首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Bone is the most common site of metastases from prostate cancer. The mechanism by which prostate cancer cells metastasize to bone is not fully understood, but interactions between prostate cancer cells and bone cells are thought to initiate the colonization of metastatic cells at that site. Here, we show that cadherin-11 (also known as osteoblast-cadherin) was highly expressed in prostate cancer cell line derived from bone metastases and had strong homophilic binding to recombinant cadherin-11 in vitro. Down-regulation of cadherin-11 in bone metastasis-derived PC3 cells with cadherin-11-specific short hairpin RNA (PC3-shCad-11) significantly decreased the adhesion of those cells to cadherin-11 in vitro. In a mouse model of metastasis, intracardiac injection of PC3 cells led to metastasis of those cells to bone. However, the incidence of PC3 metastasis to bone in this model was reduced greatly when the expression of cadherin-11 by those cells was silenced. The clinical relevance of cadherin-11 in prostate cancer metastases was further studied by examining the expression of cadherin-11 in human prostate cancer specimens. Cadherin-11 was not expressed by normal prostate epithelial cells but was detected in prostate cancer, with its expression increasing from primary to metastatic disease in lymph nodes and especially bone. Cadherin-11 expression was not detected in metastatic lesions that occur in other organs. Collectively, these findings suggest that cadherin-11 is involved in the metastasis of prostate cancer cells to bone.  相似文献   

2.
Osteoactivin promotes breast cancer metastasis to bone   总被引:1,自引:0,他引:1  
The skeleton is a preferred site of metastasis in patients with disseminated breast cancer. We have used 4T1 mouse mammary carcinoma cells, which metastasize to bone from the mammary fat pads of immunocompetent mice, to identify novel genes involved in this process. In vivo selection of parental cells resulted in the isolation of independent, aggressively bone metastatic breast cancer populations with reduced metastasis to the lung. Gene expression profiling identified osteoactivin as a candidate that is highly and selectively expressed in aggressively bone metastatic breast cancer cells. These cells displayed enhanced migratory and invasive characteristics in vitro, the latter requiring sustained osteoactivin expression. Osteoactivin depletion in these cells, by small interfering RNA, also lead to a loss of matrix metalloproteinase-3 expression, whereas forced osteoactivin expression in parental 4T1 cells was sufficient to elevate matrix metalloproteinase-3 levels, suggesting that this matrix metalloproteinase may be an important mediator of osteoactivin function. Overexpression of osteoactivin in an independent, weakly bone metastatic breast cancer cell model significantly enhanced the formation of osteolytic bone metastases in vivo. Finally, high levels of osteoactivin expression in primary human breast cancers correlate with estrogen receptor-negative status and increasing tumor grade. Thus, we have identified osteoactivin as a protein that is expressed in aggressive human breast cancers and is capable of promoting breast cancer metastasis to bone.  相似文献   

3.
Molecular pathway for cancer metastasis to bone   总被引:14,自引:0,他引:14  
The molecular mechanism leading to the cancer metastasis to bone is poorly understood but yet determines prognosis and therapy. Here, we define a new molecular pathway that may account for the extraordinarily high osteotropism of prostate cancer. By using SPARC (secreted protein, acidic and rich in cysteine)-deficient mice and recombinant SPARC, we demonstrated that SPARC selectively supports the migration of highly metastatic relative to less metastatic prostate cancer cell lines to bone. Increased migration to SPARC can be traced to the activation of integrins alphaVbeta3 and alphaVbeta5 on tumor cells. Such activation is induced by an autocrine vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR)-2 loop on the tumor cells, which also supports the growth and proliferation of prostate cancer cells. A consequence of SPARC recognition by alphaVbeta5 is enhanced VEGF production. Thus, prostate cancer cells expressing VEGF/VEGFR-2 will activate alphaVbeta3 and alphaVbeta5 on their surface and use these integrins to migrate toward SPARC in bone. Within the bone environment, SPARC engagement of these integrins will stimulate growth of the tumor and further production of VEGF to support neoangiogenesis, thereby favoring the development of the metastatic tumor. Supporting this model, activated integrins were found to colocalize with VEGFR-2 in tissue samples of metastatic prostate tumors from patients.  相似文献   

4.
Dynamic process of prostate cancer metastasis to bone   总被引:5,自引:0,他引:5  
Prostate cancer metastasis to the bone occurs at high frequency in patients with advanced disease, causing significant morbidity and mortality. Over a century ago, the "seed and soil" theory was proposed to explain organ-specific patterns of metastases. Today, this theory continues to be relevant as we continue to discover factors involved in the attraction and subsequent growth of prostate cancer cells to the bone. These include the accumulation of genetic changes within cancer cells, the preferential binding of cancer cells to bone marrow endothelial cells, and the release of cancer cell chemoattractants from bone elements. A key mediator throughout this metastatic process is the integrin family of proteins. Alterations in integrin expression and function promote dissociation of cancer cells from the primary tumor mass and migration into the blood stream. Once in circulation, integrins facilitate cancer cell survival through interactions between other cancer cells, platelets, and endothelial cells of the target bone. Furthermore, dynamic changes in integrins and in integrin-associated signal transduction aid in the extravasation of cancer cells into the bone and in expansion to a clinically relevant metastasis. Thus, we will review the critical roles of integrins in the process of prostate cancer bone metastasis, from the escape of cancer cells from the primary tumor, to their survival in the harsh "third microenvironment" of the circulation, and ultimately to their attachment and growth at distant bone sites.  相似文献   

5.
6.
Circular RNAs (circRNAs) have been increasingly linked to cancer progression. However, the detailed biological functions of circRNAs in prostate cancer (PCa) remain unclear. Using high-throughput circRNA sequencing, we previously identified 18 urine extracellular vesicle circRNAs that were increased in patients with PCa compared with those with benign prostatic hyperplasia. Spearman correlation analysis of the expression levels of the 18 circRNAs between the tumor tissue and matched urine extracellular vesicles in 30 PCa patients showed that circSCAF8 had the highest R2 (R2 = 0.635, P < 0.001). The Cox proportional hazards regression model was used to estimate the effect of circSCAF8 on progression-free survival. The in vitro and in vivo functional experiments were implemented to investigate the effects of circSCAF8 on the phenotype of PCa. We found that the knockdown of circSCAF8 in PCa cells suppressed the proliferation, migration, and invasion ability, while overexpression of circSCAF8 had the opposite effects. Similar results were observed in vivo. In a cohort of 85 patients who had undergone radical prostatectomy, circSCAF8 expression in PCa tissues was a powerful predictor of progression-free survival (HR = 2.14, P = 0.022). Mechanistically, circSCAF8 can function by binding to both miR-140-3p and miR-335 to regulate LIF expression and activate the LIF-STAT3 pathway that leads to the growth and metastasis of PCa. Collectively, our findings demonstrate that circSCAF8 contributes to PCa progression through the circSCAF8-miR-140-3p/miR-335-LIF pathway.Subject terms: Small RNAs, Prostate cancer, Diagnostic markers  相似文献   

7.
8.
This work has explored a putative biochemical mechanism by which endometase/matrilysin-2/matrix metalloproteinase-26 (MMP-26) may promote human prostate cancer cell invasion. Here, we showed that the levels of MMP-26 protein in human prostate carcinomas from multiple patients were significantly higher than those in prostatitis, benign prostate hyperplasia, and normal prostate glandular tissues. The role of MMP-26 in prostate cancer progression is unknown. MMP-26 was capable of activating pro-MMP-9 by cleavage at the Ala(93)-Met(94) site of the prepro-enzyme. This activation proceeded in a time- and dose-dependent manner, facilitating the efficient cleavage of fibronectin by MMP-9. The activated MMP-9 products generated by MMP-26 appeared more stable than those cleaved by MMP-7 under the conditions tested. To investigate the contribution of MMP-26 to cancer cell invasion via the activation of MMP-9, highly invasive and metastatic human prostate carcinoma cells, androgen-repressed prostate cancer (ARCaP) cells were selected as a working model. ARCaP cells express both MMP-26 and MMP-9. Specific anti-MMP-26 and anti-MMP-9 functional blocking antibodies both reduced the invasiveness of ARCaP cells across fibronectin or type IV collagen. Furthermore, the introduction of MMP-26 antisense cDNA into ARCaP cells significantly reduced the MMP-26 protein level in these cells and strongly suppressed the invasiveness of ARCaP cells. Double immunofluorescence staining and confocal laser scanning microscopic images revealed that MMP-26 and MMP-9 were co-localized in parental and MMP-26 sense-transfected ARCaP cells. Moreover, MMP-26 and MMP-9 proteins were both expressed in the same human prostate carcinoma tissue samples examined. These results indicate that MMP-26 may be a physiological and pathological activator of pro-MMP-9.  相似文献   

9.
Epiregulin (EREG) is a ligand of the epidermal growth factor receptor. It belongs to the ErbB family of ligands found overexpressed in various cancers such as colon cancer and lung carcinoma and is likely to play diverse oncogenic roles in several other cancer types. However, little is known about the mechanisms of EREG in the pathogenesis of gastric cancer (GC). The present study was undertaken to investigate whether EREG influences the development and progression in GC. The results revealed that EREG was found to be overexpressed in human GC cells lines. Moreover, EREG induced cell migration, invasion, and proliferation, and inhibited apoptosis in vitro. The study also found that EREG depletion inhibited tumor growth in vivo. Our findings indicated that EREG activated the ERK/JNK/p38 signaling pathway and PI3K/Akt signaling pathways to promote GC malignant progression. Overall, this study suggests that EREG may promote GC development and progression through the ERK/JNK/p38 and PI3K/Akt signaling pathways, which may improve our understanding of the molecular mechanism of EREG in GC. Thus, EREG may be a potential target for GC treatment.  相似文献   

10.
Prostate cancer (PCa) epithelial cells require a number of factors to facilitate their establishment and growth at a distant site of metastasis. Their ability to adapt to their microenvironment, proliferate and recruit an underlying stroma is integral to the survival and growth of the metastasis. PCa predominantly metastasizes to the bone, and bone metastases are the main cause of morbidity. The bone marrow provides a permissive environment for the formation of a metastasis. In some cases, the cells may remain dormant for some time, eventually proliferating in response to an unknown "trigger." The marrow is rich in progenitor cells that differentiate into numerous cell types, producing new blood vessels, supporting fibroblasts, and an underlying extracellular matrix (ECM) that form the reactive stroma. By secreting a number of cytokines, growth factors and proteases they recruit auxiliary cells required to produce a functional stroma. These components are involved in a reciprocal interaction between the stroma and the PCa cells, allowing for the growth and survival of the tumor. Left unchecked, once a PCa tumor has established itself in the bone marrow it will eventually replace the marrow, interrupting bone homeostasis and typically promoting an osteoblastic response in the bone including osteoclastic events. The abundant deposition of new woven bone results in nerve compression, bone pain and an increase in fractures in patients with PCa bone metastases. This review will examine the tumor microenvironment, its role in facilitating tumor dissemination, growth and the resultant pathologies associated with PCa bone metastasis.  相似文献   

11.
Mechanisms of cancer metastasis to the bone   总被引:14,自引:0,他引:14  
Some of the most common human cancers, including breast cancer, prostate cancer, and lung cancer, metastasize with avidity to bone. What is the basis for their preferential growth within the bone microenvironment? Bidirectional interactions between tumor cells and cells that make up bone result in a selective advantage for tumor growth and can lead to bone destruction or new bone matrix deposition. This review discusses our current understanding of the molecular components and mechanisms that are responsible for those interactions.  相似文献   

12.
Molecular and Cellular Biochemistry - Prostate cancer (PC) is the most common reproductive cancer in men and the third leading cause of cancer death among men worldwide. Recently targeted therapy...  相似文献   

13.
Activation of the Small GTPase Ral in Platelets   总被引:12,自引:11,他引:12  
Ral is a ubiquitously expressed Ras-like small GTPase which is abundantly present in human platelets. The biological function of Ral and the signaling pathway in which Ral is involved are largely unknown. Here we describe a novel method to measure Ral activation utilizing the Ral binding domain of the putative Ral effector RLIP76 as an activation-specific probe. With this assay we investigated the signaling pathway that leads to Ral activation in human platelets. We found that Ral is rapidly activated after stimulation with various platelet agonists, including α-thrombin. In contrast, the platelet antagonist prostaglandin I2 inhibited α-thrombin-induced Ral activation. Activation of Ral by α-thrombin could be inhibited by depletion of intracellular Ca2+, whereas the induction of intracellular Ca2+ resulted in the activation of Ral. Our results show that Ral can be activated by extracellular stimuli. Furthermore, we show that increased levels of intracellular Ca2+ are sufficient for Ral activation in platelets. This activation mechanism correlates with the activation mechanism of the small GTPase Rap1, a putative upstream regulator of Ral guanine nucleotide exchange factors.  相似文献   

14.
As an important chemokine receptor, the role of CCR4 in the progression of bladder cancer (BC) remains unknown. In this study, we have shown that CCR4 expression was upregulated in bladder carcinoma tissues compared with adjacent nontumor tissues. Kaplan-Meier survival analysis revealed that CCR4 expression was an independent prognostic risk factor in BC patients, and the addition of CCL17 induced CCR4 production and promoted migration and invasion of BC cells. In addition, CCR4 knockdown significantly attenuated the migratory and invasive capabilities of BC cells. Mechanistically, CCL17-CCR4 axis is involved in ERK1/2 signaling and could mediate the migration and invasion of BC cells by regulating MMP13 activation. This study suggests that CCR4 might represent a promising prognostic biomarker and a potential therapeutic option for BC.  相似文献   

15.
Parathyroid hormone-related protein (PTHrP) is an oncoprotein that is expressed in many malignancies as well as normal tissues. At essentially every site of expression, PTHrP regulates cell growth and proliferation. We and other investigators have previously reported that PTHrP is widely expressed by prostate cancer. For this tumor, there are substantial in vitro and correlative data that PTHrP expression regulates the progression of the tumor, especially in bone, but little direct data. We studied the effects of PTHrP expression on prostate cancer behavior directly in a mouse model of human prostate cancer cells that were transfected to express different forms of the polypeptide and then injected intraskeletally. Skeletal progression of the prostate cancer cells was evaluated radiologically and by measurement of serum tumor markers. PTHrP transfection converted a non-invasive cell line into one that progressed in the skeleton: Injection of the PTHrP transfected cells resulted in greater tumor progression in bone when compared to non-transfected cells, and this effect was also influenced by non-amino terminal peptides of PTHrP. Serum measurements of PTHrP, IL-6, IL-8, and calcium reflected tumor burden. Our experiments provide direct in vivo evidence that PTHrP expression results in the skeletal progression of prostate cancer cells.  相似文献   

16.
17.
Li Y  Kong D  Ahmad A  Bao B  Sarkar FH 《PloS one》2012,7(3):e33011
Prostate cancer (PCa) bone metastases have long been believed to be osteoblastic because of bone remodeling leading to the formation of new bone. However, recent studies have shown increased osteolytic activity in the beginning stages of PCa bone metastases, suggesting that targeting both osteolytic and osteoblastic mediators would likely inhibit bone remodeling and PCa bone metastasis. In this study, we found that PCa cells could stimulate differentiation of osteoclasts and osteoblasts through the up-regulation of RANKL, RUNX2 and osteopontin, promoting bone remodeling. Interestingly, we found that formulated isoflavone and 3,3'-diindolylmethane (BR-DIM) were able to inhibit the differentiation of osteoclasts and osteoblasts through the inhibition of cell signal transduction in RANKL, osteoblastic, and PCa cell signaling. Moreover, we found that isoflavone and BR-DIM down-regulated the expression of miR-92a, which is known to be associated with RANKL signaling, EMT and cancer progression. By pathway and network analysis, we also observed the regulatory effects of isoflavone and BR-DIM on multiple signaling pathways such as AR/PSA, NKX3-1/Akt/p27, MITF, etc. Therefore, isoflavone and BR-DIM with their multi-targeted effects could be useful for the prevention of PCa progression, especially by attenuating bone metastasis mechanisms.  相似文献   

18.
19.
Genomic instability plays a key role in the initiation and progression of colorectal cancer (CRC). Although cancer driver genes in CRC have been well characterized, identifying novel genes associated with carcinogenesis and treatment remains challenging because of tumor heterogeneity. Here, we analyzed the genomic alterations of 45 samples from CRC patients in northern China by whole-exome sequencing. In addition to the identification of six well-known CRC driver genes (APC, TP53, KRAS, FBXW7, PIK3CA, and PABPC), two tumor-related genes (MTCH2 and HSPA6) were detected, along with RRP7A and GXYLT1, which have not been previously linked to cancer. GXYLT1 was mutated in 40% (18/45) of the samples in our cohort. Functionally, GXYLT1 promoted migration and invasion in vitro and metastasis in vivo, while the GXYLT1S212* mutant induced significantly greater effect. Furthermore, both GXYLT1 and GXYLT1S212* interacted with ERK2. GXYLT1 induced metastasis via a mechanism involving the Notch and MAPK pathways, whereas the GXYLT1S212* mutant mainly promoted metastasis by activating the MAPK pathway. We propose that GXYLT1 acts as a novel metastasis-associated driver gene and GXYLT1S212* might serve as a potential indicator for therapies targeting the MAPK pathway in CRC.Subject terms: Cancer genomics, Colorectal cancer, Metastasis, Oncogenes, Cell signalling  相似文献   

20.
Bone is one of the most common sites of breast cancer metastasis while bone sialoprotein (BSP) is thought to play an important role in bone metastasis of malignant tumors. The objective of this study is to determine the role of BSP overexpression in osteolytic metastasis using two homozygous transgenic mouse lines in which BSP expression is elevated either in all the tissues (CMV-BSP mice) or only in the osteoclasts (CtpsK-BSP mice). The results showed that skeletal as well as systemic metastases of 4T1 murine breast cancer cells were dramatically increased in CMV-BSP mice. In CtpsK-BSP mice, it was found that targeted BSP overexpression in osteoclasts promoted in vitro osteoclastogenesis and activated osteoclastic differentiation markers such as Cathepsin K, TRAP and NFAT2. MicroCT scan demonstrated that CtpsK/BSP mice had reduced trabecular bone volume and bone mineral density (BMD). The real-time IVIS Imaging System showed that targeted BSP overexpression in osteoclasts promoted bone metastasis of breast cancer cells. The osteolytic lesion area was significantly larger in CtpsK/BSP mice than in the controls as demonstrated by both radiographic and histomorphometric analyses. TRAP staining demonstrated a twofold increase in the number of osteoclasts in the bone lesion area from CtpsK/BSP mice compared with that from wild type mice. We conclude that host tissue-derived BSP also plays important roles in breast cancer metastasis through inducing tumor cell seeding into the remote host tissues. Furthermore, osteoclast-derived BSP promotes osteoclast differentiation in an autocrine manner and consequently promotes osteolytic bone metastasis of breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号