首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Annexin A2, a calcium-, actin-, and lipid-binding protein involved in exocytosis, mediates the formation of lipid microdomains required for the structural and spatial organization of fusion sites at the plasma membrane. To understand how annexin A2 promotes this membrane remodeling, the involvement of cortical actin filaments in lipid domain organization was investigated. 3D electron tomography showed that cortical actin bundled by annexin A2 connected docked secretory granules to the plasma membrane and contributed to the formation of GM1-enriched lipid microdomains at the exocytotic sites in chromaffin cells. When an annexin A2 mutant with impaired actin filament–bundling activity was expressed, the formation of plasma membrane lipid microdomains and the number of exocytotic events were decreased and the fusion kinetics were slower, whereas the pharmacological activation of the intrinsic actin-bundling activity of endogenous annexin A2 had the opposite effects. Thus, annexin A2–induced actin bundling is apparently essential for generating active exocytotic sites.  相似文献   

2.
Neuroendocrine cells release hormones and neuropeptides by exocytosis, a highly regulated process in which secretory granules fuse with the plasma membrane to release their contents in response to a calcium trigger. Using chromaffin and PC12 cells, we have recently described that the granule-associated GTPase ARF6 plays a crucial role in exocytosis by activating phospholipase D1 at the plasma membrane and, presumably, promoting the fusion reaction between the two membrane bilayers. ARF6 is activated by the nucleotide exchange factor ARNO following docking of granules to the plasma membrane. We show here that GIT1, a GTPase-activating protein stimulating GTP hydrolysis on ARF6, is the second molecular partner that turns over the GDP/GTP cycle of ARF6 during cell stimulation. Western blot and immunofluorescence experiments indicated that GIT1 is cytosolic in resting cells but is recruited to the plasma membrane in stimulated cells, where it co-localizes with ARF6 at the granule docking sites. Over-expression of wild-type GIT1 inhibits growth hormone secretion from PC12 cells; this inhibitory effect was not observed in cells expressing a GIT1 mutant impaired in its ARF-GTPase-activating protein (GAP) activity or in cells expressing other ARF6-GAPs. Conversely reduction of GIT1 by RNA interference increased the exocytotic activity. Using a real time assay for individual chromaffin cells, we found that microinjection of GIT1 strongly reduced the number of exocytotic events. These results provide the first evidence that GIT1 plays a function in calcium-regulated exocytosis in neuroendocrine cells. We propose that GIT1 represents part of the pathway that inactivates ARF6-dependent reactions and thereby negatively regulates and/or terminates exocytotic release.  相似文献   

3.
Phospholipase D (PLD) has been proposed to mediate cytoskeletal remodeling and vesicular trafficking along the secretory pathway. We recently described the activation of an ADP ribosylation factor-regulated PLD at the plasma membrane of chromaffin cells undergoing secretagogue-stimulated exocytosis. We show here that the isoform involved is PLD1b, and, using a real-time assay for individual cells, that PLD activation and exocytosis are closely correlated. Moreover, overexpressed PLD1, but not PLD2, increases stimulated exocytosis in a phosphatidylinositol 4,5-bisphosphate-dependent manner, whereas catalytically inactive PLD1 inhibits it. These results provide the first direct evidence that PLD1 is an important component of the exocytotic machinery in neuroendocrine cells.  相似文献   

4.
Since it had been previously shown that in Paramecium cells exocytosis involves the dephosphorylation of a 65-kD phosphoprotein (PP), we tried to induce exocytotic membrane fusion by exogenous phosphatases (alkaline phosphatase or calcineurin [CaN]). The occurrence of calmodulin (CaM) at preformed exocytosis sites (Momayezi, M., H. Kersken, U. Gras, J. Vilmart-Seuwen, and H. Plattner, 1986, J. Histochem. Cytochem., 34:1621-1638) and the current finding of the presence of the 65-kD PP and of a CaN-like protein in cell surface fragments ("cortices") isolated from Paramecium cells led us to also test the effect of antibodies (Ab) against CaM or CaN on exocytosis performance. Microinjected anti-CaN Ab strongly inhibit exocytosis. (Negative results with microinjected anti-CaM Ab can easily be explained by the abundance of CaM.) Alternatively, microinjection of a Ca2+-CaM-CaN complex triggers exocytosis. The same occurs with alkaline phosphatase. All these effects can also be mimicked in vitro with isolated cortices. In vitro exocytosis triggered by adding Ca2+-CaM-CaN or alkaline phosphatase is paralleled by dephosphorylation of the 65-kD PP. Exocytosis can also be inhibited in cortices by anti-CaM Ab or anti-CaN Ab. In wild-type cells, compounds that inhibit phosphatase activity, but none that inhibit kinases or proteases, are able to inhibit exocytosis. Exocytosis cannot be induced by phosphatase injection in a membrane-fusion-deficient mutant strain (nd9-28 degrees C) characterized by a defective organization of exocytosis sites (Beisson, J., M. Lefort-Tran, M. Pouphile, M. Rossignol, and B. Satir, 1976, J. Cell Biol., 69:126-143). We conclude that exocytotic membrane fusion requires an adequate assembly of molecular components to allow for the dephosphorylation of a 65-kD PP and that this step is crucial for the induction of exocytotic membrane fusion in Paramecium cells. In vivo this probably involves a Ca2+-CaM-stimulated CaN-like PP phosphatase.  相似文献   

5.
We describe a suppressor of the calmodulin mutant cam1 in Paramecium tetraurelia. The cam1 mutant, which has a SER----PHE change at residue 101 of the third calcium-binding domain, inhibits the activity of the Ca(2+)-dependent K+ current and causes exaggerated behavioral responses to most stimuli. An enrichment scheme, based on an increased sensitivity to Ba2+ in cam1 cells, was used to isolate suppressors. One such suppressor, designated cam101, restores both the activity of the Ca(2+)-dependent K+ current and behavioral responses of the cells. We show that the cam101 mutant is an intragenic suppressor of cam1, based on genetic and microinjection data. The cam101 calmodulin is shown to be similar to wild-type calmodulin in terms of its ability to stimulate calmodulin-dependent phosphodiesterase at low concentrations of free calcium. However, the cam101 calmodulin has a reduced affinity for a monoclonal antibody to wild-type Paramecium calmodulin, as does the parental cam1 calmodulin, and a different mobility on acid-urea gels relative to both wild-type and cam1 calmodulin. We have been able to demonstrate that the isolation of intragenic suppressors of a calmodulin mutation is possible, which allows for the further genetic analysis of structure-function relationships in the calmodulin molecule.  相似文献   

6.
In neuroendocrine cells, regulated exocytosis is a multistep process that comprises the recruitment and priming of secretory granules, their docking to the exocytotic sites, and the subsequent fusion of granules with the plasma membrane leading to the release of secretory products into the extracellular space. Using bacterial toxins which specially inactivate subsets of G proteins, we were able to demonstrate that both trimeric and monomeric G proteins directly control the late stages of exocytosis in chromaffin cells. Indeed, in secretagogue-stimulated chromaffin cells, the subplasmalemmal actin cytoskeleton undergoes a specific reorganization that is a prerequisite for exocytosis. Our results suggest that a granule-bound trimeric Go protein controls the actin network surrounding secretory granules through a pathway involving the GTPase RhoA and a downstream phosphatidylinositol 4-kinase. Furthermore, the GTPase Cdc42 plays a active role in exocytosis, most likely by providing specific actin structures to the late docking and/or fusion steps. We propose that G proteins tightly control secretion in neuroendocrine cells by coupling the actin cytoskeleton to the sequential steps underlying membrane trafficking at the site of exocytosis. Our data highlight the use of bacterial toxins, which proved to be powerful tools to dissect the exocytotic machinery at the molecular level.  相似文献   

7.
The function of calcium as a signaling molecule is conserved in eukaryotes from fungi to humans. Previous studies have identified the calcium-activated phosphatase calcineurin as a critical factor in governing growth of the human pathogenic fungus Cryptococcus neoformans at mammalian body temperature. Here, we employed insertional mutagenesis to identify new genes required for growth at 37 degrees C. One insertion mutant, cam1-ts, that displayed a growth defect at 37 degrees C and hypersensitivity to the calcineurin inhibitor FK506 at 25 degrees C was isolated. Both phenotypes were linked to the dominant marker in genetic crosses, and molecular analysis revealed that the insertion occurred in the 3' untranslated region of the gene encoding the calcineurin activator calmodulin (CAM1) and impairs growth at 37 degrees C by significantly reducing calmodulin mRNA abundance. The CAM1 gene was demonstrated to be essential using genetic analysis of a CAM1/cam1Delta diploid strain. In the absence of calcineurin function, the cam1-ts mutant displayed a severe morphological defect with impaired bud formation. Expression of a calmodulin-independent calcineurin mutant did not suppress the growth defect of the cam1-ts mutant at 37 degrees C, indicating that calmodulin promotes growth at high temperature via calcineurin-dependent and -independent pathways. In addition, a Ca2+-binding-defective allele of CAM1 complemented the 37 degrees C growth defect, FK506 hypersensitivity, and morphogenesis defect of the cam1-ts mutant. Our findings reveal that calmodulin performs Ca2+- and calcineurin-independent and -dependent roles in controlling C. neoformans morphogenesis and high-temperature growth.  相似文献   

8.
Annexin A2 (AnxA2) is a calcium and lipid binding protein involved in neuroendocrine secretion. We have previously demonstrated that AnxA2 participates in the formation and/or stabilization of lipid microdomains required for structural and spatial organization of the exocytotic machinery in chromaffin cells. However, the regulation of AnxA2 is not fully understood. Numerous phosphorylation sites have been identified in the amino-terminal domain of AnxA2. Phosphorylation of Ser25 and Tyr23 are well established and confirmed to be functionally significant. In particular, phosphorylation of Tyr23 by the tyrosine kinase pp60Src reduces the binding of AnxA2 to both actin filaments and the plasma membrane, two major actors of exocytosis, thus, we examined whether AnxA2 was phosphorylated on Tyr23 during exocytosis. Using immunolabelling and a biochemical approach, we found that nicotine stimulation triggered the phosphorylation of Anx A2 on Tyr23. The expression of two AnxA2 mutants carrying phosphorylation deficient (Y23A) or phosphomimetic (Y23E) mutations reduced the number exocytotic sites. Furthermore, expression of AnxA2-Y23A inhibited the formation of lipid microdomains, whereas the expression of AnxA2-Y23E altered actin filaments associated with docked granules. These results suggest that phosphorylation/dephosphorylation switch at Tyr23 in AnxA2 is critical for calcium-regulated exocytosis in neuroendocrine cells. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.  相似文献   

9.
RalA and RalB constitute a family of highly similar Ras-related GTPases widely distributed in different tissues. Recently, active forms of Ral proteins have been shown to bind to the exocyst complex, implicating them in the regulation of cellular secretion. Since RalA is present on the plasma membrane in neuroendocrine chromaffin and PC12 cells, we investigated the potential role of RalA in calcium-regulated exocytotic secretion. We show here that endogenous RalA is activated during exocytosis. Expression of the constitutively active RalA (G23V) mutant enhances secretagogue-evoked secretion from PC12 cells. Conversely, expression of the constitutively inactive GDP-bound RalA (G26A) or silencing of the RalA gene by RNA interference led to a strong impairment of the exocytotic response. RalA was found to co-localize with phospholipase D1 (PLD1) at the plasma membrane in PC12 cells. We demonstrate that cell stimulation triggers a direct interaction between RalA and ARF6-activated PLD1. Moreover, reduction of endogenous RalA expression level interfered with the activation of PLD1 observed in secretagogue-stimulated cells. Finally, using various RalA mutants selectively impaired in their ability to activate downstream effectors, we show that PLD1 activation is essential for the activation of secretion by GTP-loaded RalA. Together, these results provide evidence that RalA is a positive regulator of calcium-evoked exocytosis of large dense core secretory granules and suggest that stimulation of PLD1 and consequent changes in plasma membrane phospholipid composition is the major function RalA undertakes in calcium-regulated exocytosis.  相似文献   

10.
Neurons and neuroendocrine cells release transmitters and hormones by exocytosis, a highly regulated process in which secretory vesicles or granules fuse with the plasma membrane to release their contents in response to a calcium trigger. Several stages have been recognized in exocytosis. After recruitment and docking at the plasma membrane, vesicles/granules enter a priming step, which is then followed by the fusion process. Cortical actin remodelling accompanies the exocytotic reaction, but the links between actin dynamics and trafficking events remain poorly understood. Here, we review the action of Rho and ADP-ribosylation factor (ARF) GTPases within the exocytotic pathway in adrenal chromaffin cells. Rho proteins are well known for their pivotal role in regulating the actin cytoskeleton. ARFs were originally identified as regulators of vesicle transport within cells. The possible interplay between these two families of GTPases and their downstream effectors provides novel insights into the mechanisms that govern exocytosis.  相似文献   

11.
The roothairless1 (rth1) mutant is impaired in root hair elongation and exhibits other growth abnormalities. Unicellular root hairs elongate via localized tip growth, a process mediated by polar exocytosis of secretory vesicles. We report here the cloning of the rth1 gene that encodes a sec3 homolog. In yeast (Saccharomyces cerevisiae) and mammals, sec3 is a subunit of the exocyst complex, which tethers exocytotic vesicles prior to their fusion. The cloning of the rth1 gene associates the homologs of exocyst subunits to an exocytotic process in plant development and supports the hypothesis that exocyst-like proteins are involved in plant exocytosis. Proteomic analyses identified four proteins that accumulate to different levels in wild-type and rth1 primary roots. The preferential accumulation in the rth1 mutant proteome of a negative regulator of the cell cycle (a prohibitin) may at least partially explain the delayed development and flowering of the rth1 mutant.  相似文献   

12.
Digitonin-permeabilized chromaffin cells secrete catecholamines by exocytosis in response to micromolar Ca2+ concentrations, but lose the ability to secrete in response to Ca2+ as the cells lose soluble proteins through the plasma membrane pores. Such secretory run-down can be retarded by cytosolic fractions, thus providing an assay for proteins potentially involved in the exocytotic process. We have used this assay to investigate the role of N-ethylmaleimide-sensitive fusion protein (NSF) and soluble NSF attachment proteins (SNAPs) in regulated exocytosis. Recombinant alpha- and gamma-SNAP stimulated Ca(2+)-dependent exocytosis, although recombinant NSF was ineffective, despite the fact that NSF and alpha-SNAP leak from the permeabilized cells with similar time courses. However, around one third of cellular NSF was found to be present in a non-cytosolic form and so it is possible that this is sufficient for exocytosis and that exogenous SNAPs stimulate the exocytotic mechanism by acting on the leakage-insensitive NSF. The stimulatory effect of alpha-SNAP displayed a biphasic dose-response curve and was maximal at 20 micrograms/ml. The effect of alpha-SNAP was Ca(2+)- and MgATP-dependent and was inhibited by N-ethylmaleimide and botulinum A neurotoxin, indicating a bona fide action on the exocytotic mechanism. Furthermore, Ca2+ concentrations which trigger catecholamine secretion acted to prevent the leakage of NSF and alpha-SNAP from permeabilized cells. These findings provide functional evidence for a role of SNAPs in regulated exocytosis in chromaffin cells.  相似文献   

13.
In exocytosis, secretory granules contact plasma membrane at sites where microdomains can be observed, which are sometimes marked by intramembranous particle arrays. Such arrays are particularly obvious when membrane fusion is frozen at a subterminal stage, e.g., in neuromuscular junctions and ciliate exocytotic sites. In Paramecium, a genetic approach has shown that the "rosettes" of intramembranous particles are essential for stimulated exocytosis of secretory granules, the trichocysts. The identification of two genes encoding the N-ethylmaleimide-sensitive factor (NSF), a chaperone ATPase involved in organelle docking, prompted us to analyze its potential role in trichocyst exocytosis using a gene-silencing strategy. Here we show that NSF deprivation strongly interferes with rosette assembly but does not disturb the functioning of exocytotic sites already formed. We conclude that rosette organization involves ubiquitous partners of the fusion machinery and discuss where NSF could intervene in this mechanism.  相似文献   

14.
15.
Annexin 2 is a calcium-dependent phospholipid-binding protein that has been implicated in a number of membrane-related events, including regulated exocytosis. In chromaffin cells, we previously reported that catecholamine secretion requires the translocation and formation of the annexin 2 tetramer near the exocytotic sites. Here, to obtain direct evidence for a role of annexin 2 in exocytosis, we modified its expression level in chromaffin cells by using the Semliki Forest virus expression system. Using a real-time assay for individual cells, we found that the reduction of cytosolic annexin 2, and the consequent decrease of annexin 2 tetramer at the cell periphery, strongly inhibited exocytosis, most likely at an early stage before membrane fusion. Secretion also was severely impaired in cells expressing a chimera that sequestered annexin 2 into cytosolic aggregates. Moreover, we demonstrate that secretagogue-evoked stimulation triggers the formation of lipid rafts in the plasma membrane, essential for exocytosis, and which can be attributed to the annexin 2 tetramer. We propose that annexin 2 acts as a calcium-dependent promoter of lipid microdomains required for structural and spatial organization of the exocytotic machinery.  相似文献   

16.
Rho GTPases are key regulators of the actin cytoskeleton in membrane trafficking events. We previously reported that Cdc42 facilitates exocytosis in neuroendocrine cells by stimulating actin assembly at docking sites for secretory granules. These findings raise the question of the mechanism activating Cdc42 in exocytosis. The neuronal guanine nucleotide exchange factor, intersectin-1L, which specifically activates Cdc42 and is at an interface between membrane trafficking and actin dynamics, appears as an ideal candidate to fulfill this function. Using PC12 and chromaffin cells, we now show the presence of intersectin-1 at exocytotic sites. Moreover, through an RNA interference strategy coupled with expression of various constructs encoding the guanine nucleotide exchange domain, we demonstrate that intersectin-1L is an essential component of the exocytotic machinery. Silencing of intersectin-1 prevents secretagogue-induced activation of Cdc42 revealing intersectin-1L as the factor integrating Cdc42 activation to the exocytotic pathway. Our results extend the current role of intersectin-1L in endocytosis to a function in exocytosis and support the idea that intersectin-1L is an adaptor that coordinates exo-endocytotic membrane trafficking in secretory cells.  相似文献   

17.
Egg cortical granules remain attached to the egg plasma membrane when the egg is ruptured. We present evidence that demonstrates that, when the cytoplasmic face of the egg plasma membrane is exposed to micromolar calcium concentrations, an exocytosis of the cortical granules occurs which corresponds to the cortical granule exocytosis seen when the egg is fertilized. The calcium sensitivity of the preparation is decreased by an increase in magnesium concentration and increased by a decrease in magnesium concentration. Exocytosis is inhibited by trifluoperazine (half inhibition at 6 microM), a drug that inhibits the action of the calcium-dependent regulatory protein calmodulin. Colchicine, vinblastine, nocodazole, cytochalasin B, phalloidin, N-ethylmaleimide-modified myosin subfragment 1, and antibody to actin are without effect on this in vitro exocytosis at concentrations that far exceed those required to disrupt microtubules and microfilaments. Conditions are such that penetration to the exocytotic site is optimal. It is unlikely, therefore, that either actin or tubulin participate intimately in exocytosis. Our data also exclude on quantitative grounds several other mechanisms postulated to account for the fusion of the secretory granule with the plasma membrane.  相似文献   

18.
Exocytosis in neuroendocrine cells: new tasks for actin   总被引:1,自引:0,他引:1  
Most secretory cells undergoing calcium-regulated exocytosis in response to cell surface receptor stimulation display a dense subplasmalemmal actin network, which is remodeled during the exocytotic process. This review summarizes new insights into the role of the cortical actin cytoskeleton in exocytosis. Many earlier findings support the actin-physical-barrier model whereby transient depolymerization of cortical actin filaments permits vesicles to gain access to their appropriate docking and fusion sites at the plasma membrane. On the other hand, data from our laboratory and others now indicate that actin polymerization also plays a positive role in the exocytotic process. Here, we discuss the potential functions attributed to the actin cytoskeleton at each major step of the exocytotic process, including recruitment, docking and fusion of secretory granules with the plasma membrane. Moreover, we present actin-binding proteins, which are likely to link actin organization to calcium signals along the exocytotic pathway. The results cited in this review are derived primarily from investigations of the adrenal medullary chromaffin cell, a cell model that is since many years a source of information concerning the molecular machinery underlying exocytosis.  相似文献   

19.
Myosin-Va is an actin-based processive motor that conveys intracellular cargoes. Synaptic vesicles are one of the most important cargoes for myosin-Va, but the role of mammalian myosin-Va in secretion is less clear than for its yeast homologue, Myo2p. In the current studies, we show that myosin-Va on synaptic vesicles interacts with syntaxin-1A, a t-SNARE involved in exocytosis, at or above 0.3 microM Ca2+. Interference with formation of the syntaxin-1A-myosin-Va complex reduces the exocytotic frequency in chromaffin cells. Surprisingly, the syntaxin-1A-binding site was not in the tail of myosin-Va but rather in the neck, a region that contains calmodulin-binding IQ-motifs. Furthermore, we found that syntaxin-1A binding by myosin-Va in the presence of Ca2+ depends on the release of calmodulin from the myosin-Va neck, allowing syntaxin-1A to occupy the vacant IQ-motif. Using an anti-myosin-Va neck antibody, which blocks this binding, we demonstrated that the step most important for the antibody's inhibitory activity is the late sustained phase, which is involved in supplying readily releasable vesicles. Our results demonstrate that the interaction between myosin-Va and syntaxin-1A is involved in exocytosis and suggest that the myosin-Va neck contributes not only to the large step size but also to the regulation of exocytosis by Ca2+.  相似文献   

20.
Two cell lines transformed with temperature sensitive retroviruses were examined for: their ability to grow in low Ca2+ medium, their calmodulin levels and changes in calmodulin acceptor proteins. Both cell lines grow in low Ca2+ medium at the permissive temperature 34°C while both lines did not replicate at the non-permissive temperature 39°C. The NRKLA23 cells have nearly twice as much calmodulin at the permissive temperature than they do at the non-permissive temperature while the 6M2 cells have an equal amount of calmodulin at both temperatures. Both cell lines exhibit changes in the calmodulin acceptor proteins going from the permissive to the non-permissive temperature. We suspect that the changes in the calmodulin acceptor proteins may be involved in the altered Ca2+-sensitivity of growth in the cells going from the permissive to non-permissive temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号