首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Hypoxic Induction of Anoxia Tolerance in Root Tips of Zea mays   总被引:2,自引:11,他引:2       下载免费PDF全文
When root tips of fully aerobic, intact maize (Zea mays L.) seedlings are made anaerobic, viability normally is only 24 hours or less at 25°C. We find that viability can be extended to at least 96 hours if seedlings are given a hypoxic pretreatment for 18 hours by sparging the solution with 4% O2 in nitrogen (v/v) before anoxia. Fully aerobic root tips (sparged with 40% O2) had very low alcohol dehydrogenase (ADH) activity (per gram root fresh weight), and the level remained low under anoxia. In hypoxically pretreated roots, however, high levels of ADH activity were induced, and activity rose further during the initial 24 hours of anoxia, and then remained high at about 20 times that of controls in 40% O2. ADH activity in roots in solution sparged with air (21% O2) was about three times that in 40% O2. Improved viability of hypoxically pretreated root tips was associated with maintenance of a high energy metabolism (ATP concentration, total adenylates, and adenylate energy charge). Roots that were not pretreated lost 94% of the total adenylates and ATP at 24 hours of anoxia. The relation between induced ADH activity, energy metabolism, and improved anoxia-tolerance in acclimated maize root tips is discussed.  相似文献   

3.
Root tips (10-millimeter length) were excised from hypoxically pretreated (HPT, 4% [v/v] oxygen at 25°C for 16 hours) or nonhypoxically pretreated (NHPT, 40% [v/v] oxygen) maize (Zea mays) plants, and their rates of respiration were compared by respirometry under aerobic and anaerobic conditions with exogenous glucose. The respiratory quotient under aerobic conditions with 50 millimolar glucose was approximately 1.0, which is consistent with glucose or other hexose sugars being utilized as the predominant carbon source in glycolysis. Under strictly anaerobic conditions (anoxia), glycolysis was accelerated appreciably in both HPT and NHPT root tips, but the rate of anaerobic respiration quickly declined in NHPT roots. [U-14C]Glucose supplied under anaerobic conditions was taken up and respired by HPT root tips up to five times more rapidly than by NHPT roots. When anaerobic ethanol production was measured with excised root tips in 50 millimolar glucose, HPT tissues consistently produced ethanol more rapidly than NHPT tissues. These data suggest that a period of low oxygen partial pressure is necessary to permit adequate acclimation of the root tip of maize to subsequent anoxia, resulting in more rapid rates of fermentation and generation of ATP.  相似文献   

4.
Histochemical studies of shoot-tips have been carried out withZea mays L. plants grown under the influence of sodium chloridesalinity. Qualitative studies of the shoot-tips alter NaCl treatmentshowed a low concentration of starch grains in the cells. Changesin nucleolar and cytoplasmic RNA were assessed and are discussed. Key words: Salinity, Polysaccharides, RNA, Shoot apex, Zea mays L.  相似文献   

5.
In excised pro1-1 mutant and corresponding normal type roots of Zea mays L. the uptake and interconversion of [14C]proline, [14C]glutamic acid, [14C]glutamine, and [14C]ornithine and their utilization for protein synthesis was measured with the intention of finding an explanation for the proline requirement of the mutant. Uptake of these four amino acids, with the exception of proline, was the same in mutant and normal roots, but utilization differed. Higher than normal utilization rates for proline and glutamic acid were noted in mutant roots leading to increased CO2 production, free amino acid interconversion, and protein synthesis. Proline was synthesized from either glutamic acid (or glutamine) or ornithine in both mutant and normal roots; it did not accumulate but rather was used for protein synthesis. Ornithine was not a good precursor for proline in either system, but was preferentially converted to arginine and glutamine, particularly in mutant roots. The pro1-1 mutant was thus not deficient in its ability to make proline. Based on these findings, and on the fact that ornithine, arginine, glutamic acid and aspartic acid are elevated as free amino acids in mutant roots, it is suggested that in the pro1-1 mutant proline catabolism prevails over proline synthesis.  相似文献   

6.
Abstract: Ultrastructural studies, together with X-ray microanalytical, immunocytochemical and cytochemical analysis performed in root tips of Al-resistant (C-525 M) and Al-sensitive (Adour 250, HS 7777 and BR 201 F) maize plants ( Zea mays L.), after 96 h exposure to 20 μM Al, showed qualitatively similar results in the four cultivars.
Al was identified in electron-opaque precipitates, which were insoluble even in EDTA chelate. They also contained an elevated proportion of P and also of K and Ca, some traces of Mn, Fe and Zn and sometimes of Mg. This elemental composition is similar to that described for phytin (Al-phytin), and the precipitates were localized in the two principal extraplasmatic compartments: cell walls and vacuoles. Al-phytin was detected in swollen areas of cell walls in membraneous concentric configurations, resembling myelin figures, probably rich in phosphatidyl inositol, which also intervene in the vacuolar internalization of Al-phytin and are similar to a peculiar form of endocytosis (not previously described). Abnormal apoplastic protuberances containing abundant electron-opaque Al-phytin deposits, agglutinated by callose (immunocytochemically identified), were shown in cortex cells with high mitotic activity (around 1 - 1.5 mm from cap root). Al-hyperaccumulator cells parallel to the root axis were correlated with longitudinal lysigenous intercellular spaces after cell death and dissolution (lysigeny). Indicators of activated lysigeny, as low levels of Al and callose (in agreement with other authors) and high levels of phosphoinositides, can mark Al-resistant genotypes, contrary to Al-sensitive genotypes, probably derived from a partially activated or even inactivated lysigeny.
The lysigeny of Al hyperaccumulator cells constitutes new ultrastructural evidence of an Al exclusion mechanism, supporting biochemical results reported by other investigators.  相似文献   

7.
Water-deficit stress tolerance is a complex trait, and water deficit results in various physiological and chemical changes in maize (Zea mays L.) and exacerbates pre-harvest aflatoxin contamination. The objective of this study was to characterize the variations in morphology, physiology, and gene expression in two contrasting inbred lines, Lo964 and Lo1016, in order to understand the differences in response to water-deficit stress. The results revealed that Lo964 was less sensitive to water-deficit stress, and had a strong lateral root system and a higher root/shoot ratio in comparison to Lo1016. In response to water-deficit stress by comparing stressed versus well-watered conditions, abscisic acid syntheses were increased in leaves, roots, and kernels of both Lo964 and Lo1016, but by different magnitudes. Indole-3-acetic acid (IAA) was undetectable in the leaves and roots of either genotype regardless of treatments, but increases of 58% and 8% in IAA concentration were observed in 20 DAP kernels, in response to water-deficit stress, respectively. The expression of the MIPS was up-regulated 7-fold in leaf tissues of Lo964 compared to Lo1016 at watered conditions, but decreased significantly to similar levels in both genotypes at water-deficit conditions. ZmPR10 and ZmFer1 expressions tended to up-regulate although ZmPR10 was expressed higher in root tissue while ZmFer1 was expressed higher in leaf tissue. Further study is needed to confirm if Lo964 has reduced aflatoxin contamination associated with the drought tolerance in the field in order to utilize the resistant trait in breeding.  相似文献   

8.
Treatment of the primary root of Zea mays L. with the phytotropin1-(2'-carboxyphenyl)-3-phenylpropane-1, 3-dione (CPD) gave riseto nastic curvature, loss of georesponse, and root growth inhibition.From these results and a histological examination of the rootcap, it is suggested that interference with the perception mechanismmay not be a factor in the mode of action of CPD. The resultsmay be explained in terms of the known hormone transport inhibitingproperties of the phytotropins.  相似文献   

9.
Extraction and analytical methods have been refined and newones devised to allow precise determinations by GC-EC of thelevels of abscisic acid (ABA) and indol-3ylacetic acid (IAA)in samples of maize root tips as small as 1.0 g fr. wt. Seminalroots of 5-d-old maize seedlings grown in normal (bulk density1200 kg m–3) and compacted (bulk density 1600 kg m–3)sand/garden loam mixtures have been examined. Seminal rootsfrom compacted soil had an average length of about 40% of thatof control roots and were much thicker. The ABA levels in 10mm tips of impeded roots (c. 25–35 ng g–1 fr.wt.)did not differ significantly from those of normal root tipson both a fresh and dry weight basis. The levels in 0–1mm tips were approximately double those in the remaining 1–10mm zones. IAA levels were increased by about 3 times in impededroots (176.3 as compared with 52.4 ng g–1 fr.wt) and itis concluded that this response is likely to be the main causeof the morphological and growth changes brought about by soilcompaction.  相似文献   

10.
11.
Sequestration of nucleotides in cells through protein binding could influence the availability of nucleotides and free energy for metabolic reactions and, therefore, affect rates of physiological processes. We have estimated the proportion of nucleotides bound to proteins in maize (Zea mays L.) root tips. Binding of nucleoside mono- and diphosphates to total root-tip protein was studied in vitro using high-performance liquid chromatography and a new ligand-binding technique. We estimate that approximately 40% of the ADP, 65% of the GDP, 50% of the AMP, and virtually all the GMP in aerobic cells are bound to proteins. In hypoxic cells, free concentrations of these nucleotides increase proportionately much more than total intracellular concentrations. Little or no binding of CDP, UDP, CMP, and UMP was observed in vitro. Binding of nucleoside triphosphate (NTP) to protein was estimated from in vivo 31P-nuclear magnetic resonance relaxation measurements. In aerobic root tips most (approximately 70%) of the NTP is free, whereas under hypoxia NTP appears predominantly bound to protein. Our results indicate that binding of nucleotides to proteins in plant cells will significantly influence levels of free purine nucleotides available to drive and regulate respiration, protein synthesis, ion transport, and other physiological processes.  相似文献   

12.
13.
The technique of Giemsa banding, C-banding patterns on the root tip chromosomes and the chromocentres of interphase nuclei with three eultivars (Dai Zi Bai, Qun Dan 105 and 2×6) of maize were studied. The results are as follows: 1. After fixation and treatment in a saturated solution of barium hydroxide the preparations were incubated in 0.5×SSC, I×SSC, 3×SSC, 4×SSC or distilled water respectively forⅠ h at 60 ℃ and the other steps in C-banding procedure were not changed so as to find the optimum saline concentration for Giemsa banding in maize. The experimental results shown that 0.5×SSC was the best. But bands could not produced very well by treating samples in distilled water. 2. There were terminal, subterminal and centric bands in Dai Zi Bai and Qun Dan 105. The C-banding patterns on the root tip chromosomes of these two cultivars were different from each other. Qun Dan 105 had 10 prominent bands in total, while Daf Zi Bai had 7. The banding patterns of each chromosome were described in detail. 3. The average chromocentres per cell in Dai Zi, Qun Dan 105 and cultivar 2×6 were 7.1, 10.9 and 7.2 respectively. Their prominent band numbers on the chromosomes were 7, 10 and 8 correspondingly. It seems that the number of C-bands on the chromosomes is close to that of chromocentres.  相似文献   

14.
The effect of salinity and calcium levels on water flows and on hydraulic parameters of individual cortical cells of excised roots of young maize (Zea mays L. cv Halamish) plants have been measured using the cell pressure probe. Maize seedlings were grown in one-third strength Hoagland solution modified by additions of NaCl and/or extra calcium so that the seedlings received one of four treatments: control; +100 millimolar NaCl; +10 millimolar CaCl2; +100 millimolar NaCl + 10 millimolar CaCl2. From the hydrostatic and osmotic relaxations of turgor, the hydraulic conductivity (Lp) and the reflection coefficient (σs) of cortical cells of different root layers were determined. Mean Lp values in the different layers (first to third, fourth to sixth, seventh to ninth) of the four different treatments ranged from 11.8 to 14.5 (Control), 2.5 to 3.8 (+NaCl), 6.9 to 8.7 (+CaCl2), and 6.6 to 7.2 · 10−7 meter per second per megapascal (+NaCl + CaCl2). These results indicate that salinization of the growth media at regular calcium levels (0.5 millimolar) decreased Lp significantly (three to six times). The addition of extra calcium (10 millimolar) to the salinized media produced compensating effects. Mean cell σs values of NaCl ranged from 1.08 to 1.16, 1.15 to 1.22, 0.94 to 1.00, and 1.32 to 1.46 in different root cell layers of the four different treatments, respectively. Some of these σs values were probably overestimated due to an underestimation of the elastic modulus of cells, σs values of close to unity were in line with the fact that root cell membranes were practically not permeable to NaCl. However, the root cylinder exhibited some permeability to NaCl as was demonstrated by the root pressure probe measurements that resulted in σsr of less than unity. Compared with the controls, salinity and calcium increased the root cell diameter. Salinized seedlings grown at regular calcium levels resulted in shorter cell length compared with control (by a factor of 2). The results demonstrate that NaCl has adverse effects on water transport parameters of root cells. Extra calcium could, in part, compensate for these effects. The data suggest a considerable apoplasmic water flow in the root cortex. However, the cell-to-cell path also contributed to the overall water transport in maize roots and appeared to be responsible for the decrease in root hydraulic conductivity reported earlier (Azaizeh H, Steudle E [1991] Plant Physiol 97: 1136-1145). Accordingly, the effect of high salinity on the cell Lp was much larger than that on root Lpr.  相似文献   

15.
16.
钙离子参与一氧化氮促进盐胁迫下的玉米种子萌发   总被引:8,自引:0,他引:8  
0.001~1.0 mmol·L~(-1)一氧化氮(NO)供体硝普钠(SNP)均能提高玉米种子的发芽率,缓解盐胁迫下种子萌发的抑制作用,其中0.1 mmol·L~(-1)SNP的效果最佳。用胞外游离Ca~(2 )螯合剂EGTA、质膜Ca~(2 )通道阻断剂LaCl_3和液泡Ca~(2 )释放抑制剂钌红与0.1 mmol·L~(-1) SNP共处理,均能减弱或抵消SNP促进种子萌发的作用。据此推测,钙离子参与SNP促进盐胁迫下玉米种子萌发的信号转导过程。  相似文献   

17.
To assess the alternative responses to aluminum toxicity, maize (Zea mays L. cv Karadeniz y?ld?z?) roots were exposed to different concentrations of AlCl3 (150, 300 and 450 μM). Aluminum reduced the root elongation by 39.6% in 150 μM, 44.1% in 300 μM, 50.1% in 450 μM AlCl3 after 96 h period. To correlate the root elongation with the alternative stress responses including aluminum accumulation, lipid peroxidation, mitotic abnormalities, reduction of starch content, intracellular Ca2+ accumulation, callose formation, lignin deposition and peroxidase activity, cytochemical and biochemical tests were performed. The results indicated that aluminum accumulation and lipid peroxidation were observed more densely on the root cap and the outer cortex cells. In addition to morphological deformations, cytochemical analysis displayed cellular deformations. Furthermore, mitotic abnormalities were observed such as c-mitosis, micronuclei, bi- and trinucleated cells in aluminum treated root tips. Aluminum treatment induced starch reduction, callose formation, lignin accumulation and intracellular Ca2+ increase. Moreover, the peroxidase activity increased significantly by 3, 4.4 and 7.7 times higher than in that of control after 96 h, respectively. In conclusion, aluminum is significantly stressful in maize culminating in morphological and cellular alterations.  相似文献   

18.
A protein that binds the calcium-channel antagonist verapamil has been partially purified from maize (Zea mays) coleoptile membranes. The protein was solubilized with the detergent CHAPS ([ 3-(3-cholamidopropyl)dimethylammonio]propane-1-sulphonate) and purified by a combination of ion-exchange, gel-filtration and hydrophobic-interaction chromatography. This resulted in a 120-fold purification. SDS/polyacrylamide-gel-electrophoretic analysis of the polypeptides from the final purification step indicated that the verapamil-binding protein may have a major component of Mr 169,000. The dissociation constants for specific binding of [3H]verapamil to crude and CHAPS-solubilized maize coleoptile membrane fractions are 72 nM and 158 nM respectively, with respective binding-site concentrations of 135 pmol/mg of protein and 78 pmol/mg of protein. In both cases the Scatchard plots are linear, indicating a single class of binding sites. [3H]Verapamil binding to crude maize coleoptile membrane fractions could not be displaced by unlabelled desmethoxyverapamil or by nifedipine, but could be displaced by unlabelled methoxyverapamil.  相似文献   

19.
Li XZ  Oaks A 《Plant physiology》1993,102(4):1251-1257
Zea mays (cv W64A x W182E) was used to investigate the induction and turnover of nitrate reductase (NR). In our system, 5 or 10 mM KNO3 gave the best growth over a 6-d growing period. With these NO3- levels, NR reached steady-state levels after 24 h. For the turnover experiments, the seedlings were transferred to a NO3--free medium after a 24-h induction. Shoot NR was less sensitive to the removal of NO3- than root NR, which declined almost as soon as NO3- was removed when the seedlings were induced with 5 or 10 mM NO3-. With 1 mM NO3-, however, removal of NO3- from medium resulted in declines in both NR activity and NO3- in shoot and root. Although there was a delay in the degradation of NR protein relative to the loss of NR activity, this protein was not reactivated when NO3- was resupplied. These results indicate that NO3- regulates NR by influencing the de novo synthesis of the NR protein and not by a reversible activation-inactivation of that protein.  相似文献   

20.
Patterns of genomic divergence between hybridizing taxa can be heterogeneous along the genome. Both differential introgression and local adaptation may contribute to this pattern. Here, we analysed two teosinte subspecies, Zea mays ssp. parviglumis and ssp. mexicana, to test whether their divergence has occurred in the face of gene flow and to infer which environmental variables have been important drivers of their ecological differentiation. We generated 9,780 DArTseqTM SNPs for 47 populations, and used an additional data set containing 33,454 MaizeSNP50 SNPs for 49 populations. With these data, we inferred features of demographic history and performed genome wide scans to determine the number of outlier SNPs associated with climate and soil variables. The two data sets indicate that divergence has occurred or been maintained despite continuous gene flow and/or secondary contact. Most of the significant SNP associations were to temperature and to phosphorus concentration in the soil. A large proportion of these candidate SNPs were located in regions of high differentiation that had been identified previously as putative inversions. We therefore propose that genomic differentiation in teosintes has occurred by a process of adaptive divergence, with putative inversions contributing to reduced gene flow between locally adapted populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号