首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fusion of chick erythrocytes with human primary fibroblasts results in the formation of heterokaryons in which the inactive chick nuclei become reactivated. The expression of chick DNA repair functions was investigated by the analysis of the DNA repair capacity after exposure to ultraviolet (UV) irradiation of such heterokaryons obtained after fusion of chick erythrocytes with normal human or xeroderma pigmentosum (XP) cells of complementation groups A, B, C and D. Unscheduled DNA synthesis (UDS) in normal human nuclei in these heterokaryons is suppressed during the first 2–4 days after fusion. The extent and duration of this suppression is positively correlated with the number of chick nuclei in the heterokaryons. Suppression is absent in heterokaryons obtained after fusion of chicken embryonic fibroblasts with XP cells (complementation group A and C).Restoration of DNA repair synthesis is found after fusion in XP nuclei of all complementation groups studied. It occurs rapidly in XP group A nuclei, starting one day after fusion and reaching near normal human levels after 5–8 days. In nuclei of the B, C and D group increased levels of UDS are found 5 days after fusion. At 8 days after fusion the UDS level is about 50% of that found in normal human nuclei. The pattern of UDS observed in the chick nuclei parallels that of the human counterpart in the fusion. A fast complementation pattern is also observed in chick fibroblast-XP group A heterokaryons resulting within 24 h in a UDS level comparable with that in chick fibroblast-normal human heterokaryons. In heterokaryons obtained after fusion of chick fibroblasts with XP group C cells UDS remains at the level of chick cells. These data suggest that reactivation of chick erythrocyte nuclei results in expression of repair functions which are able to complement the defects in the XP complementation groups A, B, C and D.  相似文献   

2.
Postreplicative, "senescent" human fibroblasts were fused to HeLa or to SV-40 transformed human fibroblasts with Sendai virus. DNA synthesis was reinitiated in senescent nuclei in a high proportion of the heterodikaryons. The [3H]thymidine labeling index of senescent fibroblast nuclei in heteropolykaryons was a function of the ratio of HeLa to senescent nuclei.  相似文献   

3.
Cultured fibroblasts of patients with the DNA repair syndrome xeroderma pigmentosum (XP) were injected with crude cell extracts from various human cells. Injected fibroblasts were then assayed for unscheduled DNA synthesis (UDS) to see whether the injected extract could complement their deficiency in the removal of u.v.-induced thymidine dimers from their DNA. Microinjection of extracts from repair-proficient cells (such as HeLa, placenta) and from cells belonging to XP complementation group C resulted in a temporary correction of the DNA repair defect in XP-A cells but not in cells from complementation groups C, D or F. Extracts prepared from XP-A cells were unable to correct the XP-A repair defect. The UDS of phenotypically corrected XP-A cells is u.v.-specific and can reach the level of normal cells. The XP-A correcting factor was found to be sensitive to the action of proteinase K, suggesting that it is a protein. It is present in normal cells in high amounts, it is stable on storage and can still be detected in the injected cells 8 h after injection. The microinjection assay described in this paper provides a useful tool for the purification of the XP-A (and possibly other) factor(s) involved in DNA repair.  相似文献   

4.
Ultraviolet light (UV light) induces helix distorting DNA lesions that pose a block to replicative DNA polymerases. Recovery from this replication arrest is reportedly impaired in nucleotide excision repair (NER)-deficient xeroderma pigmentosum (XP) fibroblasts and primary fibroblasts lacking functional p53. These independent observations suggested that the involvement of p53 in the recovery from UV-induced replication arrest was related to its role in regulating the global genomic subpathway of NER (GG-NER). Using primary human fibroblasts, we confirm that the recovery from UV-induced replication arrest is impaired in cells lacking functional p53 and in primary XP fibroblasts derived from complementation groups A or C (XP-A and XP-C) that are defective in GG-NER. Surprisingly, DNA synthesis recovered normally in GG-NER-deficient XP complementation group E (XP-E) cells that carry mutations in the p53 regulated DNA repair gene DDB2 and are specifically defective in the repair of cyclobutane pyrimidine dimers (CPD) but not pyrimidine (6-4) pyrimidone photoproducts. Disruption of p53 in these XP-E fibroblasts prevented the recovery from UV-induced replication arrest. Therefore, the roles of p53 and GG-NER in the recovery from UV-induced replication are separable and DDB2-independent. These results further indicate that primary human fibroblasts expressing functional p53 efficiently replicate DNA containing CPD whereas p53-deficient cells do not, consistent with a role for p53 in permitting translesion DNA synthesis of these DNA lesions.  相似文献   

5.
Cell-cycle defect of DNA repair in progeria skin fibroblasts   总被引:1,自引:0,他引:1  
We examined the temporal regulation of DNA repair during synchronous cell proliferation in normal and progeroid human fibroblasts. Ultraviolet light-induced (254 nm, 20 J/m2) unscheduled DNA synthesis was measured at 4-h intervals after serum stimulation, for up to 32 h. Normal cells regulated DNA repair in a defined temporal sequence, showing a peak in the induction of DNA repair just before DNA synthesis. Progeroid skin fibroblasts failed to show an increase in nucleotide excision repair before scheduled DNA synthesis, but the background level of DNA repair was not significantly different from that in controls. Regulation of repair in progeroid human fibroblasts appeared similar, but not identical to that previously reported by Gupta and Sirover (1984b) for xeroderma pigmentosum complementation group C. Our results suggest that patients with Hutchinson-Gilford progeria may have a defect in DNA repair; the results offer nominal evidence that the average level of UV-induced DNA is decreased, and that individuals with this disease lack both the normal enhancement of DNA repair before scheduled DNA synthesis and the temporal control of DNA repair.  相似文献   

6.
Patients with Xeroderma pigmentosum and defective DNA excision repair can be distinguished as a rapid (r-XP) and slow (s-XP) complementing variety. When fused with normal cells, fibroblasts from the r-XP are complemented rapidly and in the absence of protein synthesis while those from the s-XP are complemented slowly by a process partly, but not entirely, dependent on protein synthesis. Heterokaryons with different ratios of r-XP to s-XP nuclei (i.e. 1:1-5 and 1-5:1) and control heterokaryons containing one normal and 1-5 r- or s-XP nuclei show that if cell fusion and incubation is conducted in medium preventing protein synthesis, the rXP cells do not complement the s-XP partner at all and, conversely, that the latter is not as effective as normal cells at complementing the rXP partner. On the contrary, if protein synthesis is permitted, the 2 types of XP cells complement each other in a gene dose-dependent manner and to an extent similar to that observed in the control heterokaryons. These findings indicate that the r- and s-XP varieties are caused by mutations at different loci and suggest that the products of these loci interact to produce a functional unit which is present in normal control cells but absent in the XP strains. The relationship between the complementation groups described here and those already reported in the literature being investigated.  相似文献   

7.
We have established viral-transformed, apparently permanent (immortalized) cell lines from diploid fibroblasts representative of normal and xeroderma pigmentosum (XP) A, G and variant individuals. The XP-G and XP-variant cells represent complementation groups not previously available as permanent lines. All the new permanent cell lines exhibit SV40 T-antigen expression. They are also aneuploid and have growth characteristics typical of viral transformants. They have retained the phenotypes of UV sensitivity, reduced repair synthesis or defective 'postreplication repair' appropriate to the XP complementation group they represent. Additionally, the new cell lines are all transfectable with the selectable plasmid pRSVneo. The XP-G and XP-variant cell lines show enhanced transfection with UV-irradiated plasmid DNA; a phenomenon previously reported for normal immortalized cells and for immortalized cells from the A and F complementation groups of XP.  相似文献   

8.
The cybridization technique was used to study the role of cytoplasmic and nuclear factors in complementation of the repair defects in xeroderma pigmentosum (XP) cells. Cybrids were prepared by fusion of UV-exposed XP cells with cytoplasts derived from normal human or complementing XP cells. Phenotypic correction of the DNA repair defect measured by unscheduled DNA synthesis (UDS) occurred in these cybrids. The results show that the correcting factors are present in the cytoplasts and can move into the nucleus of the UV-exposed XP cell almost immediately after fusion. The defective repair in the nuclei of XP complementation group A cell strains is corrected with fast kinetics reaching normal UDS levels within 2 h after fusion. In the A-group cybrids the correcting activity decreased with a half-time of about 12 h. Correction of the XP group C defect occurred at a much slower rate, indicating that different factors are involved in the correction of the XP-A and XP-C defects.  相似文献   

9.
《The Journal of cell biology》1984,99(4):1275-1281
The regulation of DNA repair during serum stimulation of quiescent cells was examined in normal human cells, in fibroblasts from three xeroderma pigmentosum complementation groups (A, C, and D), in xeroderma pigmentosum variant cells, and in ataxia telangiectasia cells. The regulation of nucleotide excision repair was examined by exposing cells to ultraviolet irradiation at discrete intervals after cell stimulation. Similarly, base excision repair was quantitated after exposure to methylmethane sulfonate. WI-38 normal human diploid fibroblasts, xeroderma pigmentosum variant cells, as well as ataxia telangiectasia cells enhanced their capacity for both nucleotide excision repair and for base excision repair prior to their enhancement of DNA synthesis. Further, in each cell strain, the base excision repair enzyme uracil DNA glycosylase was increased prior to the induction of DNA polymerase using the identical cells to quantitate each activity. In contrast, each of the three xeroderma complementation groups that were examined failed to increase their capacity for nucleotide excision repair above basal levels at any interval examined. This result was observed using either unscheduled DNA synthesis in the presence of 10 mM hydroxyurea or using repair replication in the absence of hydroxyurea to quantitate DNA repair. However, each of the three complementation groups normally regulated the enhancement of base excision repair after methylmethane sulfonate exposure and each induced the uracil DNA glycosylase prior to DNA synthesis. These results suggest that there may be a relationship between the sensitivity of xeroderma pigmentosum cells from each complementation group to specific DNA damaging agents and their inability to regulate nucleotide excision repair during cell stimulation.  相似文献   

10.
11.
Fibroblasts from patients with Fanconi anemia (FA) display genomic instability, hypersensitivity to DNA cross-linking agents, and deficient DNA end joining. Fibroblasts from two FA patients of unidentified complementation group also had significantly increased cellular homologous recombination (HR) activity. Results described herein show that HR activity levels in patient-derived FA fibroblasts of groups A, C, and G were 10-fold greater than those seen in normal fibroblasts. In contrast, HR activity in group D2 fibroblasts was identical to that in normal cells. Western blot analysis revealed that the RAD51 protein was elevated 10-fold above normal levels in group A, C, and G fibroblasts, but was not altered in group D2 fibroblasts. HR activity levels in these former cells could be restored to near-normal levels by electroporation with anti-RAD51 antibody, whereas similar treatment of normal and complementation group D2 fibroblasts had no effect. These findings are consistent with a model in which FA proteins function to coordinate DNA double-strand break repair activity by regulating both recombinational and non-recombinational DNA repair. Interestingly, whereas positive regulation of DNA end joining requires the combined presence of all FA proteins thus far tested, suppression of HR, which is minimally dependent on the FANCA, FANCC, and FANCG proteins, does not require FANCD2.  相似文献   

12.
DNA repair synthesis can be specifically measured in osmotically opened, confluent cultured human fibroblasts after exposure to DNA damaging agents such that both induction and mediation of DNA repair synthesis can take place in this cell-free system. Alternatively, by utilizing osmotically shocked, log phase cells and altering the DNA precursors, pH and ionic strength, replicative DNA synthesis can be specifically monitored. Autoradiographic studies show that virtually all of the nuclei from the lysates of the confluent, UV-iradiated cells are lightly labeled in the fashion characteristic of DNA repair. By contrast, only a fraction of nuclei is labeled in a population of unperturbed, opened log phase cells and the labeling is heavy and characteristic of replicative synthesis. Furthermore, equilibrium density gradient sedimentation shows that DNA synthesis in lysates of log-phase cells is semiconservative, whereas that with UV-irradiated cells is repair synthesis. This open cell system has been used to study the enzymology of DNA repair. Thus, dideoxythymidine triphosphate, a specific inhibitor of DNA polymerases beta and gamma, does not inhibit either replicative or repair synthesis. By contrast, aphidicolin, a specific inhibitor of DNA polymerase alpha, inhibits DNA repair and replicative synthesis in both intact and permeabilized cells. Finally, phage T4 UV-exonuclease stimulates repair synthesis, but only when phage T4 UV-endonuclease is also added to the UV-irradiated nuclei.  相似文献   

13.
Xeroderma pigmentosum (XP) is characterised by defects in nucleotide excision repair, ultraviolet (UV) radiation sensitivity and increased skin carcinoma. Compared to other complementation groups, XP-F patients show relatively mild cutaneous symptoms. DNA interstrand cross-linking agents are a highly cytotoxic class of DNA damage induced by common cancer chemotherapeutics such as cisplatin and nitrogen mustards. Although the XPF-ERCC1 structure-specific endonuclease is required for the repair of ICLs cellular sensitivity of primary human XP-F cells has not been established. In clonogenic survival assays, primary fibroblasts from XP-F patients were moderately sensitive to both UVC and HN2 compared to normal cells (2- to 3-fold and 3- to 5-fold, respectively). XP-A fibroblasts were considerably more sensitive to UVC (10- to 12-fold) but not sensitive to HN2. The sensitivity of XP-F fibroblasts to HN2 correlated with the defective incision or 'unhooking' step of ICL repair. Using the comet assay, XP-F cells exhibited only 20% residual unhooking activity over 24 h. Over the same time, normal and XP-A cells unhooked greater than 95% and 62% of ICLs, respectively. After HN2 treatment, ICL-associated DNA double-strand breaks (DSBs) are detected by pulse field gel electrophoresis in dividing cells. Induction and repair of DNA DSBs was normal in XP-F fibroblasts. These findings demonstrate that in primary human fibroblasts, XPF is required for the unhooking of ICLs and not for the induction or repair of ICL-associated DNA DSBs induced by HN2. In terms of cancer chemotherapy, people with mild DNA repair defects affecting ICL repair may be more prevalent in the general population than expected. Since cellular sensitivity of primary human fibroblasts usually reflects clinical sensitivity such patients with cancer would be at risk of increased toxicity.  相似文献   

14.
The distribution of ultraviolet-induced DNA repair patches in the genome of xeroderma pigmentosum cells of complementation group C was investigated by determining the molecular weight distribution of repair labeled DNA and prelabeled DNA in alkaline sucrose gradients after treatment with the dimerspecific endonuclease V of bacteriophage T4. The results were consistent with the data reported by Mansbridge and Hanawalt (1983) and suggest that DNA-repair synthesis in xeroderma pigmentosum cells of complementation group C occurs in localized regions of the genome. Analysis of the spatial distribution of ultraviolet-induced repair patches in DNA loops attached to the nuclear matrix revealed that in xeroderma pigmentosum cells of complementation group C repair patches are preferentially situated near the attachment sites of DNA loops at the nuclear matrix. In normal human fibroblasts we observed no enrichment of repair-labeled DNA at the nuclear matrix and repair patches appeared to be distributed randomly along the DNA loops. The enrichment of repair-labeled DNA at the nuclear matrix in xeroderma pigmentosum cells of complementation group C may indicate that the residual DNA-repair synthesis in these cells occurs preferentially in transcribing regions of the genome.  相似文献   

15.
DNA repair after UV exposure was studied in multinucleate cells, obtained after fusion of excision-defective and variant xeroderma pigmentosum fibroblasts. Optimal fusion conditions were determined, facilitating the measurement of DNA replication in heterokaryons. In unirradiated multikaryons, entry into the S phase was depressed, when compared with unfused cells. The extent of the depression of S phase entry was dependent on the fusion conditions. In heterokaryons obtained after fusion of XP variant (6 different strains) with excision-defective XP (three cell strains from complementation groups A, C and D) both unscheduled DNA synthesis and postreplication repair after UV irradiation were restored to normal levels. In contrast, complementation was not observed after pairwise fusion of the XP variant cell strains. These results suggest that the XP variants comprise a single complementation group, different from complementation groups A, C and D.  相似文献   

16.
17.
UV survival curves of adenovirus 2 using fused, complementing xeroderma pigmentosum (XP) fibroblast strains as virus hosts showed a component with an inactivation slope identical to that given by normal cells. This component was not observed when the fibroblasts were not fused or when fusion involved strains in the same complementation group. Extrapolation of this component indicated that at zero dose 3% of the viral plaque-forming units had infected cells capable of normal repair. These results suggest that 3% of the cells were complementing heterokaryons, a value similar to that actually observed by autoradiographic analysis of UV-induced unscheduled DNA synthesis. Thus, heterokaryons formed from XP fibroblasts belonging to different complementation groups are as capable of restoring biological activity to UV-damaged adenovirus 2 as are normal cells.  相似文献   

18.
《Mutation Research Letters》1995,346(2):107-114
The repair of X-ray-induced DNA damage during G2 cell-cycle phase has been examined in lines of skin fibroblasts from three patients with trichothiodystrophy (TTD), one with apparently normal and two with defective nucleotide excision repair (NER). These responses are compared with those of five lines from clinically normal controls, lines from xeroderma pigmentosum (XP), Cockayne syndrome (CS), Down syndrome (DS), and ataxia telangiectasia (AT) patients. Chromosomal DNA repair was measured as the chromatid aberration frequency (CAF) or total number of chromatid breaks and long gaps per 100 metaphase cells, determined 0.5–1.5 h after X-irradiation (53 rad). Chromatid breaks and gaps (as defined herein) represent unrepaired DNA strand breaks. Only one of the TTD lines, TTD 1BR, showed an abnormally high CAF. This line was shown subsequently to be of a different complementation group, representing a new nucleotide excision repair gene. An abnormally high CAF was also observed, as reported previously, in XP-C, AT and DS but not in CS skin fibroblasts. In addition, cell lines were examined for DNA incision activity by an indirect method in which chromatid aberrations were enumerated with or without ara-C, an inhibitor of repair synthesis, added after X-irradiation. All TTD lines had abnormally low incision activity.  相似文献   

19.
Crude extracts from human cells were microinjected into the cytoplasm of cultured fibroblasts from 9 excision-deficient xeroderma pigmentosum (XP) complementation groups. The level of UV-induced unscheduled DNA synthesis (UDS) was measured to determine the effect of the extract on the repair capacity of the injected cells. With a sensitive UDS assay procedure a (transient) increase in UV-induced UDS level was found in fibroblasts from all complementation groups after injection of extracts from repair-proficient (HeLa) or complementing XP cells (except in the case of XP-G), but not after introduction of extracts from cells belonging to the same complementation group. This indicates that the phenotypic correction is exerted by complementation-group-specific factors in the extract, a conclusion that is in agreement with the observation that different levels of correction are found for different complementation groups. The XP-G-correcting factor was shown to be sensitive to proteolytic degradation, suggesting that it is a protein like the XP-A factor.  相似文献   

20.
We have identified a nuclear factor that binds to double-stranded DNA ends, independently of the structure of the ends. It had equivalent affinities for DNA ends created by sonication or by restriction enzymes leaving 5', 3', or blunt ends but had no detectable affinity for single-stranded DNA ends. Since X rays induce DNA double-strand breaks, extracts from several complementation groups of X-ray-sensitive mammalian cells were tested for this DNA end-binding (DEB) activity. DEB activity was deficient in three independently derived cell lines from complementation group 5. Furthermore, when the cell lines reverted to X-ray resistance, expression of the DEB factor was restored to normal levels. Previous studies had shown that group 5 cells are defective for both double-strand break repair and V(D)J recombination. The residual V(D)J recombination activity in these cells produces abnormally large deletions at the sites of DNA joining (F. Pergola, M. Z. Zdzienicka, and M. R. Lieber, Mol. Cell. Biol. 13:3464-3471, 1993, and G. Taccioli, G. Rathbun, E. Oltz, T. Stamato, P. Jeggo, and F. Alt, Science 260:207-210, 1993), consistent with deficiency of a factor that protects DNA ends from degradation. Therefore, DEB factor may be involved in a biochemical pathway common to both double-strand break repair and V(D)J recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号