首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Previously, we have reported the role of MAPKs (mitogen-activated protein kinases) under cadmium stress. This work continue to explore the relationship between MAPKs, H2O2, auxin signaling, and OsHMA and OsZIP gene expression in rice (Oryza sativa L.) roots under combined cadmium (Cd) and zinc (Zn) stress. Compared with Cd, Cd+Zn reduced Cd levels but increased Zn accumulation in the roots. Three OsMAPK genes were negatively regulated, while two OsHMA and two OsZIP genes were positively regulated by MAPK pathways under Cd+Zn stress. Transgenic rice expressing DR5-GUS exhibited enhanced GUS activity in H2O2-, PD (MAPKK inhibitor PD98059)-, or (Cd+Zn)-treated roots, which also exhibited increased H2O2 concentrations, whereas GUS staining decreased in roots in response to Cd+Zn+PD, DMTU (N,N′-dimethylthiourea, a H2O2 scavenger), or Cd+Zn+DMTU treatment, with reduced H2O2 levels. GUS levels were consistent with H2O2 levels, suggesting that MAPK pathway-mediated auxin redistribution occurs via H2O2, and H2O2 functions downstream of MAPK but upstream of auxin signaling pathways. Furthermore, MAPK pathways serve specific functions in regulating the expression of some key genes of auxin signaling (OsYUCCA, OsPIN, OsARF, and OsIAA) under Cd+Zn stress. Overall, MAPK cascades function in the integration of metal transport, H2O2 generation, and auxin signaling in rice seedlings grown under Cd+Zn stress.  相似文献   

3.
4.
5.
This study was conducted to determine effects of dietary supplementation with 1 % l-glutamine for 14 days on the abundance of intestinal bacteria and the activation of intestinal innate immunity in mice. The measured variables included (1) the abundance of Bacteroidetes, Firmicutes, Lactobacillus, Streptococcus and Bifidobacterium in the lumen of the small intestine; (2) the expression of toll-like receptors (TLRs), pro-inflammatory cytokines, and antibacterial substances secreted by Paneth cells and goblet cells in the jejunum, ileum and colon; and (3) the activation of TLR4-nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPK), and phosphoinositide-3-kinases (PI3K)/PI3K-protein kinase B (Akt) signaling pathways in the jejunum and ileum. In the jejunum, glutamine supplementation decreased the abundance of Firmicutes, while increased mRNA levels for antibacterial substances in association with the activation of NF-κB and PI3K-Akt pathways. In the ileum, glutamine supplementation induced a shift in the Firmicutes:Bacteroidetes ratio in favor of Bacteroidetes, and enhanced mRNA levels for Tlr4, pro-inflammatory cytokines, and antibacterial substances participating in NF-κB and JNK signaling pathways. These results indicate that the effects of glutamine on the intestine vary with its segments and compartments. Collectively, dietary glutamine supplementation of mice beneficially alters intestinal bacterial community and activates the innate immunity in the small intestine through NF-κB, MAPK and PI3K-Akt signaling pathways.  相似文献   

6.
Interleukin-13 (IL-13) is associated with the production of collagen in airway remodelling of asthma. Yet, the molecular mechanisms underlying IL-13 induction of collagen remain unclear; the aim of this study is to address this issue. IL-13 dose- and time-dependently-induced collagen I production in primary cultured airway fibroblasts; this was accompanied with the STAT6 phosphorylation, and pre-treatment of cells with JAK inhibitor suppressed IL-13-induced collagen I production. Further study indicated that IL-13 stimulated JAK/STAT6-dependent PDGF production and subsequent ERK1/2 MAPK activation in airway fibroblasts, and the presence of either PDGF receptor blocker or MEK inhibitor partially suppressed IL-13-induced collagen I production. Taken together, our study suggests that activation of JAK/STAT6 signal pathway and subsequent PDGF generation and resultant ERK1/2 MAPK activation mediated IL-13-induced collagen I production in airway fibroblasts.  相似文献   

7.
An elevated level of tumor necrosis factor (TNF)-α is implicated in several cardiovascular diseases including heart failure. Numerous reports have demonstrated that TNF-α activates nuclear factor (NF)-kappaB, resulting in the upregulation of several genes that regulate inflammation, proliferation, and apoptosis of cardiomyocytes. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, a major source of reactive oxygen species (ROS), is also activated by TNF-α and plays a crucial role in redox-sensitive signaling pathways. The present study investigated whether NADPH oxidase mediates TNF-α-induced NF-kappaB activation and NF-kappaB-mediated gene expression. Human cardiomyocytes were treated with recombinant TNF-α with or without pretreatment with diphenyleneiodonium (DPI) and apocynin, inhibitors of NADPH oxidase. TNF-α-induced ROS production was measured using 5-(and-6)-chloromethyl-2’, 7’-dichlorodihydrofluorescein diacetate assay. TNF-α-induced NF-kappaB activation was also examined using immunoblot; NF-kappaB binding to its binding motif was determined using a Cignal reporter luciferase assay and an electrophoretic mobility shift assay. TNF-α-induced upregulation of interleukin (IL)-1β and vascular cell adhesion molecule (VCAM)-1 was investigated using real-time PCR and immunoblot. TNF-α-induced ROS production in cardiomyocytes was mediated by NADPH oxidase. Phosphorylation of IKK-α/β and p65, degradation of IkappaBα, binding of NF-kappaB to its binding motif, and upregulation of IL-1β and VCAM-1 induced by TNF-α were significantly attenuated by treatment with DPI and apocynin. Collectively, these findings demonstrate that NADPH oxidase plays a role in regulation of TNF-α-induced NF-kappaB activation and upregulation of proinflammatory cytokines, IL-1β and VCAM-1, in human cardiomyocytes.  相似文献   

8.
N-myc downstream-regulated gene 1 (NDRG1) has been proposed as a tumor suppressor gene in many different types of tumors, but its potential function and corresponding mechanism are not yet fully elucidated. This study aims to detect the possible function of NDRG1 in gastric cancer progression. In this study, 112 paired gastric cancer tissues and corresponding nonmalignant gastric tissues were utilized to identify the differential protein expression of NDRG1 by immunohistochemistry and its clinical significance was analyzed. Furthermore, 49 of 112 paired gastric specimens were used to detect the differential mRNA expression by real-time PCR. The over expression of NDRG1 in human gastric cancer cell line AGS by PcDNA3.1–NDRG1 transfection was utilized to detect the role of NDRG1 in regulating the biological behavior of gastric cancer. NDRG1 expression was significantly decreased in primary gastric cancer tissues, compared with its corresponding nonmalignant gastric tissues (p < 0.05), and its decreased expression was significantly associated with lymph node metastasis (p < 0.01), invasion depth (p < 0.01) and differentiation (p < 0.05). Additionally, the overall survival rate of gastric cancer patients with high expression of NDRG1 was higher than those with low expression during the follow-up period. NDRG1 overexpression suppressed cells proliferation, invasion and induced a G1 cell cycle arrest in gastric cancer. Furthermore, the down-regulation of NDRG1 in gastric cancer metastatic progression was correlated to E-cadherin and MMP-9. Our results verify that NDRG1 acts as a tumor suppressor gene and may play an important role in the metastasis progression and prognosis of gastric cancer.  相似文献   

9.
Cardiac fibroblasts are known to be essential for adaptive responses in the pathogenesis of cardiovascular diseases, and increased intercellular communication of myocardial cells and cardiac fibroblasts acts as a crucial factor in maintaining the functional integrity of the heart. AMP-activated kinase (AMPK) is a key stress signaling kinase, which plays an important role in promoting cell survival and improving cell function. However, the underlying link between AMPK and gap junctional communication (GJIC) is still poorly understood. In this study, a connection between AMPK and GJIC in high glucose-mediated neonatal cardiac fibroblasts was assessed using fibroblast migration, measurement of dye transfer and connexin43 (Cx43) expression. 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) and Compound C (CC) were used to regulate AMPK activity. The levels of cell migration and Cx43 protein expression in neonatal cardiac fibroblasts increased during high glucose treatment, accompanied by developed dye transfer. In addition, high glucose induced abundant phosphorylation of AMPK. Suppression of AMPK phosphorylation using CC reduced dye transfer, cell migration and Cx43 protein expression in neonatal cardiac fibroblasts, whereas the activation of AMPK using AICAR mimicked the high glucose-mediated cell migration, Cx43 protein expression and dye transfer enhancement. AMPK appears to participate in regulating GJIC in high-glucose-treated neonatal cardiac fibroblasts, including cell migration, dye transfer, Cx43 expression and distribution.  相似文献   

10.
A previous investigation showed that deep-sea water (DSW) can affect the expression of genes that regulate metastasis, including cyclooxygenase-2 (COX-2), matrix metalloproteinase-2 (MMP-2), urokinase plasminogen activator (uPA) and uPA receptor (uPAR), in HT-29 human colorectal adenocarcinomas. In the present study, we investigated the effects of DSW on inducible nitric oxide synthase (iNOS) expression and cell migration and also explored the mechanism of DSW-induced anti-metastatic potential in HT-29 human colorectal adenocarcinomas. Cytokine-induced expression of iNOS, which is highly expressed in colon cancer and enhances cancer growth and metastasis, was decreased in a hardness-dependent manner by DSW. Also, the wound healing assay revealed that DSW inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cell migration in a hardness-dependent manner. DSW also decreased the phosphorylation of various MAPKs, including p38, ERK and JNK, and suppressed the nuclear translocation of NF-κB but not c-Jun. The results suggest that DSW may inhibit cancer cell growth related to iNOS overexpression and PKC-mediated cell migration in HT-29 human colorectal adenocarcinomas and the antimetastatic potential of DSW may be regulated by prevention of NF-κB nuclear translocation via inhibition of p38, ERK and JNK phosphorylation. In conclusion, the present investigation demonstrates that DSW inhibits cancer growth and metastasis via down-regulation of iNOS expression and the MAPK/NF-κB signaling pathway.  相似文献   

11.
Twenty varieties of maize (Zea mays, Poaceae) were studied through 11 attributes in three to seven randomly selected plants of each variety with a view to understanding the effect of cob characters on technologically desirable grain qualities. Canonical discriminant analysis showed thatproductivity (determined by total grain weight/cob, cob diameter and average grain weight) was the most discriminating among varieties followed by round grains fraction (represented by whole top and middle flat grains, number of rows and grain count/surface area), middle flat grains (composed of middle flat grains and grain count/surface area) and shape of the cob (determined by shape index, total grain weight/cob and cob diameter), which accounted for 35.1, 18.3, 12.2, and 9.8% of the total variance, respectively. In the light of these results, tentative norms have been suggested to evolve maize varieties of superior technological properties and yet retain high productivity. A cylindrical cob of large diameter with highest number of grains/area and smallest possible number of rows together constituted an ideal combination to achieve the objectives. Such possibilities in the light of available information are discussed.  相似文献   

12.
Here, we present a simple method for controlling the density of Au nanoparticles (Au NPs) on a modified silicon substrate, by destabilizing the colloidal Au NPs with 3-mercaptopropyltrimethoxylsilane (3-MPTMS) for microelectromechanical-system-based applications to reduce tribological issues. A silicon surface was pretreated with a 3-MPTMS solution, immediately after which thiolated Au NPs were added to it, resulting in their uniform deposition on the silicon substrate. Without any material property change of the colloidal Au NPs, we observed the formation of large clusters Au NPs on the modified silicon surface. Analysis by scanning electron microscopy with energy dispersive X-ray spectroscopy indicated that the addition of 3-MPTMS resulted in an alternation of the chemical characteristics of the solution. Atomic force microscopy imaging supported the notion that silicon surface modification is the most important factor on tribological properties of materials along with ligand-modified Au NPs. The density of Au NPs on a silicon surface was significantly dependent on several factors, including the concentration of colloidal Au NPs, deposition time, and concentration of 3-MPTMS solution, while temperature range which was used throughout experiment was determined to have no significant effect. A relatively high density of Au NPs forms on the silicon surface as the concentrations of Au NPs and 3-MPTMS are increased. In addition, the maximum deposition of Au NPs on silicon wafer was observed at 3 h, while the effects of temperature variation were minimal.  相似文献   

13.
Uncontrolled inflammation is frequently observed in human respiratory diseases. Extracellular ATP can induce a number of physiological phenomena via binding to purinergic receptors. In spite of the fact that ATP has long been known as a proinflammatory mediator in the airway, the signaling pathway mechanism is still unclear. Here we show that ATP increases RANTES secretion and overexpression in a time-dependent manner and siRNA-P2Y2 significantly decreases RANTES secretion and overexpression. These results suggest that ATP can induce secretion and overexpression of the RANTES chemokine via a P2Y2 Gαq coupled receptor-dependent manner. In addition, pharmacological inhibition of ERK1/2 MAPK by U0126 suppressed ATP/P2Y2-induced RANTES overexpression in the human airway epithelium. These results show that RANTES secretion and overexpression are regulated by a P2Y2 receptor and the ATP/P2Y2 signaling complex may be critical for airway inflammation in respiratory diseases. Taken together, our investigation provides novel insight into the physiological functions of the P2Y2 receptor and enhances our understanding of the inflamed microenvironment in the airway.  相似文献   

14.
Recent studies have evaluated the role of brain-derived neurotrophic factor (BDNF) in mood disorders; however, little is known about alterations in nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF). The aim of this study was to evaluate differences among serum neurotrophic factors (BDNF, NGF and GDNF) in depressed patients and healthy controls and to verify the association between serum neurotrophic levels and clinical characteristics in a young, depressed population stratified by gender. This is a cross-sectional study with depressed patients and population controls 18–29 years of age. The concentrations of neurotrophic factors were determined by the ELISA method. The diagnosis of depression and the duration of the disease were assessed by the Structured Clinical Interview according to the diagnostic and statistical manual of mental disorders. Depression severity was measured with the 17-item Hamilton Rating Scale for Depression, and the severity of anxiety symptoms was measured using the Hamilton Anxiety Rating Scale. Serum BDNF and GDNF were lower in major depressive disorder (MDD) patients compared to controls (p ≤ 0.001). Serum NGF levels were higher in MDD patients versus controls (p ≤ 0.001). BDNF was associated with the duration of disease only in women (p = 0.005). GDNF was not associated with clinical characteristics in either gender. In women, NGF was associated with the severity of depressive symptoms (p = 0.009), anxiety (p = 0.011) and disease duration (p = 0.005). NGF was associated with disease duration in men (p = 0.026). Our results demonstrated that significant neurochemical differences in NGF and BDNF, but not in GDNF, were associated with the clinical features of MDD when patients were stratified by gender.  相似文献   

15.
16.
Prion disorders are progressive neurodegenerative diseases characterized by extensive neuronal loss and accumulation of the abnormal form of the scrapie prion protein (PrP). Rutin is a flavonoid that occurs naturally in plant-derived beverages and foods and is used in traditional and folkloric medicine worldwide. In the present study, we evaluated the protective effects of rutin against PrP fragment (106–126)-induced neuronal cell death. Rutin treatment blocked PrP(106–126)-mediated increases in reactive oxygen species production and nitric oxide release and helped slowing the decrease of neurotrophic factors that results from PrP accumulation. Rutin attenuated PrP(106–126)-associated mitochondrial apoptotic events by inhibiting mitochondrial permeability transition and caspase-3 activity and blocking expression of the apoptotic signals Bax and PARP. Additionally, rutin treatment significantly decreased the expression of the death receptor Fas and its ligand Fas-L. Overall, our results demonstrated that rutin protects against the neurodegenerative effects of prion accumulation by increasing production of neurotropic factors and inhibiting apoptotic pathway activation in neuronal cells. These results suggested that rutin may have clinical benefits for prion diseases and other neurodegenerative disorders.  相似文献   

17.
Mitochondrial DNA (mtDNA) haplogroup data provide valuable information for inferring patterns of variation and population structure of maternal lineages. In this study, we analyzed the distribution of mtDNA haplogroup variation using a 20-plex SNaPshot assay for determination of the major East Asian haplogroups to evaluate the possible genetic structure and differentiation from 708 unrelated individuals residing in six major provinces in Korea. The most common mtDNA haplogroups were found to be D4 and B4, followed by A, D4a, and M7, which are prevalent in East Asian populations. All provinces exhibited high haplogroup diversities, ranging from 0.8957 in Jeju Island to 0.9284 in Gyeongsang. Pair-wise F ST distances and AMOVA of the studied Korean provinces reflected no maternal subpopulation heterogeneity present within the population group, except for Jeju Island, showing small, but statistically significant differences between the populations (p < 0.01). This result indicates that the Jeju Island may point to the need for creating a local mtDNA database, to avoid bias in forensic parameters estimates caused by genetic heterogeneity of the population. However, since there is no geographic pattern to suggest this result represents any population heterogeneity on a peninsular level in Korea, the present data could be useful in serving as a basis for comprehensive Korean population and forensic mtDNA database.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号