首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
To evaluate differences among poplar clones of various ploidies, 12 hybrid poplar clones (P. simonii × P. nigra) × (P. nigra × P. simonii) with different ploidies were used to study phenotypic variation in growth traits and photosynthetic characteristics. Analysis of variance showed remarkable differences for each of the investigated traits among these clones (P < 0.01). Coefficients of phenotypic variation (PCV) ranged from 2.38% to 56.71%, and repeatability ranged from 0.656 to 0.987. The Pn (photosynthetic rate) photosynthetic photon flux density (PPFD) curves of the 12 clones were S-shaped, but the Pn-ambient CO2 (Ca) curves were shaped like an inverted “V”. The stomatal conductance (Gs)-PPFD and transpiration rate (Tr)-PPFD curves had an upward tendency; however, with increasing PFFD, the intercellular CO2 concentration (Ci)-PPFD curves had a downward tendency in all of the clones. The Pn-PPFD and Pn-Ca curves followed the pattern of a quadratic equation. The average light saturation point and light compensation point of the triploid clones were the highest and lowest, respectively, among the three types of clones. For Pn-Ca curves, diploid clones had a higher average CO2 saturation point and average CO2 compensation point compared with triploid and tetraploid clones. Correlation analyses indicated that all investigated traits were strongly correlated with each other. In future studies, molecular methods should be used to analyze poplar clones of different ploidies to improve our understanding of the growth and development mechanisms of polyploidy.  相似文献   

3.
The apple (Malus?×?domestica Borkh.) is one of the commercially important fruit crops in the worldwide. The apple has a relatively long juvenile period (up to 4?years) and a long reproductive period between the flower initiation and the mature fruit (14?C16?months), which prevent the fruit breeding. Therefore, the understanding of the flowering system is important to improve breeding efficiency in the apple. In this study, to examine the temporal and spatial expression patterns of the floral genes, MdTFL1, MdAP1 (MdMASD5), AFL2, and MdFT, we conducted in situ hybridization analysis in the apple shoot apex. In vegetative phase, MdTFL1 was expressed on the rib meristem zone. When vegetative meristem began converting into inflorescence meristem, the expression level of MdTFL1 was drastically decreased. At the early stage of inflorescence meristem, the expression levels of AFL2, MdFT, and MdAP1 were up-regulated in the leaf primordia and the upper region of cell layers on the shoot apex. In late stage, the expression levels of AFL2 and MdAP1 were up-regulated in the young floral primordia. At a more advanced stage, high expression of MdAP1 was observed in the inflorescence primordium through the inner layer of sepal primordia and the outer layer of receptacle primordia and floral axis. Our results suggest that AFL2, MdFT, and MdAP1 affect to convert from the vegetative meristem into the inflorescence meristem after the decline of MdTFL1 expression. After that, AFL2 and MdAP1 promote the formation of the floral primordia and floral organs.  相似文献   

4.
MicroRNAs (miRNAs) are small non-coding RNAs, which silence target mRNA via cleavage or translational inhibition to function in regulating gene expression. MiRNAs act as important regulators of plant development and stress response. For understanding the role of miRNAs responsive to apple ring rot stress, we identified disease-responsive miRNAs using high-throughput sequencing in Malus × domestica Borkh.. Four small RNA libraries were constructed from two control strains in M. domestica, crabapple (CKHu) and Fuji Naga-fu No. 6 (CKFu), and two disease stress strains, crabapple (DSHu) and Fuji Naga-fu No. 6 (DSFu). A total of 59 miRNA families were identified and five miRNAs might be responsive to apple ring rot infection and validated via qRT-PCR. Furthermore, we predicted 76 target genes which were regulated by conserved miRNAs potentially. Our study demonstrated that miRNAs was responsive to apple ring rot infection and may have important implications on apple disease resistance.  相似文献   

5.
In Arabidopsis, AP1 is a floral meristem identity gene and plays an important role in floral organ development. In this study, PsnAP1-1 and PsnAP1-2 were isolated from the male reproductive buds of poplar (Populus simonii × P. nigra), which are the orthologs of AP1 in Arabidopsis, by sequence analysis. Northern blot and qRT-PCR analysis showed that PsnAP1-1 and PsnAP1-2 exhibited high expression level in early inflorescence development of poplar. Subcellular localization showed the PsnAP1-1 and PsnAP1-2 proteins are localized in the nucleus. Overexpression of PsnAP1-1 and PsnAP1-2 in tobacco under the control of a CaMV 35S promoter significantly enhanced early flowering. These transgenic plants also showed much earlier stem initiation and higher rates of photosynthesis than did wild-type tobacco. qRT-PCR analysis further indicated that overexpression of PsnAP1-1 and PsnAP1-2 resulted in up-regulation of genes related to flowering, such as NtMADS4, NtMADS5 and NtMADS11. Overexpression of PsnAP1-1 and PsnAP1-2 in Arabidopsis also induced early flowering, but did not complement the ap1-10 floral morphology to any noticeable extent. This study indicates that PsnAP1-1 and PsnAP1-2 play a role in floral transition of poplar.  相似文献   

6.
Late embryogenesis abundant (LEA) genes were confirmed to confer resistance to drought and water deficiency. An LEA gene from Tamarix androssowii (named TaLEA) was transformed into Xiaohei poplar ( Populus simonii × P. nigra) via Agrobacterium . Twenty-five independent transgenic lines were obtained that were resistant to kanamycin, and 11 transgenic lines were randomly selected for further analysis. The polymerase chain reaction (PCR) and ribonucleic acid (RNA) gel blot indicated that the TaLEA gene had been integrated into the poplar genome. The height growth rate, malondialdehyde (MDA) content, relative electrolyte leakage and damages due to salt or drought to transgenic and non-transgenic plants were compared under salt and drought stress conditions. The results showed that the constitutive expression of the TaLEA gene in transgenic poplars could induce an increase in height growth rate and a decrease in number and severity of wilted leaves under the salt and drought stresses. The MDA content and relative electrolyte leakage in transgenic lines under salt and drought stresses were significantly lower compared to those in non-transgenic plants, indicating that the TaLEA gene may enhance salt and drought tolerance by protecting cell membranes from damage. Moreover, amongst the lines analyzed for stress tolerance, the transgenic line 11 (T11) showed the highest tolerance levels under both salinity and drought stress conditions. These results indicated that the TaLEA gene could be a salt and drought tolerance candidate gene and could confer a broad spectrum of tolerance under abiotic stresses in poplars.  相似文献   

7.
Many economically important species of Populus, especially those in sections Aigeiros and Tacamahaca, remain recalcitrant to genetic transformation. In this study, a simple and reliable protocol was developed for the efficient Agrobacterium-mediated transformation of a difficult-to-transform, but commercially viable, hybrid poplar Populus nigra L. × P. maximowiczii A. Henry (NM6). A plant transformation vector designed to express the β-glucuronidase (GUS) gene was used to detect transformation events at early stages of plant regeneration and to optimize parameters affecting poplar transformation. The use of zeatin riboside in shoot-induction medium, regeneration of shoots via indirect organogenesis, and early selection pressure were the major modifications that drastically improved the efficiency of poplar transformation and minimized the number of untransformed regenerants. Transgenic shoots were routinely obtained 4–10 weeks after co-culture with A. tumefaciens, with a greater than 90% rate of plant recovery. Stable transgene integration, ranging from a single insertion to ten copies per genome, was confirmed by Southern blot analysis. The mean transformation frequency was 36.3% and about two-thirds of the lines had 1–2 transgene copies. Among the explants, petioles and leaves had a higher transformation frequency than did stem segments. Growth characteristics and the morphology of transgenic poplar plants were identical to untransformed controls. These findings will accelerate the development of P. nigra × P. maximowiczii plants with novel traits, and may also be useful to improve transformation procedures for other Populus species.  相似文献   

8.
9.
10.

Key Message

The critical level for SO 2 susceptibility of Populus × canescens is approximately 1.2 μL L ?1 SO 2 . Both sulfite oxidation and sulfite reduction and assimilation contribute to SO 2 detoxification.

Abstract

In the present study, uptake, susceptibility and metabolism of SO2 were analyzed in the deciduous tree species poplar (Populus × canescens). A particular focus was on the significance of sulfite oxidase (SO) for sulfite detoxification, as SO has been characterized as a safety valve for SO2 detoxification in herbaceous plants. For this purpose, poplar plants were exposed to different levels of SO2 (0.65, 0.8, 1.0, 1.2 μL L?1) and were characterized by visible injuries and at the physiological level. Gas exchange parameters (stomatal conductance for water vapor, CO2 assimilation, SO2 uptake) of the shoots were compared with metabolite levels (sulfate, thiols) and enzyme activities [SO, adenosine 5′-phosphosulfate reductase (APR)] in expanding leaves (80–90 % expanded). The critical dosage of SO2 that confers injury to the leaves was 1.2 μL L?1 SO2. The observed increase in sulfur containing compounds (sulfate and thiols) in the expanding leaves strongly correlated with total SO2 uptake of the plant shoot, whereas SO2 uptake rate was strongly correlated with stomatal conductance for water vapor. Furthermore, exposure to high concentration of SO2 revealed channeling of sulfite through assimilatory sulfate reduction that contributes in addition to SO-mediated sulfite oxidation to sulfite detoxification in expanding leaves of this woody plant species.  相似文献   

11.
12.
13.
Su X  Chu Y  Li H  Hou Y  Zhang B  Huang Q  Hu Z  Huang R  Tian Y 《PloS one》2011,6(9):e24614
Commercial and non-commercial plants face a variety of environmental stressors that often cannot be controlled. In this study, transgenic hybrid poplar (Populus × euramericana 'Guariento') harboring five effector genes (vgb, SacB, JERF36, BtCry3A and OC-I) were subjected to drought, salinity, waterlogging and insect stressors in greenhouse or laboratory conditions. Field trials were also conducted to investigate long-term effects of transgenic trees on insects and salt tolerance in the transformants. In greenhouse studies, two transgenic lines D5-20 and D5-21 showed improved growth, as evidenced by greater height and basal diameter increments and total biomass relative to the control plants after drought or salt stress treatments. The improved tolerance to drought and salt was primarily attributed to greater instantaneous water use efficiency (WUEi) in the transgenic trees. The chlorophyll concentrations tended to be higher in the transgenic lines under drought or saline conditions. Transformed trees in drought conditions accumulated more fructan and proline and had increased Fv/Fm ratios (maximum quantum yield of photosystem II) under waterlogging stress. Insect-feeding assays in the laboratory revealed a higher total mortality rate and lower exuviation index of leaf beetle [Plagiodera versicolora (Laicharting)] larvae fed with D5-21 leaves, suggesting enhanced insect resistance in the transgenic poplar. In field trials, the dominance of targeted insects on 2-year-old D5-21 transgenic trees was substantially lower than that of the controls, indicating enhanced resistance to Coleoptera. The average height and DBH (diameter at breast height) of 2.5-year-old transgenic trees growing in naturally saline soil were 3.80% and 4.12% greater than those of the control trees, but these increases were not significant. These results suggested that multiple stress-resistance properties in important crop tree species could be simultaneously improved, although additional research is needed to fully understand the relationships between the altered phenotypes and the function of each transgene in multigene transformants.  相似文献   

14.
15.
Lei  Xiaojin  Liu  Zhongyuan  Xie  Qingjun  Fang  Jiaru  Wang  Chunyao  Li  Jinghang  Wang  Chao  Gao  Caiqiu 《Plant molecular biology》2022,109(6):689-702
Plant Molecular Biology - Construction of ML-hGRN for the salt pathway in Populus davidiana?×?P. bolleana. Construction of ML-hGRN for the lignocellulosic pathway in Populus...  相似文献   

16.
17.
18.
The formation of tracheary elements was induced in calli derived from petioles of hybrid poplar (Populus sieboldii × P. grandidentata) after 10 days of culture on medium that lacked auxin but contained 1 μM brassinolide. Some differentiated cells formed broad regions of cell walls and bordered pits, which are typical features of tracheary elements of secondary xylem. Other differentiated cells resembled tracheary elements of primary xylem, with spiral or reticulate thickening of cell walls. The tracheary elements that developed in calli were formed within cell clusters. This induction system provides a new model for studies of the mechanism of differentiation of secondary xylem cells in vitro.  相似文献   

19.
Recent advances in molecular techniques have allowed gene expression in euryhaline animals to be quantified during salinity transfers. As these investigations transition from studying single genes to utilizing genomics-based methodologies, it is an appropriate time to summarize single gene studies. Therefore, a meta-analysis was performed on 59 published studies that used quantitative polymerase chain reaction (qPCR) to examine expression of osmoregulatory genes (the Na+/K+–ATPase, NKA; the Na+/K+/2Cl? cotransporter, NKCC; carbonic anhydrase, CA; the cystic fibrosis transmembrane regulator, CFTR; and the H+–ATPase, HAT) in response to salinity transfer. Based on 887 calculated effect sizes, NKA, NKCC, CA, and HAT are up-regulated after salinity transfer, while surprisingly, CFTR is unchanged. Meta-analysis also identified influential factors contributing to these changes. For example, expression was highest: 1) during transfers from higher to lower salinities comprising a physiological transition from osmoconformity to osmoregulation, 2) 1–3 days following transfer, 3) during dissimilar transfers, and 4) in crustaceans rather than teleosts. Methodological characteristics (e.g., types of controls) were not important. Experiments lacking in the current literature were also identified. Meta-analyses are powerful tools for quantitatively synthesizing a large body of literature, and this report serves as a template for their application in other areas of comparative physiology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号