首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The ratio between the nitrite reductase and cytochrome oxidase activities of Pseudomonas aeruginosa nitrite reductase [EC 1.9.3.2.] varies with kind of C-type cytochrome used as the electron donor. Withe cytochrome c-548, 554 (Micrococcus sp.), the nitrite reductase activity is greater than the cytochrome oxidase activity, while the former is smaller than the latter with cytochrome c-554 (Navicula pelliculosa). The aerobic oxidation catalyzed by this enzyme of denitrifying bacterial ferrocytochrome c is greatly accelerated on addition of nitrite, while that of the algal ferrocytochrome c is not affected or is even depressed by the salt. An accelerative effect of nitrite is generally observed with many kinds of C-type cytochromes which react with the enzyme very or fairly rapidly. The difference in the ratio of the two activities of the enzyme seems to arise according to whether or not nitrite affects the interaction of C-type cytochrome with the enzyme.  相似文献   

2.
Anomalies both kinetic and equilibrium in nature are described for the inhibition of cytochrome c oxidase activity by sulphide in the isolated enzyme and in submitochondrial particles. These anomalies are related to the involvement of more than 1 mol of sulphide in the blockage of one cytochrome aa3 centre. Sulphide reduces resting cytochrome a3, a reaction that results in oxygen uptake and the loss of a sulphide molecule. Sulphide can also reduce cytochromes c and a; in the former case, a part of the one-equivalent oxidation product, presumed to be the SH radical, reacts with oxygen. Such oxygen uptake is also seen under aerobic conditions when ferricyanide reacts with sulphide. Three phases are identified in the inhibitory interaction of sulphide with the cytochrome c oxidase enzyme itself: an initial rapid reaction involving sulphide oxidation, oxygen uptake, and conversion of cytochrome aa3 into the low-spin "oxyferri" form; a subsequent step in which sulphide reduces cytochrome a; and the final inhibitory step in which a third molecule of sulphide binds the a3 iron centre in the cytochrome a2+ a3 3+ (oxy) species to give cytochrome a2+ a3 3+ H2S. the initial events parallel some of the events in the interaction of the cytochrome c-cytochrome aa3 system with monothiols; the final inhibitory event resembles that with cyanide.  相似文献   

3.
Cytochrome c oxidase can generate membrane potential in the absence of cytochrome c (e.g., in cytochrome c-deficient mitochondria or in proteoliposomes) with hexaammineruthenium as an artificial electron donor. Of several other redox mediators tested, phenazine methosulfate was found to be an efficient artificial substrate for membrane energization by cytochrome oxidase, whereas TMPD, DAD, DCPIP or ferrocyanide are virtually ineffective. The ability of Ru(NH3)6(2+) and phenazine methosulfate to support the generation of delta psi by cytochrome c-oxidase correlates with their effectiveness as electron donors to cytochrome a in the cyanide-inhibited membrane-bound enzyme.  相似文献   

4.
A membrane-bound c-type cytochrome, c552, acts as the electron mediator between the cytochrome bc1 complex and cytochrome c oxidase in the branched respiratory chain of the bacterium Paracoccus denitrificans. Unlike in mitochondria where a soluble cytochrome c interacts with both complexes, the bacterial c552, the product of the cycM gene, shows a tripartite structure, with an N-terminal membrane anchor separated from a typical class I cytochrome domain by a highly charged region. Two derivative fragments, lacking either only the membrane spanning region or both N-terminal domains, were constructed on the genetic level, and expressed in Escherichia coli cotransformed with the ccm gene cluster encoding host-specific cytochrome c maturation factors. High levels of cytochromes c were expressed and located in the periplasm as holo-proteins; both these purified c552 fragments are functional in electron transport to oxidase, as ascertained by kinetic measurements, and will prove useful for future structural studies of complex formation by NMR and X-ray diffraction.  相似文献   

5.
Membrane-impermeant redox compounds ferricyanide and horse heart ferrocytochrome c acted as electron acceptor and donor, respectively, for intact cells or spheroplasts of Anacystis nidulans (Synechococcus ATCC 27144) in the dark. The anaerobic reduction of ferricyanide was faster than aerobic reduction. KCN significantly enhanced the reaction under aerobic conditions. Light did not influence ferricyanide reduction. The oxidation of exogenous ferrocytochrome c was oxygen-dependent and inhibited by KCN. Either type of redox reaction was accompanied by vectorial proton translocation out of the cells. Arrhenius plots for the temperature dependence of both ferricyanide reduction and cytochrome c oxidation gave one distinct break point reflecting the lipid phase transition temperature of the plasma membrane. The results are presented as evidence for a respiratory chain in the plasma membrane of A. nidulans.  相似文献   

6.
The reaction of mixed-valence state membrane-bound cytochrome oxidase with oxygen has been studied by difference spectroscopy with reference to the unliganded state and by the low temperature technique of Chance and coworkers. Three intermediates, compound A2 and two compound C-type components denoted C606 and C610, have been resolved in time and wavelength in the alpha region. Their optical properties are defined in the visible range. Compound A2 disappearance and compound C606 formation exhibit first-order kinetics with identical rate constants: 2.4 . 10(-3) s-1 at -94 degrees C. Compound A2 has its alpha band maximum at 590 nm and shares an isosbestic point at 595 nm with the C606 species. The alpha band of this intermediate peaks at 606 nm. Compound C610 is the real end point of the reaction and its alpha band maximum appears at 610 nm. Compound C606 is interpreted as resulting from the transfer of one electron from heme alpha 3 copper to oxygen and compound C610 as expressing a molecular reorganization due to the effect of the temperature. Structural requirements for the location of CuB in the active site are discussed. It is concluded that the three observed compounds are the only intermediates formed in the reaction between oxygen and mixed-valence state membrane-bound cytochrome oxidase.  相似文献   

7.
Cytochromes c6 from three cyanobacteria were tested as substrates for membranous cyt. c oxidase(aa3) of Anacystis and Synechocystis using intact spheroplasts or isolated plasma(CM) and thylakoid(ICM) membranes. Neither spheroplasts nor CM/ICM gave significant O2 uptake rates with NADH without added cyt. c. Horse cyt. c (at low ionic strength) or cyt. c6 from Anacystis, Synechocystis or Microcystis (at high ionic strength) supported substantial HCN- & CO-sensitive NADH oxidase activity, consistent with in vivo O2 uptake. Cyanobacterial respiratory electron transport involves NADH dehydrogenase(fpN), plastoquinone, cyt. b/c(f), cyt. c6 & cyt. aa3, in both CM & ICM. In ICM, fpN and cyt. aa3 are functionally replaced in the light by PS II and PS I, respectively. In both membranes, cyt. c6 is an obligatory electron donor to cyt. aa3 &/or to P700. Respiratory action of acidic cyt. c6 (in unicellular species) may be unmasked only under conditions of elevated ionic strength.  相似文献   

8.
Membranes isolated from Nostoc sp. strain MAC and Anacystisnidulans displayed spectral changes in the cytochrome fb region when examined by reduced minus oxidized or dual wavelength spectrophotometry under physiological conditions. The same changes accompanied both light-induced (photosynthetic) and oxygen-induced (respiratory) electron transport. Physiological reduction of the cytochrome fb moiety was abolished after extraction of plastoquinone but reappeared on reconstitution of the depleted membranes with authentic plastoquinone. Moreover, a mutual inhibition of photosynthetic and respiratory activities could be directly demonstrated with the isolated membranes. From the results it is concluded that the membrane-bound plastoquinol-cytochrome fb reductase functions as a common electron donor to both P700 and the cytochrome oxidase in cyanobacteria.  相似文献   

9.
A new type of membrane-bound cytochrome c was found in a marine purple photosynthetic bacterium, Rhodovulum sulfidophilum. This cytochrome c was significantly accumulated in cells growing under anaerobic photosynthetic conditions and showed an apparent molecular mass of approximately 100 kDa when purified and analyzed by SDS-PAGE. The midpoint potential of this cytochrome c was 369 mV. Flash-induced kinetic measurements showed that this new cytochrome c can work as an electron donor to the photosynthetic reaction center. The gene coding for this cytochrome c was cloned and analyzed. The deduced molecular mass was nearly equal to 50 kDa. Its C-terminal heme-containing region showed the highest sequence identity to the water-soluble cytochrome c(2), although its predicted secondary structure resembles that of cytochrome c(y). Phylogenetic analyses suggested that this new cytochrome c has evolved from cytochrome c(2). We, thus, propose its designation as cytochrome c(2m). Mutants lacking this cytochrome or cytochrome c(2) showed the same growth rate as the wild type. However, a double mutant lacking both cytochrome c(2) and c(2m) showed no growth under photosynthetic conditions. It was concluded that either the membrane-bound cytochrome c(2m) or the water-soluble cytochrome c(2) work as a physiological electron carrier in the photosynthetic electron transfer pathway of Rvu. sulfidophilum.  相似文献   

10.
Most organisms performing oxygenic photosynthesis contain either cytochrome c 6 or plastocyanin, or both, to transfer electrons from cytochrome b 6-f to photosystem I. Even though plastocyanin has superseded cytochrome c 6 along evolution, plants contain a modified cytochrome c 6, the so called cytochrome c 6A, whose function still remains unknown. In this article, we describe a second cytochrome c 6 (the so called cytochrome c 6-like protein), which is found in some cyanobacteria but is phylogenetically more related to plant cytochrome c 6A than to cyanobacterial cytochrome c 6. In this article, we conclude that the cytochrome c 6-like protein is a putative electron donor to photosystem I, but does play a role different to that of cytochrome c 6 and plastocyanin as it cannot accept electrons from cytochrome f. The existence of this third electron donor to PSI could explain why some cyanobacteria are able to grow photoautotrophically in the absence of both cytochrome c 6 and plastocyanin. In any way, the Cyt c 6-like protein from Nostoc sp. PCC 7119 would be potentially utilized for the biohydrogen production, using cell-free photosystem I catalytic nanoparticles.  相似文献   

11.
Intact spheroplasts of the cyanobacterium Anacystis nidulans were found to oxidize various exogenous c-type cytochromes with concomitant proton extrusion. In the coupled state, H+/e stoichiometries close to 1 were measured, regardless of absolute reaction rates. It is concluded that the proton translocation observed is an intrinsic property of the cytoplasmic membrane-bound cytochrome c oxidase of A. nidulans.  相似文献   

12.
Abstract: This study presents information on the mechanism of inhibition of the photosynthetic electron transport of Nostoc muscorum by chromium (Cr) and lead (Pb). Photosystem II (PS II) was found to be more sensitive both to low and high concentrations of test metals used. A considerable inhibition of photosystem I (PS I) was, however, observed at high concentrations only. Although Cr-induced inhibition of DCPIP photoreduction and lowering of chlorophyll a (Chl a ) fluorescence intensity ( F 685) could not be reversed by artificial electron donors (diphenyl-carbazide (DPC), NH2OH, MnCl2 and benzidine) of PS II, these electron donors did substantially reverse the Pb-induced inhibition of DCPIP photoreduction as well as the lowering of Chl a fluorescence. Nevertheless, an increase in Chl a fluorescence at high concentrations of Pb suggested that this metal also arrests electron flow on the reducing side of the PS II reaction centre. Besides this, the suppression of fluorescence intensity of phycocyanin at low concentrations of both metals points to the involvement of phycobilisomes in the inhibition of PS II activity. The present study demonstrates that the modes of action of Cr and Pb on PS II are quite different.  相似文献   

13.
14.
The structures of membrane proteins are difficult to obtain by crystallography and may be altered by the detergents used in their extraction. X-ray absorption spectroscopy has been used to identify the structures of the copper atoms of the membrane-bound enzyme in mitochondria and in submitochondrial particles at respective concentrations of 100 and 200 micron of molar copper. To within the experimental error, the x-ray absorption spectra of the copper atoms of the membrane-bound and the Yonetani (Yonetani, T. (1961) J. Biol. Chem. 236, 1680-1688) purified oxidase are identical; all detectable shells of the active site indicate no alteration of structural parameters. Significant differences are found when compared to the Hartzell-Beinert (Hartzell, R. C., and Beinert, H. (1974) Biochim. Biophys. Acta 368, 318-338) preparation. Extended x-ray absorption fine structure technology is now adequate for the direct studies of membrane proteins in situ in their natural environment.  相似文献   

15.
Menin  L.  Gaillard  J.  Parot  P.  Schoepp  B.  Nitschke  W.  Verméglio  A. 《Photosynthesis research》1998,55(2-3):343-348
High-Potential Iron-Sulfur Proteins (HiPIP) are small electron carriers, present only in species of photosynthetic purple bacteria having a RC-bound cytochrome. Their participation in the photo-induced cyclic electron transfer was recently established for Rubrivivax gelatinosus, Rhodocyclus tenuis and Rhodoferax fermentans (Schoepp et al. 1995; Hochkoeppler et al. 1996a, Menin et al. 1997b). To better understand the physiological role of HiPIP, we extended our study to other selected photosynthetic bacteria. The nature of the electron carrier in the photosynthetic pathway was investigated by recording light-induced absorption changes in intact cells. In addition, EPR measurements were made in whole cells and in membrane fragments in solution or dried immobilized, then illuminated at room temperature. Our results show that HiPIP plays an important role in the reduction of the photo-oxidized RC-bound cytochrome in the following species: Ectothiorhodospira vacuolata, Chromatium vinosum, Chromatium purpuratum and Rhodopila globiformis. In Rhodopseudomonas marina, the HiPIP is not photo-oxidizible in whole cells and in dried membranes, suggesting that this electron carrier is not involved in the photosynthetic pathway. In Ectothiorhodospira halophila, the photo-oxidized RC-bound cytochrome is reduced by a high midpoint potential cytochrome c, in agreement with midpoint potential values of the two iso-HiPIPs (+ 50 mV and + 120 mV) which are too low to be consistent with their participation in the photosynthetic cyclic electron transfer.  相似文献   

16.
The primary electron donor of photosystem (PS) II in the chlorophyll (Chl) d-dominated cyanobacterium Acaryochloris marina was confirmed by delayed fluorescence (DF) and further proved by pigment contents of cells grown under several light intensities. The DF was found only in the Chl a region, identical to Synechocystis sp. PCC 6803, and disappeared following heat treatment. Pigment analyses indicated that at least two Chl a molecules were present per each two pheophytin a molecules, and these Chl a molecules are assigned to P(D1) and P(D2). These findings clearly indicate that Chl a is required for water oxidation in PS II.  相似文献   

17.
Functionally intact plasma membranes were isolated from the cyanobacterium (blue-green alga) Anacystis nidulans through French pressure cell extrusion of lysozyme/EDTA-treated cells, separated from thylakoid membranes by discontinuous sucrose density gradient centrifugation, and purified by repeated recentrifugation. Origin and identity of the chlorophyll-free plasma membrane fraction were confirmed by labeling of intact cells with impermeant protein markers, [35S]diazobenzenesulfonate and fluorescamine, prior to membrane isolation. Rates of oxidation of reduced horse heart cytochrome c by purified plasma and thylakoid membranes were 90 and 2 nmol min-1 (mg of protein)-1, respectively. The cytochrome oxidase in isolated plasma membranes was identified as a copper-containing aa3-type enzyme from the properties of its redox-active and EDTA-resistant Cu2+ ESR signal, the characteristic inhibition profile, reduced minus oxidized difference spectra, carbon monoxide difference spectra, photoaction and photodissociation spectra of the CO-inhibited enzyme, and immunological cross-reaction of two subunits of the enzyme with antibodies against subunits I and II, and the holoenzyme, of Paracoccus denitrificans aa3-type cytochrome oxidase. The data presented are the first comprehensive evidence for the occurrence of aa3-type cytochrome oxidase in the plasma membrane of a cyanobacterium similar to the corresponding mitochondrial enzyme (EC 1.9.3.1).  相似文献   

18.
It is well known that efficient functioning of photosynthetic (PET) and respiratory electron transport (RET) in cyanobacteria requires the presence of either cytochrome c6 (Cytc6) or plastocyanin (PC). By contrast, the interaction of an additional redox carrier, cytochrome cM (CytcM), with either PET or RET is still under discussion. Here, we focus on the (putative) role of CytcM in cyanobacterial respiration. It is demonstrated that genes encoding the main terminal oxidase (cytochrome c oxidase, COX) and cytochrome cM are found in all 44 totally or partially sequenced cyanobacteria (except one strain). In order to check whether CytcM can act as electron donor to COX, we investigated the intermolecular electron transfer kinetics between CytcM and the soluble CuA domain (i.e. the donor binding and electron entry site) of subunit II of COX. Both proteins from Synechocystis PCC6803 were expressed heterologously in E. coli. The forward and the reverse electron transfer reactions were studied yielding apparent bimolecular rate constants of (2.4 ± 0.1) × 105 M− 1 s− 1 and (9.6 ± 0.4) × 103 M− 1 s− 1 (5 mM phosphate buffer, pH 7, 50 mM KCl). A comparative analysis with Cytc6 and PC demonstrates that CytcM functions as electron donor to CuA as efficiently as Cytc6 but more efficient than PC. Furthermore, we demonstrate the association of CytcM with the cytoplasmic and thylakoid membrane fractions by immunobloting and discuss the potential role of CytcM as electron donor for COX under stress conditions.  相似文献   

19.
2-Cys peroxiredoxins (Prxs) play important roles in the antioxidative defense systems of plant chloroplasts. In order to determine the interaction partner for these proteins in Arabidopsis, we used a yeast two-hybrid screening procedure with a C175S-mutant of Arabidopsis 2-Cys Prx-A as bait. A cDNA encoding an NADPH-dependent thioredoxin reductase (NTR) isotype C was identified and designated ANTR-C. We demonstrated that this protein effected efficient transfer of electrons from NADPH to the 2-Cys Prxs of chloroplasts. Interaction between 2-Cys Prx-A and ANTR-C was confirmed by a pull-down experiment. ANTR-C contained N-terminal TR and C-terminal Trx domains. It exhibited both TR and Trx activities and co-localized with 2-Cys Prx-A in chloroplasts. These results suggest that ANTR-C functions as an electron donor for plastidial 2-Cys Prxs and represents the NADPH-dependent TR/Trx system in chloroplasts.  相似文献   

20.
Dilatometry is a sensitive technique for measuring volume changes occurring during a chemical reaction. We applied it to the reduction-oxidation cycle of cytochrome c oxidase, and to the binding of cytochrome c to the oxidase. We measured the volume changes that occur during the interconversion of oxidase intermediates. The numerical values of these volume changes have allowed the construction of a thermodynamic cycle that includes many of the redox intermediates. The system volume for each of the intermediates is different. We suggest that these differences arise by two mechanisms that are not mutually exclusive: intermediates in the catalytic cycle could be hydrated to different extents, and/or small voids in the protein could open and close. Based on our experience with osmotic stress, we believe that at least a portion of the volume changes represent the obligatory movement of solvent into and out of the oxidase during the combined electron and proton transfer process. The volume changes associated with the binding of cytochrome c to cytochrome c oxidase have been studied as a function of the redox state of the two proteins. The volume changes determined by dilatometry are large and negative. The data indicate quite clearly that there are structural alterations in the two proteins that occur on complex formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号