共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to investigate the aerobic granules cultured under alternating aerobic and anoxic conditions, a sequencing batch reactor (SBR) was operated without the presence of a carrier material. Nitrification and denitrification occurred alternately in the SBR operation, with an increased nitrification efficiency of up to 97% and a high chemical oxygen demand (COD) removal efficiency of up to 95%. It was observed that physical characteristics of granule play an important role in the performance of the SBR process. Light microscopy was used to observe the time dependent development of the granules in the SBR. Based on the microscopic observations, some floc-like sludges remained in the form of a mixture with granules for 30 days of operation. Even though various granule sizes had been formed in the reactor after 50 days, the granule sizes were primarily from 1 +/- 0.35 to 1.3 +/- 0.45 mm, rarely exceeding 2 mm. The granules were analyzed by a combination of microelectrodes and fluorescent in situ hybridization (FISH), which provides more detailed information on what happens inside the granules. Based on their results, ammonia oxidizing bacteria (AOB) existed primarily in the upper and middle layers of the granule. Assuming a first-order reaction for nitrification, most of the nitrification is likely to occur from the surface to 300 microm into the granular thickness. 相似文献
2.
Influence of aeration intensity on mature aerobic granules in sequencing batch reactor 总被引:1,自引:0,他引:1
Aeration intensity is well known as an important factor in the formation of aerobic granules. In this research, two identical lab-scale sequencing batch reactors with aeration intensity of 0.8 (R1) and 0.2 m3/h (R2) were operated to investigate the characteristics and kinetics of matured aerobic granules. Results showed that both aeration intensity conditions induced granulation, but they showed different effects on the characteristics of aerobic granules. Compared with the low aeration intensity (R2), the aerobic granules under the higher aeration intensity (R1) had better physical characteristics and settling ability. However, the observed biomass yield (Y obs) in R1 [0.673 kg mixed liquor volatile suspended solids (MLVSS)/kg chemical oxygen demand (COD)] was lower than R2 (0.749 kg MLVSS/kg COD). In addition, the maximum specific COD removal rates (q max) and apparent half rate constant (K) of mature aerobic granular sludge under the two aeration intensities were at a similar level. Therefore, the matured aerobic granule system does not require to be operated in a higher aeration intensity, which will reduce the energy consumption. 相似文献
3.
4.
Aerobic granules for sulphide and ammonium removal were cultivated in a sequencing batch reactor, and the microbial community of the aerobic granules was investigated by denaturing gradient gel electrophoresis. The loading rate increased from 0.15 to 0.9 kg S2? m?3 d?1, and the removal efficiencies of sulphide, chemical oxygen demand, and NH4 +-N were higher than 99, 80, and 98%, respectively. However, sludge settleability became poorer when the loading rate exceeded 0.3 kg S2? m?3 d?1. The denitrifying bacteria in the aerobic granules were Thauera sp., Pseudomonas alcaligenes, and uncultured planctomycetes, indicating that multiple N-removing processes occurred simultaneously in the aerobic granules. These processes could include nitrification and denitrification, aerobic denitrification, and anaerobic ammonia oxidation. Sludge settleability became poorer because of the overgrowth of uncultured Thiothrix sp. 相似文献
5.
In recent years, the research on aerobic granulation has been intensive. So far, almost all aerobic granules can form only in sequencing batch reactors (SBR), while the reason is not yet understood. This paper attempts to review the factors involved in aerobic granulation in SBR, including substrate composition, organic loading rate, hydrodynamic shear force, feast-famine regime, feeding strategy, dissolved oxygen, reactor configuration, solids retention time, cycle time, settling time and exchange ratio. The major selection pressures responsible for aerobic granulation are identified as the settling time and exchange ratio. A concept of the minimal settling velocity of bioparticles is proposed; and it is quantitatively demonstrated that the effects of settling time and exchange ratio on aerobic granulation in SBR can be interpreted and unified on the basis of this concept very well. It appears that the formation and characteristics of aerobic granules can be manipulated through properly adjusting either the settling time or the exchange ratio in SBR. Consequently, theoretical and experimental evidence point to the fact that aerobic granulation is a selection pressure-driven cell-to-cell immobilization process. 相似文献
6.
Bacterial diversity and function of aerobic granules engineered in a sequencing batch reactor for phenol degradation 总被引:7,自引:0,他引:7
Aerobic granules are self-immobilized aggregates of microorganisms and represent a relatively new form of cell immobilization developed for biological wastewater treatment. In this study, both culture-based and culture-independent techniques were used to investigate the bacterial diversity and function in aerobic phenol- degrading granules cultivated in a sequencing batch reactor. Denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA genes demonstrated a major shift in the microbial community as the seed sludge developed into granules. Culture isolation and DGGE assays confirmed the dominance of beta-Proteobacteria and high-G+C gram-positive bacteria in the phenol-degrading aerobic granules. Of the 10 phenol-degrading bacterial strains isolated from the granules, strains PG-01, PG-02, and PG-08 possessed 16S rRNA gene sequences that matched the partial sequences of dominant bands in the DGGE fingerprint belonging to the aerobic granules. The numerical dominance of strain PG-01 was confirmed by isolation, DGGE, and in situ hybridization with a strain-specific probe, and key physiological traits possessed by PG-01 that allowed it to outcompete and dominate other microorganisms within the granules were then identified. This strain could be regarded as a functionally dominant strain and may have contributed significantly to phenol degradation in the granules. On the other hand, strain PG-08 had low specific growth rate and low phenol degradation ability but showed a high propensity to autoaggregate. By analyzing the roles played by these two isolates within the aerobic granules, a functional model of the microbial community within the aerobic granules was proposed. This model has important implications for rationalizing the engineering of ecological systems. 相似文献
7.
Nitrifying granules cultivation in a sequencing batch reactor at a low organics-to-total nitrogen ratio in wastewater 总被引:4,自引:0,他引:4
It is possible to cultivate aerobic granular sludge at a low organic loading rate and organics-to-total nitrogen (COD/N) ratio
in wastewater in the reactor with typical geometry (height/diameter = 2.1, superficial air velocity = 6 mm/s). The noted nitrification
efficiency was very high (99%). At the highest applied ammonia load (0.3 ± 0.002 mg NH4+–N g total suspended solids (TSS)−1 day−1, COD/N = 1), the dominating oxidized form of nitrogen was nitrite. Despite a constant aeration in the reactor, denitrification
occurred in the structure of granules. Applied molecular techniques allowed the changes in the ammonia-oxidizing bacteria
(AOB) community in granular sludge to be tracked. The major factor influencing AOB number and species composition was ammonia
load. At the ammonia load of 0.3 ± 0.002 mg NH4+–N g TSS−1 day−1, a highly diverse AOB community covering bacteria belonging to both the Nitrosospira and Nitrosomonas genera accounted for ca. 40% of the total bacteria in the biomass. 相似文献
8.
Aerobic granules efficient at degrading methyl tert-butyl ether (MTBE) were successfully developed in a well-mixed sequencing batch reactor (SBR). Treatment efficiency of MTBE in the reactor during the stable operations exceeded 99.8%, and effluent MTBE was consistently below 800 mug/L. The specific MTBE degradation rate was observed to increase with increasing MTBE initial concentrations from 25 to 400 mg/L, peaked at 18.2 mg-MTBE/g-VSS h, and declined with further increases in MTBE concentration as substrate inhibition effects became significant. There was a good fit between these biodegradation data and the Haldane equation (R (2) = 0.976). Microbial community DNA profiling was carried out using denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction amplified 16S rDNA. The aerobic granule was found to contain a wide diversity of microorganisms. More than 70% similarity among the samples in the time period examined indicated a highly stable microbial community as the reactor reached the stable operation. 相似文献
9.
Performances of single-stage and two-stage sequencing batch reactor (SBR) systems were investigated for treating dairy wastewater. A single-stage SBR system was tested with 10,000 mg/l chemical oxygen demand (COD) influent at three hydraulic retention times (HRTs) of 1, 2, and 3 days and 20,000 mg/l COD influent at four HRTs of 1, 2, 3, and 4 days. A 1-day HRT was found sufficient for treating 10,000-mg/l COD wastewater, with the removal efficiency of 80.2% COD, 63.4% total solids, 66.2% volatile solids, 75% total Kjeldahl nitrogen, and 38.3% total nitrogen from the liquid effluent. Two-day HRT was believed sufficient for treating 20,000-mg/l COD dairy wastewater if complete ammonia oxidation is not desired. However, 4-day HRT needs to be used for achieving complete ammonia oxidation. A two-stage system consisting of an SBR and a complete-mix biofilm reactor was capable of achieving complete ammonia oxidation and comparable carbon, solids, and nitrogen removal while using at least 1/3 less HRT as compared to the single SBR system. 相似文献
10.
Biodegradation and kinetics of aerobic granules under high organic loading rates in sequencing batch reactor 总被引:1,自引:0,他引:1
Biodegradation, kinetics, and microbial diversity of aerobic granules were investigated under a high range of organic loading
rate 6.0 to 12.0 kg chemical oxygen demand (COD) m−3 day−1 in a sequencing batch reactor. The selection and enriching of different bacterial species under different organic loading
rates had an important effect on the characteristics and performance of the mature aerobic granules and caused the difference
on granular biodegradation and kinetic behaviors. Good granular characteristics and performance were presented at steady state
under various organic loading rates. Larger and denser aerobic granules were developed and stabilized at relatively higher
organic loading rates with decreased bioactivity in terms of specific oxygen utilization rate and specific growth rate (μ
overall) or solid retention time. The decrease of bioactivity was helpful to maintain granule stability under high organic loading
rates and improve reactor operation. The corresponding biokinetic coefficients of endogenous decay rate (k
d), observed yield (Y
obs), and theoretical yield (Y) were measured and calculated in this study. As the increase of organic loading rate, a decreased net sludge production (Y
obs) is associated with an increased solid retention time, while k
d and Y changed insignificantly and can be regarded as constants under different organic loading rates. 相似文献
11.
Aerobic granular sludge was cultivated in a sequencing batch reactor fed with brewery wastewater. After nine-week operation, stable granules with sizes of 2-7 mm were obtained. With the granulation, the SVI value decreased from 87.5 to 32 mL/g. The granular sludge had an excellent settling ability with the settling velocity over 91 m/h. Aerobic granular sludge exhibited good performance in the organics and nitrogen removal from brewery wastewater. After granulation, high and stable removal efficiencies of 88.7% COD(t), 88.9% NH(4)(+)-N were achieved at the volumetric exchange ratio of 50% and cycle duration of 6h. The average COD(t) and COD(s) of the effluent were 212 and 134 mg/L, respectively, and the average effluent ammonium concentration was less than 14.4 mg/L. Nitrogen was removed due to nitrification and simultaneous denitrification in the inner core of granules. 相似文献
12.
《International biodeterioration & biodegradation》2007,59(1):16-19
In order to improve the water quality in shrimp aquaculture operated under low-salinity conditions, a sequencing batch reactor (SBR) was tested for treatment of the wastewater. This water from the backwash of a single-bead filter from the Waddell Mariculture Center, South Carolina, contained high concentrations of carbon and nitrogen and was successfully treated using the SBR. By operating the reactor sequentially in aerobic, anoxic and aerobic modes, nitrification and denitrification were achieved, as well as removal of carbon. Specifically, the initial chemical oxygen demand (COD) concentration of 1201 mg l−1 was reduced to 32 mg l−1 within 8 days of reactor operation. Ammonia in the sludge was nitrified within 3 days. The denitrification of nitrate was achieved by the anoxic process and total removal of nitrate was observed. 相似文献
13.
AIMS: This paper attempts to develop a kinetic model to describe the growth of aerobic granules developed under different operation conditions. METHODS AND RESULTS: A series of experiments were conducted by using four-column sequencing batch reactors to study the formation of aerobic granules under different conditions, e.g. organic loading rates, hydrodynamic shear forces and substrate N/COD ratios. A simple kinetic model based on the Linear Phenomenological Equation was successfully derived to describe the growth of aerobic granules. It was found that the growth of aerobic granules in terms of equilibrium size and size-dependent growth rate were inversely related to shear force imposed to microbial community, while a high organic loading favoured the growth of aerobic granules, leading to a large size granule. The effect of substrate N/COD ratio on the growth kinetics of aerobic granules was realized through change in microbial populations, and enriched nitrifying population in aerobic granules developed at high substrate N/COD ratio resulted in a low overall growth rate of aerobic granules. CONCLUSIONS: The proposed model can provide good prediction for the growth of aerobic granules indicated by the correlation coefficient >0.95. SIGNIFICANCE AND IMPACT OF THE STUDY: The kinetic model proposed could offer a useful tool for studying the growth kinetics of cell-to-cell immobilization process. The study confirmed that the growth of aerobic granules and biofilms are subject to a similar kinetic pattern. This work would also be helpful for better understanding the mechanism of aerobic granulation. 相似文献
14.
Formation and long-term stability of nitrifying granules in a sequencing batch reactor 总被引:3,自引:0,他引:3
The formation and long-term stability of nitrifying granules in a sequencing batch reactor was investigated in this study. The results showed that nitrifying granules with a size of 240 microm and SVI of 40 ml g(-1) were formed on day 21 at a settling time of 10 min. Maintaining settling time at 15 min from day 57 to 183 did not affect the physical characteristics of sludge and the fraction of suspended floc in the sludge. In addition, nitrifying granules could tolerate the fluctuations of nitrogen loading rate from 0.72 to 1.8 g l(-1)d(-1) during 2 months without the change of physical characteristics. However, it was observed that complete nitrification to nitrate and partial nitrification to nitrite by sludge converted each other corresponding to the change of the influent NH4+-N concentration. Thus, an appropriate method is needed to maintain a stable complete nitrification or partial nitrification under the conditions with changing influent NH4+-N concentrations and nitrogen loading rates. 相似文献
15.
Bioaugmentation treatment for coking wastewater containing pyridine and quinoline in a sequencing batch reactor 总被引:1,自引:0,他引:1
Yaohui Bai Qinghua Sun Cui Zhao Donghui Wen Xiaoyan Tang 《Applied microbiology and biotechnology》2010,87(5):1943-1951
Two pyridine-degrading bacteria and two quinoline-degrading bacteria were introduced for bioaugmentation to treat the coking wastewater. Sequencing batch reactors (SBRs) were used for a comparative study on the treatment efficiency of pyridine, quinoline, and chemical oxygen demand. Results showed that the treatment efficiency with coking-activated sludge plus a mixture of the four degrading bacteria was much better than that ones with coking-activated sludge only or mixed degrading bacteria only. Moreover, a 52-day continuous operation of the bioaugmented and general SBRs was investigated. The bioaugmented SBR showed better treatment efficiency and stronger capacity to treat high pyridine and quinoline shock loading. The general SBR failed to cope with the shock loading, and the biomass of the activated sludge decreased significantly. In order to monitor the microbial ecological variation during the long-term treatment, the bacterial community in both reactors was monitored by the amplicon length heterogeneity polymerase chain reaction technique. The diversity of the bacterial community decreased in both reactors, but the introduced highly efficient bacteria were dominant in the bioaugmented SBR. Our experiment showed clearly that the use of highly efficient bacteria in SBR process could be a feasible method to treat wastewater containing pyridine or/and quinoline. 相似文献
16.
17.
A sequencing batch reactor was employed to treat the acrylic fiber wastewater. The dissolved oxygen and mixed liquor suspended solids were 2–3 and 3,500–4,000 mg/L, respectively. The results showed ammonium oxidizing bacteria (AOB) had superior growth rate at high temperature than nitrite oxidizing bacteria (NOB). Partial nitrification could be obtained with the temperature of 28 °C. When the pH value was 8.5, the nitrite-N accumulation efficiency was 82 %. The combined inhibitions of high pH and free ammonium to NOB devoted to the nitrite-N buildup. Hydraulic retention time (HRT) was a key factor in partial nitrification control, and the optimal HRT was 20 h for nitrite-N buildup in acrylic fiber wastewater treatment. The ammonium oxidation was almost complete and the transformation from nitrite to nitrate could be avoided. AOB and NOB accounted for 2.9 and 4.7 %, respectively, corresponding to the pH of 7.0. When the pH was 8.5, they were 6.7 and 0.9 %, respectively. AOB dominated nitrifying bacteria, and NOB was actually washed out from the system. 相似文献
18.
Ambient temperature treatment of low strength wastewater using anaerobic sequencing batch reactor 总被引:2,自引:0,他引:2
Low strength wastewater having chemical oxygen demands (COD) concentrations of 1000, 800, 600 and 400mg/l were treated at 35, 25, 20 and 15¡C using four anaerobic sequencing batch reactors (ASBRs). Reactor 1 was operated at hydraulic retention time (HRT) of 48h, reactor 2 at 24h HRT, reactor 3 at 16h HRT and reactor 4 at 12h HRT. 80 to 99% soluble COD was removed at the various operational conditions, except during 15¡C treatment of 1000 and 800mg/l COD wastewater at 12h HRT and 1000mg/l COD wastewater at 16h HRT, where excessive loss of biological solids occurred. The ASBR process can be an effective process for the treatment of low concentrated wastewaters which are usually treated aerobically with large amount of sludge production and higher energy expenditures. 相似文献
19.
This study investigated the effects of reduced aeration in famine period on the performance of sequencing batch reactor (SBR) with aerobic granular sludge. Aerobic granules were first cultivated in two SBRs (R1 and R2) with acetate as sole carbon source. From operation day 27, aeration rate in R1 was reduced from 1.66 to 0.55 cm s(-1) from 110 min to the end of each cycle and further reduced from 30 min to the end of each cycle from day 63. R2 as a control was operated with a constant aeration rate of 1.66 cm s(-1) in the whole cycle during the entire experimental period. Results showed that changing trends of SVI, concentration, average size and VSS/SS of biomass with time in R1 and R2 were similar although different aeration modes were adopted. At steady state, SVI of aerobic granules and biomass concentration maintained at about 40 ml g(-1) and 6 g l(-1), respectively. Average size of granules was about 750 microm in R1 while 550 microm in R2. This is the first study to demonstrate that aerobic granular sludge could be stable at reduced aeration rate in famine period during more than 3-month operation. Such an operation strategy with reduced aeration rate will lead to a significant reduction of energy consumption, which makes the aerobic granular sludge technology more competitive over conventional activated sludge process. Furthermore, the stability of aerobic granular system with variable aeration further indicates that the difference of physiology and kinetics of aerobic granule in feast and famine periods results in the different requirements of oxygen and shear stress for the stability of granules, which will deepen the understanding of mechanism of aerobic granulation in sequencing batch reactor. 相似文献