首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
beta-Lactotensin (beta-LT: His-Ile-Arg-Leu) is an ileum-contracting peptide derived from residues No. 146-149 of bovine beta-lactoglobulin. The ileum-contracting activity of beta-LT was blocked by the NT1 antagonist SR48692. beta-LT was selective for the neurotensin NT2 receptor while neurotensin was selective for the NT1 receptor. beta-LT is the first natural ligand showing selectivity for the NT2 receptor. beta-LT showed hypertensive activity after intravenous administration at a dose of 30 mg/kg in conscious rats, while neurotensin showed hypotensive activity. The hypertensive activity of beta-LT was blocked by levocabastine (1 mg/kg, i.v.), an NT2 antagonist. SR48692, which blocked the hypotensive activity of neurotensin, had no effect on the hypertensive activity of beta-LT. These results suggest that the hypertensive activity of beta-LT is mediated by the NT2 receptor. It was concluded that the NT1 and NT2 receptors mediate the opposite effect on blood pressure.  相似文献   

2.
Previous work from this laboratory showed the ability of neurotensin to inhibit synaptosomal membrane Na(+), K(+)-ATPase activity, the effect being blocked by SR 48692, a non-peptidic antagonist for high affinity neurotensin receptor (NTS1) [López Ordieres and Rodríguez de Lores Arnaiz 2000; 2001]. To further study neurotensin interaction with Na(+), K(+)-ATPase, peptide effect on high affinity [(3)H]-ouabain binding was studied in cerebral cortex membranes. It was observed that neurotensin modified binding in a dose-dependent manner, leading to 80% decrease with 1 × 10(-4)M concentration. On the other hand, the single addition of 1 × 10(-6)M, 1 × 10(-5)M and 1 × 10(-4)M SR 48692 (Sanofi-Aventis, U.S., Inc.) decreased [(3)H]-ouabain binding (in %) to 87 ± 16; 74 ± 16 and 34 ± 17, respectively. Simultaneous addition of neurotensin and SR 48692 led to additive or synergic effects. Partial NTS2 agonist levocabastine inhibited [(3)H]-ouabain binding likewise. Saturation assays followed by Scatchard analyses showed that neurotensin increased K(d) value whereas failed to modify B(max) value, indicating a competitive type interaction of the peptide at Na(+), K(+)-ATPase ouabain site. At variance, SR 48692 decreased B(max) value whereas it did not modify K(d) value. [(3)H]-ouabain binding was also studied in cerebral cortex membranes obtained from rats injected i. p. 30 min earlier with 100 μg and 250 μg/kg SR 48692. It was observed that the 250 μg/kg SR 48692 dose led to 19% decrease in basal [(3)H]-ouabain binding. After SR 48692 treatments, addition of 1 × 10(-6)M led to additive or synergic effect. Results suggested that [(3)H]-ouabain binding inhibition by neurotensin hardly involves NTS1 receptor.  相似文献   

3.
β-Lactotensin (β-LT: His-Ile-Arg-Leu) is an ileum-contracting peptide derived from residues No. 146-149 of bovine β-lactoglobulin. The ileum-contracting activity of β-LT was blocked by the NT1 antagonist SR48692. β-LT was selective for the neurotensin NT2 receptor while neurotensin was selective for the NT1 receptor. β-LT is the first natural ligand showing selectivity for the NT2 receptor. β-LT showed hypertensive activity after intravenous administration at a dose of 30 mg/kg in conscious rats, while neurotensin showed hypotensive activity. The hypertensive activity of β-LT was blocked by levocabastine (1 mg/kg, i.v.), an NT2 antagonist. SR48692, which blocked the hypotensive activity of neurotensin, had no effect on the hypertensive activity of β-LT. These results suggest that the hypertensive activity of β-LT is mediated by the NT2 receptor. It was concluded that the NT1 and NT2 receptors mediate the opposite effect on blood pressure.  相似文献   

4.
Structure and functional expression of cloned rat serotonin 5HT-2 receptor.   总被引:28,自引:5,他引:23  
A complementary DNA (cDNA) encoding a serotonin receptor with 51% sequence identity to the 5HT-1C subtype was isolated from a rat brain cDNA library by homology screening. Transient expression of the cloned cDNA in mammalian cells was used to establish the pharmacological profile of the encoded receptor polypeptide. Membranes from transfected cells showed high-affinity binding of the serotonin antagonists spiperone, ketanserin and mianserin, low affinity for haloperidol (a dopamine D2 receptor antagonist), 8-OH-DPAT as well as MDL-72222 and no detectable binding of [3H]serotonin. This profile is consonant with the 5HT-2 subtype of serotonin receptors. In agreement with this assignment, serotonin increased the intracellular Ca2+ concentration and activated phosphoinositide hydrolysis in transfected mammalian cells. The agonist also elicited a current flow, blocked by spiperone, in Xenopus oocytes injected with in vitro synthesized RNA containing the cloned nucleotide sequences.  相似文献   

5.
Phosphoinositide (PI) metabolism is enhanced in neonatal brain by activation of neurotransmitter receptors and by inhibition of the sodium pump with ouabain or endogenous inhibitor termed endobain E. Peptide neurotensin inhibits synaptosomal membrane Na+, K+-ATPase activity, an effect blocked by SR 48692, a selective antagonist for high-affinity neurotensin receptor (NTS1). The purpose of this study was to evaluate potential participation of NTS1 receptor on PI hydrolysis enhancement by sodium pump inhibition. Cerebral cortex miniprisms from neonatal Wistar rats were preloaded with [3H]myoinositol in buffer during 60 min and further preincubated for 0 min or 30 min in the absence or presence of SR 48692. Then, ouabain or endobain E were added and incubation proceeded during 20 or 60 min. Reaction was stopped with chloroform/methanol and [3H]inositol-phosphates (IPs) accumulation was quantified in the water phase. After 60-min incubation with ouabain, IPs accumulation values reached roughly 500% or 860% in comparison with basal values (100%), if the preincubation was omitted or lasted 30 min, respectively. Values were reduced 50% in the presence of SR 48692. In 20-min incubation experiments, IPs accumulation by ouabain versus basal was 300% or 410% if preincubation was 0 min or 30 min, respectively, an effect blocked 23% or 32% with SR 48692. PI hydrolysis enhancement by endobain E was similarly blocked by SR 48692, being this effect higher when sample incubation with the endogenous inhibitor lasted 60 min versus 20 min. Present results indicate that PI hydrolysis increase by sodium pump inhibition with ouabain or endobain E is partially diminished by SR 48692. It is therefore suggested that NTS1 receptor may be involved in cell signaling system mediated by PI turnover.  相似文献   

6.
We have previously shown that peptide neurotensin inhibits cerebral cortex synaptosomal membrane Na+, K+-ATPase, an effect fully prevented by blockade of neurotensin NT1 receptor by antagonist SR 48692. The work was extended to analyze neurotensin effect on Na+, K+-ATPase activity present in other synaptosomal membranes and in CNS myelin and mitochondrial fractions. Results indicated that, besides inhibiting cerebral cortex synaptosomal membrane Na+, K+-ATPase, neurotensin likewise decreased enzyme activity in homologous striatal membranes as well as in a commercial preparation obtained from porcine cerebral cortex. However, the peptide failed to alter either Na+, K+-ATPase activity in cerebellar synaptosomal and myelin membranes or ATPase activity in mitochondrial preparations. Whenever an effect was recorded with the peptide, it was blocked by antagonist SR 48692, indicating the involvement of the high affinity neurotensin receptor (NT1), as well as supporting the contention that, through inhibition of ion transport at synaptic membrane level, neurotensin plays a regulatory role in neurotransmission.  相似文献   

7.
8.
Abstract: Transfected Chinese hamster ovary cells were used as a model for the study of the desensitization of the neurotensin receptor at the second messenger level. Stimulation with nanomolar concentrations of neurotensin elicited rapid rises in the cytosolic calcium concentration ([Ca2+]i), which remained elevated throughout the peptide application. A significant response was already detected with neurotensin concentrations as low as 0.01 nM. This high efficiency of neurotensin in mediating this calcium response contrasts with the nanomolar affinity of the peptide for its receptor measured in binding experiments. Evidence indicated that the initial elevation of the [Ca2+]i resulted from release of Ca2+ from intracellular stores, whereas the sustained response involved an influx of extracellular origin. Return to the basal level was only reached after extensive washing of the peptide or its displacement with the neurotensin receptor antagonist SR48692. After washing, further stimulations were still able to mediate an increase in the [Ca2+]i, indicating an apparent absence of rapid desensitization of the intracellular signaling pathway that mediates calcium mobilization. In contrast with this absence of response desensitization, the neurotensin receptors were found to internalize after stimulation with the peptide. This internalization was maximal after 30 min and accounted for ~70% of the number of neurotensin binding sites located at the cell surface. These results indicate that despite the functional properties of the rat neurotensin receptor present in Chinese hamster ovary cells after transfection, the intracellular signaling pathway triggered by stimulation with neurotensin seems to be resistant to desensitization. This might be related to the high efficiency of the intracellular signaling pathway coupled to the neurotensin receptor observed in these cells. A possible absence of desensitization of the neurotensin receptor itself is also discussed.  相似文献   

9.
Abstract: The present experiments assessed the effects of SR 48692, a selective nonpeptide antagonist of neurotensin receptors, on mesolimbic dopaminergic neurotransmission. Dopamine release evoked by the electrical stimulation of the median forebrain bundle (20 Hz, 10 s) was measured in the nucleus accumbens of urethane-anesthetized rats using differential pulse amperometry combined with carbon fiber electrodes. SR 48692 (0.1 mg/kg, i.p.) alone did not affect this release, whereas it dose-dependently (0.03–1 mg/kg, i.p.) enhanced the haloperidol (50 µg/kg, i.p.)-induced facilitation of the electrically evoked DA release. The increase induced by haloperidol (92 ± 26% above control values 30 min after injection) was potentiated by SR 48692 (264 ± 75% at 0.03 mg/kg, 428 ± 113% at 0.1 mg/kg, and 480 ± 135% at 1 mg/kg). Effects identical to those of SR 48692 were obtained with SR 48527, a chemically related compound with a high affinity for neurotensin receptors, but not with SR 49711, its low-affinity antipode. The potentiating effects of SR 48692 were positively related to the stimulation frequency (from 6 to 20 Hz) and to the dose of haloperidol (from 12.5 to 50 µg/kg) and were abolished after prior kainic acid lesion (1 µg/1 µl) of the nucleus accumbens. Thus, the effects of SR 48692 required the integrity of postsynaptic elements of the nucleus accumbens and occurred under the combination of two, at least partly, interdependent conditions: strong D2 autoreceptor blockade and high-intensity stimulation likely to release neurotensin. It is interesting that these potentiating effects of SR 48692 did not appear in the striatum. In conclusion, these findings suggest that endogenous neurotensin may attenuate the facilitation of D2 receptor blockade on mesolimbic but not nigrostriatal dopamine transmission.  相似文献   

10.
Abstract: The purpose of the present study was to investigate the effects of repeated administration of the neurotensin receptor antagonist, SR 48692, on the activity of the mesocortical and mesolimbic dopaminergic (DA) systems. We showed that daily administration of SR 48692 for 15 days (1 mg/kg i.p.) to Wistar rats increased the expression of tyrosine hydroxylase mRNA and protein in the ventral mesencephalon. Simultaneous in vivo microdialysis in the shell part of the nucleus accumbens (AcbSh) and the medial prefrontal cortex (mPFC) revealed that blockade of neurotensin receptors for 15 days decreased basal extracellular levels of DA (∼50%) and its metabolites in the AcbSh, whereas no modification in DA levels was observed in the mPFC. In animals submitted to a forced swimming stress, which preferentially enhanced extracellular DA levels in the mPFC, treatment with SR 48692 failed to affect the stress-induced increase in DA. Moreover, given that glucocorticoids can modulate the activity of mesencephalic DA neurons, we examined the effect of the same SR 48692 treatment on corticosterone levels in dialysates from the AcbSh. We found that repeated SR 48692 did not affect the basal levels of free corticosterone, but significantly reduced the increase induced by forced swimming stress. The present results demonstrate that repeated treatment with SR 48692 modulates selectively the DA mesolimbic system when compared with the mesocortical pathway. These findings suggest that long-term treatment with selective neurotensin receptor antagonists could have potential clinical utility in the treatment of neuropsychiatric disorders associated with hyperactivity of the mesolimbic DA systems or the hypothalamic-pituitary-adrenal axis.  相似文献   

11.
Summary Neurotensin is a 13-amino acid peptide (pGlu-Leu-Tyr-Glu-Asn-Lys-Pro-Arg-Arg-Pro-Tyr-Ile-Leu) originally isolated from hypothalami (Carraway and Leeman, 1973) and later from intestines (Kitabgiet al., 1976) of bovine. The peptide is present throughout the animal kingdom, suggesting its participation to important processes basic to animal life (Carrawayet al., 1982). Neurotensin and its analogue neuromedin-N (Lys-Ile-Pro-Tyr-Ile-Leu) (Minaminoet al., 1984) are synthesized by a common precursor in mammalian brain (Kislauskiset al., 1988) and intestine (Dobneret al., 1987). The central and peripheral distribution and effects of neurotensin have been extensively studied. In the brain, neurotensin is exclusively found in nerve cells, fibers, and terminals (Uhlet al., 1979), whereas the majority of peripheral neurotensin is found in the endocrine N-cells located in the intestinal mucosa (Orciet al., 1976; Helmstaedteret al., 1977). Central or peripheral injections of neurotensin produce completely different pharmacological effects (Table I) indicating that the peptide does not cross the blood-brain barrier. Many of the effects of centrally administered neurotensin are similar to those of neuroleptics or can be antagonized by simultaneous administration of TRH (Table I). The recently discovered nonpeptide antagonist SR 48692 (Gullyet al., 1993) can inhibit several of the central and peripheral effects of neurotensin (Table I).Like many other neuropeptides, neurotensin is a messenger of intracellular communication working as a neurotransmitter or neuromodulator in the brain (Nemeroffet al., 1982) and as a local hormone in the periphery (Hirsch Fernstromet al., 1980). Thus, several pharmacological, morphological, and neurochemical data suggest that one of the functions of neurotensin in the brain is to regulate dopamine neurotransmission along the nigrostriatal and mesolimbic pathways (Quirion, 1983; Kitabgi, 1989). On the other hand, the likely role of neurotensin as a parahormone in the gastrointestinal tract has been well documented (Rosell and Rökaeus, 1981; Kitabgi, 1982).Both central and peripheral modes of action of neurotensin imply as a first step the recognition of the peptide by a specific receptor located on the plasma membrane of the target cell. Formation of the neurotensin-receptor complex is then translated inside the cell by a change in the activity of an intracellular enzyme. This paper describes the binding and structural properties of neurotensin receptors as well as the signal transduction pathways that are activated by the peptide in various target tissues and cells.  相似文献   

12.
The neurotensin receptor 1 (NTR1) subtype belongs to the family of G protein-coupled receptors and mediates most of the known effects of the neuropeptide including modulation of central dopaminergic transmission. This suggested that nonpeptide agonist mimetics acting at the NTR1 might be helpful in the treatment of Parkinson's disease and schizophrenia. Here, we attempted to define the molecular interactions between neurotensin-(8-13), the pharmacophore of neurotensin, and the rat NTR1. Mutagenesis of the NTR1 identified residues that interact with neurotensin. Structure-activity studies with neurotensin-(8-13) analogs identified the peptide residues that interact with the mutated amino acids in the receptor. By taking these data into account, computer-assisted modeling techniques were used to build a tridimensional model of the neurotensin-(8-13)-binding site in which the N-terminal tetrapeptide of neurotensin-(8-13) fits in the third extracellular loop and the C-terminal dipeptide binds to residues at the junction between the extracellular and transmembrane domains of the receptor. Interestingly, the agonist binding site lies on top of the previously described NTR1-binding site for the nonpeptide neurotensin antagonist SR 48692. Our data provide a basis for understanding at the molecular level the agonist and antagonist binding modes and may help design nonpeptide agonist mimetics of the NTR1.  相似文献   

13.
Moody TW  Chiles J  Casibang M  Moody E  Chan D  Davis TP 《Peptides》2001,22(1):109-115
Neurotensin (NT) is an autocrine growth factor for some small cell lung cancer (SCLC) cells. In this communication, the effects of a non-peptide NT receptor antagonist, SR48692, were investigated using SCLC cells. (3)H-SR48692 bound with high affinity (IC(50) = 20 nM) to NCI-H209 cells. Also, NT and SR48692 inhibited specific (125)I-NT binding with high affinity (IC(50) values of 2 and 200 nM). In contrast, the NT(2) receptor agonist, levocabastine, had little effect on specific (125)I-NT binding, second messenger production and proliferation using NCI-H209 cells. SR48692 (5 microM) antagonized the ability of NT (10 nM) to cause elevated cytosolic Ca2+ in Fura-2 AM loaded NCI-H209 cells. SR48692 antagonized the ability of NT to cause elevation of c-fos mRNA in these cells. Using a MTT proliferation assay, SR48692 inhibited NCI-H209 and H345 proliferation in a concentration-dependent manner. Using a clonogenic assay, 1 microM SR48692, reduced NCI-H209 colony number. Also, SR48692 (0.4 mg/kg per day) inhibited NCI-H209 xenograft proliferation in nude mice. These results suggest that SR48692 is a NT(1) receptor antagonist which inhibits SCLC growth.  相似文献   

14.
Abstract: Radiolabeled analogues of neuromedin N have been prepared by acylation of the α, ε1, and ε2 amino groups of [Lys2]neuromedin N (Lys-Lys-Pro-Tyr-Ile-Leu) either with the 125I-labeled Bolton-Hunter reagent or with N -succinimidyl[2,3-3H]propionate. The binding properties of the purified analogues toward newborn mouse brain homogenate or toward membranes of cells transitorily (COS) or permanently (AA1) transfected with the cloned rat brain neurotensin receptor cDNA were evaluated and compared with those of radiolabeled neurotensin. The α-modified analogue of [Lys2]neuromedin N behaves exactly like neurotensin in these binding experiments, whereas the ε1- and ε2-modified analogues selectively recognize the fraction of neurotensin binding sites that is sensitive to GTPγS. The proportion of neurotensin receptors coupled to GTP binding proteins is ∼50% in membranes of newborn mouse brain or of AA1 cells that respond to neurotensin by an increase of the intracellular inositol trisphosphate concentration. By contrast, membranes of transitorily transfected COS cells that do not respond to neurotensin exhibit very low levels of GTP-sensitive receptors labeled with the ε1- or ε2-modified analogues. These radiolabeled peptides offer new tools to selectively detect active neurotensin receptors.  相似文献   

15.
Heterologous expression of the human neurotensin receptor type I (hNT1-R) has been achieved in the yeast Saccharomyces cerevisiae. Immunoanalysis of membranes prepared from cells expressing a c-myc-tagged version of hNT1-R revealed multiple c-myc cross-reacting polypeptides of high molecular mass, suggesting that hNT1-R was glycosylated in yeast. High-affinity binding sites for 125I-labeled-[monoiodo-Tyr3]neurotensin ([125I-Tyr3]NT) were detected on hNT1-R-expressing cells with Kd and Bmax values of 3.2 nM and of 500 receptors per cell, respectively. Competition binding studies of neurotensin with SR142948 and SR48692, two nonpeptidic antagonists of hNT1-R, indicated that the yeast-produced recombinant receptor displayed the same pharmacological properties as hNT1-R expressed in mammalian cells. Interestingly, neurotensin activated the pheromone pathway in hNT1-R-expressing cells in a dose-dependent fashion, as revealed by a beta-galactosidase activity assay with a pheromone-responsive Fus1:lacZ construct. Mutational inactivation of the SST2 and STE2 genes increased the level of beta-galactosidase activity in response to neurotensin by twofold. Recombinant hNT1-R-producing cells, which lacked the endogenous G-protein-coupled receptor for the alpha pheromone, mated with wild-type MATalpha haploid cells in response to neurotensin, leading to bona fide diploid zygote formation. This is the first report of a mammalian receptor that can replace the endogenous pheromone receptor when produced in yeast, by signaling a fully effective, agonist-induced, mating process.  相似文献   

16.
Neurotensin is a peptide present in mammalian CNS and peripheral tissues, which may play a major role in neurotransmission or neuromodulation, subserving diverse physiological functions. We studied the effect of added neurotensin on ATPase activities in synaptosomal membranes isolated from rat cerebral cortex. Neurotensin at 3 x 10(-8)-3 x 10(-6) M concentration decreased 20-44% Na+,K+-ATPase activity but failed to modify Mg2+-ATPase activity; lower neurotensin concentrations (3 x 10(-14)-3 x 10(-10) M) had no effect on enzyme activities. This inhibitory effect was abolished by neurotensin heating, by enzyme preincubation with neurotensin during periods exceeding 10 min, or by adding 1 x 10(-6) M SR 48692, a high affinity neurotensin receptor antagonist. Levocabastine, which blocks low affinity neurotensin receptor, failed to alter enzyme inhibition by the peptide. It is suggested that the sodium pump may be a target for neurotensin effects at neuronal level involving the participation of high affinity neurotensin receptor.  相似文献   

17.
Neurotensin modulates dopaminergic transmission in the nigrostriatal system. DARPP-32, a dopamine- and cAMP-regulated phosphoprotein of Mr 32 kDa, is phosphorylated on Thr34 by cAMP-dependent protein kinase, resulting in its conversion into a potent inhibitor of protein phosphatase-1 (PP 1). Here, we examined the effect of neurotensin on DARPP-32 Thr34 phosphorylation using mouse neostriatal slices. Neurotensin stimulated DARPP-32 Thr34 phosphorylation by 4-7-fold with a K(0.5) of approximately 50 nM. The effect of neurotensin was antagonized by a combined neurotensin receptor type-1 (NTR1)/type-2 (NTR2) antagonist, SR142948. It was not antagonized by a NTR1 antagonist, SR48692 or by a NTR2 antagonist, levocabastine; neither was it antagonized by the two combined. Pretreatment with TTX or cobalt abolished the effect of neurotensin. The effect of neurotensin was antagonized by a dopamine D1 antagonist, SCH23390, and by ionotropic glutamate receptor antagonists, MK801 and CNQX. These results indicate that neurotensin stimulates the release of dopamine from nigrostriatal presynaptic terminals in an NMDA receptor- and AMPA receptor-dependent manner, leading to the increase in DARPP-32 Thr34 phosphorylation. Neurotensin stimulated the phosphorylation of Ser845 of the AMPA receptor GluR1 subunit in wild-type mice but not in DARPP-32 knockout mice. Thus, neurotensin, by stimulating the release of dopamine, activates the dopamine D1-receptor/cAMP/PKA/DARPP-32/PP 1 cascade.  相似文献   

18.
Neurotensin (NT) exerts multiple functions in the central nervous system and peripheral tissues. Its actions are mainly mediated by a high-affinity G-protein-coupled receptor, the NT-1 receptor. In this study we demonstrated a nuclear NT binding site in different cellular models. We first noted that a large percentage of NT-1 receptor cell body immunoreactivity was located in the nuclear soma and nuclear envelope of rat substantia nigra, a brain area rich in NT-containing axon terminals. The NT-1 receptor was also visualized in purified nuclei from CHO cells stably transfected with NT-1 receptor coupled to the enhanced green fluorescence protein by immunocytochemistry. We observed that both the nuclear envelope and the nuclear soma were labeled, and the labeling intensity significantly increased after NT agonist treatment. These results suggested that NT-1 receptors, present in both the nuclear soma and the nuclear envelope, can be modulated by the ligand. Lastly, [(125)I]-NT binding experiments performed on isolated nuclei from a human lung cancer cell line endogenously expressing NT-1 receptor and NT, LNM35, revealed the existence of nuclear Gpp(NHp)-sensitive binding sites. These binding sites markedly decreased when cells were chronically treated with an NT-1 receptor antagonist, SR 48692. Taken together, these data suggest that the agonist regulates the expression of nuclear NT-1 receptors.  相似文献   

19.
An improved synthesis of the molecule SR 48692 is presented and its use as a neurotensin antagonist biological probe for use in cancer research is described. The preparation includes an number of enhanced chemical conversions and strategies to overcome some of the limiting synthetic transformations in the original chemical route.  相似文献   

20.
Structure and functional expression of the cloned rat neurotensin receptor.   总被引:27,自引:0,他引:27  
K Tanaka  M Masu  S Nakanishi 《Neuron》1990,4(6):847-854
A functional cDNA clone for the rat neurotensin receptor was isolated by combining molecular cloning in an RNA expression vector with an electrophysiological assay in Xenopus oocytes. The neurotensin receptor consists of 424 amino acids with seven putative transmembrane domains and belongs to the family of G protein-coupled receptors. The cloned receptor expressed in mammalian cells or in Xenopus oocytes shows a selective and high-affinity binding to neurotensin peptides and undergoes potent desensitization by repeated application of neurotensin. The neurotensin receptor mRNA is expressed in both the brain and the peripheral tissues at different levels. This investigation discloses the molecular nature of the neurotensin receptor, which mediates the diverse neuronal and peripheral actions of neurotensin by effecting the G protein-associated second messenger system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号