate Limulus polyphemus. The mt genomes of these taxa differed only by a single inversion of 18 contiguous genes bounded by rrnS and trnS(nct). Other arthropods and nematodes shared fewer gene boundaries but considerably more than the most similar non-ecdysozoan.  相似文献   

9.
The complete mitochondrial genome of Cryptotermes domesticus (Haviland) was sequenced and annotated to study its characteristics and the phylogenetic relationship of C. domesticus to other termite species. The mitogenome of C. domesticus is a circular, close, and double-stranded molecule with a length of 15,655 bp. The sequenced mitogenome contains 37 typical genes, which are highly conserved in gene size, organization, and codon usage. Transfer RNA genes (tRNAs) also have typical secondary structures. All of the 13 protein-coding genes (PCGs) start with an ATN codon, except for nad4, which starts with GTG and terminates with the terminal codon TAA and TAG or the incomplete form T-- (cox2 and nad5). Most tRNAs have a typical cloverleaf structure, except for trnS1, in which this form is replaced by a simple loop and lacks the dihydrouridine (DHU) arm. The nucleotide diversity (Pi) and nonsynonymous (Ka)/synonymous (Ks) mutation rate ratios indicate that nad1, cox1, and cox3 are the most conserved genes, and that cox1 has the lowest rate of evolution. In addition, an 89 bp repeated sequence was found in the A + T-rich region. Phylogenetic analysis was performed using Bayesian inference (BI) and maximum likelihood (ML) methods based on 13 PCGs, and the monophyly of Kalotermitidae was supported.  相似文献   

10.
Black corals comprise a globally distributed shallow- and deep-water taxon whose phylogenetic position within the Anthozoa has been debated. We sequenced the complete mitochondrial genome of the antipatharian Chrysopathes formosa to further evaluate its phylogenetic relationships. The circular mitochondrial genome (18,398 bp) consists of 13 energy pathway protein-coding genes and two ribosomal RNAs, but only two transfer RNA genes (trnM and trnW), as well as a group I intron within the nad5 gene that contains the only copies of nad1 and nad3. No novel genes were found in the antipatharian mitochondrial genome. Gene order and genome content are most similar to those of the sea anemone Metridium senile (subclass Hexacorallia), with differences being the relative location of three contiguous genes (cox2-nad4-nad6) and absence (from the antipatharian) of a group I intron within the cox1 gene. Phylogenetic analyses of multiple protein-coding genes support classifying the Antipatharia within the subclass Hexacorallia and not the subclass Ceriantipatharia; however, the sister-taxon relationships of black corals within Hexacorallia remain inconclusive.  相似文献   

11.
The complete arrangement of genes in the mitochondrial (mt) genome is known for 12 species of insects, and part of the gene arrangement in the mt genome is known for over 300 other species of insects. The arrangement of genes in the mt genome is very conserved in insects studied, since all of the protein-coding and rRNA genes and most of the tRNA genes are arranged in the same way. We sequenced the entire mt genome of the wallaby louse, Heterodoxus macropus, which is 14,670 bp long and has the 37 genes typical of animals and some noncoding regions. The largest noncoding region is 73 bp long (93% A+T), and the second largest is 47 bp long (92% A+T). Both of these noncoding regions seem to be able to form stem-loop structures. The arrangement of genes in the mt genome of this louse is unlike that of any other animal studied. All tRNA genes have moved and/or inverted relative to the ancestral gene arrangement of insects, which is present in the fruit fly Drosophila yakuba. At least nine protein-coding genes (atp6, atp8, cox2, cob, nad1-nad3, nad5, and nad6) have moved; moreover, four of these genes (atp6, atp8, nad1, and nad3) have inverted. The large number of gene rearrangements in the mt genome of H. macropus is unprecedented for an arthropod.  相似文献   

12.
The complete nucleotide sequence (14,472 bp) of the mitochondrial genome of the nudibranch Roboastra europaea (Gastropoda: Opisthobranchia) was determined. This highly compact mitochondrial genome is nearly identical in gene organization to that found in opisthobranchs and pulmonates (Euthyneura) but not to that in prosobranchs (a paraphyletic group including the most basal lineages of gastropods). The newly determined mitochondrial genome differs only in the relative position of the trnC gene when compared with the mitochondrial genome of Pupa strigosa, the only opisthobranch mitochondrial genome sequenced so far. Pupa and Roboastra represent the most basal and derived lineages of opisthobranchs, respectively, and their mitochondrial genomes are more similar in sequence when compared with those of pulmonates. All phylogenetic analyses (maximum parsimony, minimum evolution, maximum likelihood, and Bayesian) based on the deduced amino acid sequences of all mitochondrial protein-coding genes supported the monophyly of opisthobranchs. These results are in agreement with the classical view that recognizes Opisthobranchia as a natural group and contradict recent phylogenetic studies of the group based on shorter sequence data sets. The monophyly of opisthobranchs was further confirmed when a fragment of 2,500 nucleotides including the mitochondrial cox1, rrnL, nad6, and nad5 genes was analyzed in several species representing five different orders of opisthobranchs with all common methods of phylogenetic inference. Within opisthobranchs, the polyphyly of cephalaspideans and the monophyly of nudibranchs were recovered. The evolution of mitochondrial tRNA rearrangements was analyzed using the cox1+rrnL+nad6+nad5 gene phylogeny. The relative position of the trnP gene between the trnA and nad6 genes was found to be a synapomorphy of opisthobranchs that supports their monophyly.  相似文献   

13.
The mitochondrial genome of Brachycephalus brunneus was determined by next-generation sequencing of mitochondrial DNA. Without its control region, it has a total length of 15,485 bp, consisting of 37 genes: 13 protein-coding genes, 2 rRNA genes, and 22 tRNA genes. Except for eight tRNAs and the nd6 gene, all other mitochondrial genes are encoded on the heavy strand. ATG and ATC act mainly as the initial codon in 10 protein-coding genes, whereas nd2 and cox1 use ATT and nad3 uses ATA. Gene order is generally consistent with that observed in closely-related families. The cloverleaf structures for trnS1 and trnC lacked the DHU-stem and DHU-loop, respectively. Phylogenetic analyses of mitogenomes of closely-related families indicate that Brachycephalidae is more closely-related to Craugastoridae than to Eleutherodactylidae. This is the first sequenced mitochondrial genome for the entire Brachycephalidae and can provide the basis for the development of mitochondrial markers for other members of the family, including many species that are critically endangered.  相似文献   

14.
An increasing number of complete sequences of mitochondrial (mt) genomes provides the opportunity to optimise the choice of molecular markers for phylogenetic and ecological studies. This is particularly the case where mt genomes from closely related taxa have been sequenced; e.g., within Schistosoma. These blood flukes include species that are the causative agents of schistosomiasis, where there has been a need to optimise markers for species and strain recognition. For many phylogenetic and population genetic studies, the choice of nucleotide sequences depends primarily on suitable PCR primers. Complete mt genomes allow individual gene or other mt markers to be assessed relative to one another for potential information content, prior to broad-scale sampling. We assess the phylogenetic utility of individual genes and identify regions that contain the greatest interspecific variation for molecular ecological and diagnostic markers. We show that variable characters are not randomly distributed along the genome and there is a positive correlation between polymorphism and divergence. The mt genomes of African and Asian schistosomes were compared with the available intraspecific dataset of Schistosoma mansoni through sliding window analyses, in order to assess whether the observed polymorphism was at a level predicted from interspecific comparisons. We found a positive correlation except for the two genes (cox1 and nad1) adjoining the putative control region in S. mansoni. The genes nad1, nad4, nad5, cox1 and cox3 resolved phylogenies that were consistent with a benchmark phylogeny and in general, longer genes performed better in phylogenetic reconstruction. Considering the information content of entire mt genome sequences, partial cox1 would not be the ideal marker for either species identification (barcoding) or population studies with Schistosoma species. Instead, we suggest the use of cox3 and nad5 for both phylogenetic and population studies. Five primer pairs designed against Schistosoma mekongi and Schistosoma malayensis were tested successfully against Schistosoma japonicum. In combination, these fragments encompass 20-27% of the variation amongst the genomes (average total length approximately 14,000bp), thus providing an efficient means of encapsulating the greatest amount of variation within the shortest sequence. Comparative mitogenomics provides the basis of a rational approach to molecular marker selection and optimisation.  相似文献   

15.
Octocoral mitochondrial (mt) DNA is subject to an exceptionally low rate of substitution, and it has been suggested that mt genome content and structure are conserved across the subclass, an observation that has been supported for most octocorallian families by phylogenetic analyses using PCR products spanning gene boundaries. However, failure to recover amplification products spanning the nad4L-msh1 gene junction in species from the family Isididae (bamboo corals) prompted us to sequence the complete mt genome of a deep-sea bamboo coral (undescribed species). Compared to the "typical" octocoral mt genome, which has 12 genes transcribed on one strand and 5 genes on the opposite (cox2, atp8, atp6, cox3, trnM), in the bamboo coral genome a contiguous string of 5 genes (msh1, rnl, nad2, nad5, nad4) has undergone an inversion, likely in a single event. Analyses of strand-specific compositional asymmetry suggest that (i) the light-strand origin of replication was also inverted and is adjacent to nad4, and (ii) the orientation of the heavy-strand origin of replication (OriH) has reversed relative to that of previously known octocoral mt genomes. Comparative analyses suggest that intramitochondrial recombination and errors in replication at OriH may be responsible for changes in gene order in octocorals and hexacorals, respectively. Using primers flanking the regions at either end of the inverted set of five genes, we examined closely related taxa and determined that the novel gene order is restricted to the deep-sea subfamily Keratoisidinae; however, we found no evidence for strand-specific mutational biases that may influence phylogenetic analyses that include this subfamily of bamboo corals.  相似文献   

16.
Yuan Y  Li Q  Kong L  Yu H 《Molecular biology reports》2012,39(2):1287-1292
Molluscs in general, and bivalves in particular, exhibit an extraordinary degree of mitochondrial gene order variation when compared with other metazoans. The complete mitochondrial genome of Solen grandis (Bivalvia: Solenidae) was determined using long-PCR and genome walking techniques. The entire mitochondrial genome sequence of S. grandis is 16,784 bp in length, and contains 36 genes including 12 protein-coding genes (atp8 is absent), 2 ribosomal RNAs, and 22 tRNAs. All genes are encoded on the same strand. Compared with other species, it bears a novel gene order. Besides these, we find a peculiar non-coding region of 435 bp with a microsatellite-like (TA)12 element, poly-structures and many hairpin structures. In contrast to the available heterodont mitochondrial genomes from GenBank, the complete mtDNA of S. grandis has the shortest cox3 gene, and the longest atp6, nad4, nad5 genes.  相似文献   

17.
The complete mitochondrial genome (mitogenome) of Bombyx mori strain H9 (Lepidoptera: Bombycidae) is 15,670 base pairs (bp) in length, encoding 13 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes and a control region. The nucleotide composition of the genome is highly A + T biased, accounting for 81.31%, with a slightly positive AT skewness (0.059). The arrangement of 13 PCGs is similar to that of other sequenced lepidopterans. All the PCGs are initiated by ATN codons, except for the cytochrome c oxidase subunit 1 (cox1) gene, which is proposed by the TTAG sequence as observed in other lepidopterans. Unlike the other PCGs, the cox1 and cytochrome c oxidase subunit 2 (cox2) genes have incomplete stop codons consisting of just a T. All tRNAs have typical structures of insect mitochondrial tRNAs, which is different from other sequenced lepidopterans. The structure of A + T-rich region is similar to that of other sequenced lepidopterans, including non-repetitive sequences, the ATAGA binding domain, a 18 bp poly-T stretch and a poly-A element upstream of transfer RNA M (trnM) gene. Phylogenetic analysis shows that the domesticated silkmoth B. mori originated from the Chinese Bombyx mandarina.  相似文献   

18.
In recent years, the global pandemic of bat-associated pathogens has led to increasing attention on bat ectoparasites. Numerous studies have identified human-associated pathogens in Nycteribiidae, indicating their potential as vectors. In this study, the first complete sequencing of the mitochondrial genome of Nycteribia allotopa Speiser, 1901 was sequenced and analyzed. We also compared the mitochondrial sequences of N. allotopa with those available in the database for other Nycteribiidae species. The complete mitochondrial genome of N. allotopa was found to be 15,161 bp in size with an A + T content of 82.49%. Nucleotide polymorphism analysis of 13 protein-coding genes from five species of Nycteribiidae showed that nad6 exhibited the most significant variation, while cox1 was the most conserved. Furthermore, selection pressure analysis revealed cox1 to exhibit the strongest purifying selection, while atp8, nad2, nad4L, and nad5 showed slightly looser purifying selection. Pairwise genetic distances indicated that cox1 and cox2 were evolving comparatively slowly, whereas atp8, nad2, and nad6 were evolving comparatively quickly. Phylogenetic trees constructed using Bayesian inference and maximum likelihood methods demonstrated that all four families within the superfamily Hippoboscoidea clustered into one branch each, indicating their monophyly. N. allotopa was found to be most closely related to the same genus N. parvula. This study significantly enriches the molecular database for Nycteribiidae and provides invaluable reference data for future species identification, phylogenetic analysis, and exploration of their potential as vectors for human-associated pathogens.  相似文献   

19.
It is important to verify mitochondrial inheritance in plant species in which mitochondrial DNA (mtDNA) will be used as a source of molecular markers. We used a polymerase chain reaction (PCR)/restriction fragment length polymorphism (RFLP) approach to amplify mitochondrial introns from subunits 1, 4, 5, and 7 of NADH dehydrogenase (nad) and cytochrome oxidase subunit II (cox2) in Eucalyptus globulus. PCR fragments were then either sequenced or cut with restriction enzymes to reveal polymorphism. Sequencing cox2 showed that eucalypts lack the intron between exons 1 and 2. One polymorphism was found in intron 2-3 of nad7 following restriction digests with HphI. Fifty-four F1 progeny from seven families with parents distinguishable in their mitochondrial nad7 were screened to show that mitochondria were maternally inherited in E. globulus. These results constitute the first report of mitochondrial inheritance in the family Myrtaceae.  相似文献   

20.
The bryozoan Celleporella has been shown to be composed of multiple, often cryptic, lineages. We sequenced two complete mitochondrial (mt) genomes of the Celleporella hyalina species complex from Wales, UK and Norway (i) to determine genetic divergence at the complete mt genome level, and (ii) to design new molecular markers for examining the interrelationships amongst the major lineages. In addressing (i), we estimated genetic divergence at three levels: (a) nucleotide diversity (π), (b) genome size, and (c) gene order. Genes nad4L, nad6, and atp8 showed the highest levels of divergence, and rrnL, rrnS, and cox1 showed the lowest levels. Inter-genome nucleotide divergence of protein-coding and ribosomal RNA genes, measured as π, was 0.21. The two genomes differed substantially in size, with the Norwegian genome being 2,573 base pairs (bp) longer than the Welsh genome, 17,265 and 14,692 bp, respectively. This difference in size is attributable to long non-coding regions present in the Norwegian genome. Both genomes exhibit similar gene orders, except for the translocation of one transfer RNA (trnA). Considering the high nucleotide diversity, genome size difference and change in gene order, these mt genomes are considered sufficiently divergent to have originated from two distinct species. In addressing (ii) we designed PCR primers that flank the most conserved regions of the genome: 1,300 bp of cox1 and a contiguous 2,000 bp fragment of rrnL + rrnS. The primers have yielded products for tissue from Wales, Norway, New Zealand, Alaska and Chile and should provide useful tools in establishing species- and population-level diversity within the Celleporella complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号