首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Size-fractionated chlorophyll-a concentrations of surface seawater were measured for pico-, nano-, and micro-size fractions (<2 μm, 2–10 μm, and >10 μm respectively) during commercial krill fishery operations in the waters north of the South Shetland Islands. The proportion of green krill (individuals discoloured due to active feeding on phytoplankton) had significant regressions with chlorophyll-a concentrations in micro- and nano-size fractions. Between these two fractions, chlorophyll-a concentration in the micro-size fraction showed the higher partial regression coefficient. This result shows the importance of phytoplankton larger than nano-phytoplankton, especially micro-phytoplankton, in terms of a phytoplanktonic food source for Antarctic krill in the natural environment. Accepted: 6 February 1999  相似文献   

2.
The long-term variation in phytoplankton biovolume in the northern basin of Lake Biwa was analyzed using periodic phytoplankton census data from January 1979 to December 2009. Population densities obtained from census data were transformed into biovolumes, and phytoplankton species were categorized into three size fractions: net phytoplankton (≥4,000 μm3 cell?1, ≥ca. 20 μm in diameter), large nanophytoplankton (100–4,000 μm3 cell?1, ca. 6–20 μm in diameter), and small nanophytoplankton (<100 μm3 cell?1, <ca. 6 μm in diameter). Although the annual total biovolume gradually decreased over time, the total biovolumes in winter and spring were found to increase. Furthermore, a decrease in the biovolume of net phytoplankton and an increase in that of small nanophytoplankton were observed. Because of succession in the phytoplankton community, the average cell volume of the phytoplankton community decreased from 269 μm3 cell?1 in the 1980s to 56 μm3 cell?1 in the 2000s. Lake warming accompanied with the intensification of thermal stratification and the augmentation of wind speed were observed at Lake Biwa over the study period. Serial analysis correcting for autocorrelation revealed that oligotrophication in the epilimnion, induced by lake warming and limitation of light available for phytoplankton growth by wind-induced water mixing, was a potential factor in the succession of the phytoplankton community.  相似文献   

3.
This study was conducted as part of the second Russian American long-term census of the Arctic in 2009 with sampling across the territorial of the Russian Federation in the Chukchi Sea since recent information regarding the standing stocks of pico- and nano-plankton is very limited. Using flow cytometry, small size fractions of the phytoplankton (<20 μm) obtained during the cruise were analyzed for the contributions of pico- and nano-eukaryotic phytoplankton and prokaryotic phytoplankton for the first time in the Chukchi Sea. The salinity and temperature in the southern part were significantly higher than those in the northern part of the Chukchi Sea. The abundance of Prochlorococcus and Synechococcus represented about 30 % of total small phytoplankton cells with their cell abundances reaching 295 and 590 cells ml?1, respectively, although a significant portion (about 70 %) of the small phytoplankton community (<20 μm) was pico- and nano-eukaryotic plankton in the Chukchi Sea. Among different environmental factors, we found that temperature and NH4 concentrations were significantly positively correlated with the abundance of total phytoplankton, pico- and nano-eukaryotes, Prochlorococcus, and Synechococcus. Projected higher water temperature and increase in NH4 concentration condition in the Arctic Ocean as well as the Chukchi Sea could have fostered more small phytoplankton communities especially Prochlorococcus and Synechococcus.  相似文献   

4.
The Baltic Sea is known for its ecological problems due to eutrophication caused by high nutrient input via nitrogen fixation and rivers, which deliver up to 70% of nitrogen in the form of dissolved organic nitrogen (DON) compounds. We therefore measured organic nitrogen uptake rates using self produced 15N labeled allochthonous (derived from Brassica napus and Phragmites sp.) and autochthonous (derived from Skeletonema costatum) DON at twelve stations along a salinity gradient (34 to 2) from the North Sea to the Baltic Sea in August/September 2009. Both labeled DON sources were exploited by the size fractions 0.2–1.6 μm (bacteria size fraction) and >1.6 μm (phytoplankton size fraction). Higher DON uptake rates were measured in the Baltic Sea compared to the North Sea, with rates of up to 1213 nmol N l?1 h?1. The autochthonous DON was the dominant nitrogen form used by the phytoplankton size fraction, whereas the heterotrophic bacteria size fraction preferred the allochthonous DON. We detected a moderate shift from >1.6 μm plankton dominated DON uptake in the North Sea and central Baltic Sea towards a 0.2–1.6 μm dominated DON uptake in the Bothnian Bay and a weak positive relationship between DON concentrations and uptake. These findings indicate that DON is an important component of plankton nutrition and can fuel primary production. It may therefore also contribute substantially to eutrophication in the Baltic Sea especially when inorganic nitrogen sources are depleted.  相似文献   

5.
Climate-driven changes are expected to alter the hydrography of the Sub-Antarctic Zone (SAZ) and Polar Frontal Zone (PFZ) south of Australia, in which distinct regional environments are believed to be responsible for the differences in phytoplankton biomass in these regions. Here, we report how the dynamic influences of light, iron and temperature, which are responsible for the photophysiological differences between phytoplankton in the SAZ and PFZ, contribute to the biomass differences in these regions. High effective photochemical efficiency of photosystem II (/ 0.4), maximum photosynthesis rate (), light-saturation intensity (), maximum rate of photosynthetic electron transport (1/), and low photoprotective pigment concentrations observed in the SAZ correspond to high chlorophyll and iron concentrations. In contrast, phytoplankton in the PFZ exhibits low / ( 0.2) and high concentrations of photoprotective pigments under low light environment. Strong negative relationships between iron, temperature, and photoprotective pigments demonstrate that cells were producing more photoprotective pigments under low temperature and iron conditions, and are responsible for the low biomass and low productivity measured in the PFZ. As warming and enhanced iron input is expected in this region, this could probably increase phytoplankton photosynthesis in this region. However, complex interactions between the biogeochemical processes (e.g. stratification caused by warming could prevent mixing of nutrients), which control phytoplankton biomass and productivity, remain uncertain.  相似文献   

6.
Changes in the photobiology and photosynthetic pigments of the seagrass Zostera marina from Chesapeake Bay (USA) were examined under a range of natural and manipulated irradiance regimes. Photosynthetic activity was assessed using chlorophyll-a fluorescence, and photosynthetic pigments were measured by HPLC. Large changes in the violaxanthin, zeaxanthin, and antheraxanthin content were concomitant with the modulation of non-photochemical quenching (NPQ). Photokinetics (Fv/Fm, rapid light curves (RLC), and non-photochemical quenching) varied as a result of oscillating irradiance and were highly correlated to xanthophyll pigment content. Zeaxanthin and antheraxanthin concentrations increased under elevated light conditions, while violaxanthin increased in darkened conditions. Unusually high concentrations of antheraxanthin were found in Z. marina under a wide range of light conditions, and this was associated with the partial conversion of violaxanthin to zeaxanthin. These results support the idea that xanthophyll intermediate pigments induce a photoprotective response during exposure to high irradiances in this seagrass.  相似文献   

7.
Assessing leaf pigment content and activity with a reflectometer   总被引:45,自引:1,他引:45  
This study explored reflectance indices sampled with a 'leaf reflectometer' as measures of pigment content for leaves of contrasting light history, developmental stage and functional type (herbaceous annual versus sclerophyllous evergreen). We employed three reflectance indices: a modified normalized difference vegetation index (NDVI), an index of chlorophyll content; the red/green reflectance ratio ( R RED: R GREEN), an index of anthocyanin content; and the change in photochemical reflectance index upon dark–light conversions (ΔPRI), an index of xanthophyll cycle pigment activity. In Helianthus annuus (sunflower), xanthophyll cycle pigment amounts were linearly related to growth light environment; leaves in full sun contained approximately twice the amount of xanthophyll cycle pigments as leaves in deep shade, and at midday a larger proportion of these pigments were in the photoprotective, de-epoxidized forms relative to shade leaves. Reflectance indices also revealed contrasting patterns of pigment development in leaves of contrasting structural types (annual versus evergreen). In H. annuus sun leaves, there was a remarkably rapid increase in amounts of both chlorophyll and xanthophyll cycle pigments along a leaf developmental sequence. This pattern contrasted with that of Quercus agrifolia (coast live oak, a sclerophyllous evergreen), which exhibited a gradual development of both chlorophyll and xanthophyll cycle pigments along with a pronounced peak of anthocyanin pigment content in newly expanding leaves. These temporal patterns of pigment development in Q. agrifolia leaves suggest that anthocyanins and xanthophyll cycle pigments serve complementary photoprotective roles during early leaf development. The results illustrate the use of reflectance indices for distinguishing divergent patterns of pigment activity in leaves of contrasting light history and functional type.  相似文献   

8.
Decreasing Arctic sea ice cover and increasing stratification of ocean surface waters make the exposure of pelagic microalgae to high irradiances more likely. Apart from light being a necessary prerequisite for photosynthesis, rapidly changing and/or high irradiances are potentially detrimental. An in situ study was performed in the high Arctic (79°N) to determine the effect of high irradiances in general, and ultraviolet radiation (UVR, 280–400 nm) in particular, on cell concentrations, fatty acid composition, and photoprotective pigments of three diatom species isolated from seawater around Svalbard. Unialgal cultures were exposed in situ at 0.5- and 8 m-depth. After 40 h, cell concentrations of Synedropsis hyperborea and Thalassiosira sp., were lower at 0.5 than at 8 m, and the content of the photoprotective xanthophyll-cycle pigment diatoxanthin in all species (S. hyperborea, Thalassiosira sp., Porosira glacialis) was higher in the 0.5 m exposure compared to 8 m. In S. hyperborea, growth was additionally inhibited by UVR at 0.5-m depth. In situ radiation conditions led, furthermore, to a significant decrease in polyunsaturated fatty acids (PUFAs) in all three species, but UVR had no additional effect. Hence, we conclude that natural radiation conditions close to the surface could reduce growth and PUFA concentrations, but the effects are species specific. The diatoms’ potential to acclimate to these conditions over time has to be evaluated.  相似文献   

9.
We compared phytoplankton and phytobenthos pigment strategies in 17 shallow lakes and ponds from northern Canada and Alaska, sampled during mid to late summer. Benthic chlorophyll a concentrations (8–261 mg m−2) greatly exceeded those of the phytoplankton (0.008–1.4 mg m−2) in all sites. Cyanobacteria dominated the phytobenthos, while green algae and fucoxanthin-groups characterized the plankton. Both communities had higher photoprotection in cold, UV-transparent, high latitude waters. Phytoplankton had higher concentrations of photoprotective carotenoids per unit chlorophyll a than the phytobenthos. The planktonic photoprotective pigments were positively correlated with UV-penetration, and inversely correlated with temperature and coloured dissolved organic matter. A partial redundancy analysis showed that the benthic pigments were related to latitude, area and temperature. The UV-screening compound scytonemin occurred in high concentrations in the phytobenthos and was inversely related to temperature, while benthic carotenoids per unit chlorophyll a showed much lower variability among sites. These differing pigment strategies imply divergent responses to environmental change between the phytobenthos and phytoplankton in high latitude lakes.  相似文献   

10.
Understanding the dynamics of upwelling systems, especially the interactions between nutrients and light, has benefited from the application of models of varying complexity. Validation of such models using unialgal cultures or field observations has often proven difficult, but short-term incubations of contained natural assemblages and use of instantaneous physiological indicators offer an alternative approach. In May and June 1996, phytoplankton communities deep in the euphotic zone were sampled from nearly identical physical environments. Replicate samples (20 l volume) were incubated on deck at 50% surface irradiance with either no nutrient additions (Controls) or additions of 20 μM nitrate (Enrichments). Over 24 h, variable fluorescence (F v:F m), nitrate reductase activity (NR), nutrients, chlorophyll a and particulate C and N were monitored. Initial chlorophyll a (~3 μg l?1), phosphate (~0.2 μM), nitrate (~1.5 μM) and silicate (~3 μM) were similar in both months. Changes in NR and F v:F m indicated clear physiological responses to changes in irradiance and added nitrate that differed between months. In May, Controls and Enrichments responded in the same way. F v:F m stayed constant (0.5), chlorophyll a increased slightly, and NR activity increased markedly in all samples. In contrast, in June, treatments responded quite differently. F v:F m was near the theoretical maximum (0.7–0.8) initially and remained constant in Enrichments, but fell sharply in Controls. Declines in controls were also seen for chlorophyll a, and NR activity. Thus, the addition of 20 μM nitrate had a significant effect even though ambient levels of nitrate (>1 μM) should not have been limiting. Small (<20 μm) flagellates predominated in the May samples, but in June large and chain-forming centric diatoms constituted a significant proportion of the phytoplankton community. We conclude that the response of a phytoplankton community to environmental changes can depend on factors that are poorly represented by bulk measurements of chlorophyll, nutrients and particulate elements.  相似文献   

11.
Phytoplankton pigments and community composition in Lake Tanganyika   总被引:3,自引:0,他引:3  
1. A 2‐year (2002–2003) survey of chlorophyll and carotenoid pigments is reported for two off‐shore stations of Lake Tanganyika, Kigoma (Tanzania) and Mpulungu (Zambia), and from three cruises between those sites. Chlorophyll a concentrations were low (0.3–3.4 mg m?3) and average chlorophyll a integrated through the 100 m water column were similar for both stations and years (36.4–41.3 mg m?2). Most pigments were located in the 0–60 m layer and decreased sharply downward. Chlorophyll a degradation products (phaeophytins and phaeophorbides) were detected at 100 m depth, whereas carotenoids became undetectable. Temporal and seasonal variation of the vertical distribution of pigments was high. 2. The biomass of phytoplankton groups was calculated from marker pigment concentrations over the 0–100 m water column using the CHEMTAX software. On average for the study period, chlorophytes dominated in the northern station, followed by cyanobacteria T1 (type 1, or Synechococcus pigment type), whereas cyanobacteria T1 dominated in the south. Cyanobacteria T2 (type 2, containing echinenone), presumably corresponding to filamentous taxa, were detected in the rainy season. Diatoms (and chrysophytes) developed better in the dry season conditions, with a deep mixed layer and increased nutrient availability. Very large variation in the vertical distribution of algal groups was observed. 3. Our observations on phytoplankton composition are broadly consistent with those from previous studies. Our pigment data provide evidence for the lake‐wide importance of picocyanobacteria and high interannual variation and spatial heterogeneity of phytoplankton in Lake Tanganyika, which may render difficult assessment of long‐term changes in phytoplankton driven by climate change.  相似文献   

12.
A newly isolated fungus Penicillium verruculosum SG was evaluated for the production and characterization of bioactive colored secondary metabolites using solid-state fermentation along with their cytotoxic activities against normal and cancer cell lines. Logical fragmentation pattern following column chromatography, thin layer chromatography and liquid chromatography and mass spectrometry of crude culture filtrate of fungus revealed the presence of different polyketide pigments and other bioactive compounds. Cytotoxicity of the selected colored fractions of fungal filtrate containing different compounds revealed IC50 (μg/ml) values ranging from 5 to 100. It was significantly higher in case of orevactaene (5 + 0.44) and monascorubrine followed by pyripyropene (8 + 0.63) against cancer cell line KA3IT. Overall, these compounds considerably showed less toxicity toward normal cell lines NIH3T3, HSCT6, HEK293 and MDCK. XRD of a yellow crystalline compound (224.21 m/z) confirmed its 3-dimensional structure as phenazine 1 carboxylic acid (C13H8N2O2) (broad spectrum antibiotic), and it is first time reported in fungi.  相似文献   

13.
Net phytoplankton (> 20 μm) comprised 51 ± 9% of the total chlorophyll (Chl) in a Skeletonema costatum– dominated spring bloom in Delaware Bay. The net phytoplankton had low C:N and high protein: carbohydrate ratios, indicating that their growth was nutrient-replete. Their photosynthetic responses were characterized by low specific absorption, low light-limited and light-saturated rates of photosynthesis, and high quantum yields, indicative of acclimation to low irradiance and internal self-shading. High fucoxanthin: Chi ratios also indicated low light acclimation, but high photoprotective xanthophyll: Chi ratios suggested a high capacity for photoprotective energy dissipation. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) could be activated and deactivated in response to changes in irradiance and was fully activated at the surface of the water column and fully deactivated in aphotic deep water. Maximum Rubisco activity was correlated with Rubisco content and bulk protein content of the phytoplankton and with light-saturated rates of photosynthesis measured in short (< 20-min) incubations. Long (60-min) incubations caused a decrease in the light-saturated rate of photosynthesis, possibly because of feedback limitation. While feedback limitation is unlikely to occur in the water column, it should be considered when estimating productivity in well-mixed waters from fixed light-depth incubations.  相似文献   

14.
A baseline study on a temperate, oligotrophic North Patagonian lake (Lake Chapo, Southern Chile) was made prior to the installation of a hydroelectric power station. Throughout one year (September 1986–October 1987) the physical and chemical properties of the lake were investigated monthly from the surface to a depth of 40 m. Lake Chapo is a deep, transparent (Secchi depth: 17–25 m), glacial lake located at 41°?27.5′?S and 72°?30′?W. It has a maximum depth of 298 m, mean depth of 183 m, surface area of 45.3 km2 and water volume of 8.296 km3. The theoretical residence time of the water was 5.5 years. The temperature regime is monomictic with the mixed temperature between 8.1–8.8?°C. Maximum temperature at the surface was 18.7?°C during thermal stratification in summer when the epilimnion had a thickness of about 20 m. The conductivity was low (20.3–23.8 μS cm?1) as was the buffering capacity of a predominantly CO2-carbonate system. The predominant cations were Ca+2¿ Na+¿Mg+2¿K+. The phosphorous and nitrogen contents were very low (soluble reactive ortophosphate: 0–1.5 μg P l?1, total phosphorus: 0.3–4 μg P l?1 and nitrate: 0–35 μg N l?1), which is typical of North Patagonian lakes.  相似文献   

15.
Although winter conditions play a major role in determining the productivity of the western Antarctic Peninsula (WAP) waters for the following spring and summer, a few studies have dealt with the seasonal variability of microorganisms in the WAP in winter. Moreover, because of regional warming, sea-ice retreat is happening earlier in spring, at the onset of the production season. In this context, this study describes the dynamics of the marine microbial community in the Melchior Archipelago (WAP) from fall to spring 2006. Samples were collected monthly to biweekly at four depths from the surface to the aphotic layer. The abundance and carbon content of bacteria, phytoplankton and microzooplankton were analyzed using flow cytometry and inverted microscopy, and bacterial richness was examined by PCR–DGGE. As expected, due to the extreme environmental conditions, the microbial community abundance and biomass were low in fall and winter. Bacterial abundance ranged from 1.2 to 2.8 × 105 cells ml?1 showing a slight increase in spring. Phytoplankton biomass was low and dominated by small cells (<2 μm) in fall and winter (average chlorophyll a concentration, Chl-a, of, respectively, 0.3 and 0.13 μg l?1). Phytoplankton biomass increased in spring (Chl-a up to 1.13 μg l?1), and, despite potentially adequate growth conditions, this rise was small and phytoplankton was still dominated by small cells (2–20 μm). In addition, the early disappearing of sea-ice in spring 2006 let the surface water exposed to ultraviolet B radiations (UVBR, 280–320 nm), which seemed to have a negative impact on the microbial community in surface waters.  相似文献   

16.
Microzooplankton grazing rates were compared between two sites (S1 and S2) in the coastal seas of eastern Hong Kong with similar physio-chemical parameters, but different chlorophyll concentrations. During the period from March 2007 to January 2008, six sets of dilution experiments, combined with high performance liquid chromatography and phytoplankton size fractionation (< 200 μm, < 20 μm and < 5 μm), were carried out to study the microzooplankton grazing rate on phytoplankton of different taxonomic groups and sizes. Although total chlorophyll a concentrations were much higher in S1 (4.98-18.42 μg l− 1) than in S2 (0.29-1.68 μg l− 1), size composition of phytoplankton was relatively similar between the two sites. Measured as chlorophyll a, phytoplankton growth rates (− 0.84-1.91 d− 1 in S1; 0.03-2.85 d− 1 in S2) and microzooplankton grazing rates (0.00-2.26 d− 1 in S1; 0.00-1.49 d− 1 in S2) for all three size fractions were similar between the two bays. Phytoplankton growth rates and microzooplankton grazing rates measured as other pigments for phytoplankton of different size fractions did not show strong variations. Microzooplankton grazing impact, expressed as the ratio of microzooplankton grazing rate to phytoplankton growth rate, was generally higher in S1 than in S2, although the difference was not statistically significant. High microzooplankton grazing impact on alloxanthin (1.00-45.85) suggested strong selection toward cryptophytes. Our results provided no evidence for size selective grazing on phytoplankton by microzooplankton.  相似文献   

17.
Long‐term growth response to natural solar radiation with enhanced ultraviolet‐B (UVB) exposure was examined in two species of dinoflagellates [Alexandrium tamarense (M. Lebour) Balech, At, and Heterocapsa triquetra (Ehrenb.) F. Stein, Ht], including two strains of A. tamarense, one from Spain and another from UK, and one diatom species (Thalassiosira pseudonana Hasle et Heimdal). We examined whether variable photoprotection (mycosporine‐like amino acids [MAAs] and xanthophyll‐cycle pigments) affected photosynthetic performance, phytoplankton light absorption, and growth. Growth rate was significantly reduced under enhanced UVB for the UK strain of At and for Ht (both grew very little) as well as for the diatom (that maintained high growth rates), but there was no effect for the Spanish strain of At. MAA concentration was high in the dinoflagellates, but undetectable in the diatom, which instead used the xanthophyll cycle for photoprotection. The highest cell concentrations of MAAs and photoprotective pigments were observed in the UK strain of At, along with lowest growth rates and Fv/Fm, indicating high stress levels. In contrast, the Spanish strain showed progressive acclimation to the experimental conditions, with no significant difference in growth between treatments. Increase in total MAAs followed linearly the cumulative UVB of the preceding day, and both total and primary MAAs were maintained at higher constitutive levels in this strain. Acclimation to enhanced UVB in the diatom resulted in an increase in PSII activity and reduction in nonphotochemical quenching, indicating an increased resistance to photoinhibition after a few weeks. All four species showed increased phytoplankton light absorption under enhanced UVB. Large intrastrain differences suggest a need to consider more closely intraspecific variability in UV studies.  相似文献   

18.
In this study the variations in surface reflectance properties and pigment concentrations of Antarctic moss over species, sites, microtopography and with water content were investigated. It was found that species had significantly different surface reflectance properties, particularly in the region of the red edge (approximately 700 nm), but this did not correlate strongly with pigment concentrations. Surface reflectance of moss also varied in the visible region and in the characteristics of the red edge over different sites. Reflectance parameters, such as the photochemical reflectance index (PRI) and cold hard band were useful discriminators of site, microtopographic position and water content. The PRI was correlated both with the concentrations of active xanthophyll‐cycle pigments and the photosynthetic light use efficiency, Fv/Fm, measured using chlorophyll fluorescence. Water content of moss strongly influenced the amplitude and position of the red‐edge as well as the PRI, and may be responsible for observed differences in reflectance properties for different species and sites. All moss showed sustained high levels of photoprotective xanthophyll pigments, especially at exposed sites, indicating moss is experiencing continual high levels of photochemical stress.  相似文献   

19.
The dynamics of phytoplankton biomass were studied in an Eastern Mediterranean semi-enclosed coastal system (Maliakos Gulf, Aegean Sea), over 1 year. In particular, chlorophyll a (chl a) was fractionated into four size classes: picoplankton (0.2–2 μm), nanoplankton (2–20 μm), microplankton (20–180 μm) and net phytoplankton (>180 μm). The spatial and temporal variation in dissolved inorganic nutrients and particulate organic carbon (POC) were also investigated. The water column was well mixed throughout the year, resulting in no differences between depths for all the measured parameters. Total chl a was highest in the inner part of the gulf and peaked in winter (2.65 μg l–1). During the phytoplankton bloom, microplankton and net phytoplankton together dominated the autotrophic biomass (67.2–95.0% of total chl a), while in the warmer months the contribution of pico- and nanoplankton was the most significant (77.5–93.4% of total chl a). The small fractions, although showing low chl a concentrations, were important contributors to the POC pool, especially in the outer gulf. No statistically significant correlations were found between any chl a size fraction and inorganic nutrients. For most of the year, phytoplankton was not limited by inorganic nitrogen concentrations. Electronic Publication  相似文献   

20.
Higher plants must dissipate absorbed light energy that exceeds the photosynthetic capacity to avoid molecular damage to the pigments and proteins that comprise the photosynthetic apparatus. Described in this minireview is a current view of the biochemical, biophysical and bioenergetic aspects of the primary photoprotective mechanism responsible for dissipating excess excitation energy as heat from photosystem II (PSII). The photoprotective heat dissipation is measured as nonphotochemical quenching (NPQ) of the PSII chlorophyll a (Chl a) fluorescence. The NPQ mechanism is controlled by the trans-thylakoid membrane pH gradient (ΔpH) and the special xanthophyll cycle pigments. In the NPQ mechanism, the de-epoxidized endgroup moieties and the trans-thylakoid membrane orientations of antheraxanthin (A) and zeaxanthin (Z) strongly affect their interactions with protonated chlorophyll binding proteins (CPs) of the PSII inner antenna. The CP protonation sites and steps are influenced by proton domains sequestered within the proteo-lipid core of the thylakoid membrane. Xanthophyll cycle enrichment around the CPs may explain why changes in the peripheral PSII antenna size do not necessarily affect either the concentration of the xanthophyll cycle pigments on a per PSII unit basis or the NPQ mechanism. Recent time-resolved PSII Chi a fluorescence studies suggest the NPQ mechanism switches PSII units to an increased rate constant of heat dissipation in a series of steps that include xanthophyll de-epoxidation, CP-protonation and binding of the xanthophylls to the protonated CPs; the concerted process can be described with a simple two-step, pH-activation model. The xanthophyll cycle-dependent NPQ mechanism is profoundly influenced by temperatures suboptimal for photosynthesis via their effects on the trans-thylakoid membrane energy coupling system. Further, low temperature effects can be grouped into either short term (minutes to hours) or long term (days to seasonal) series of changes in the content and composition of the PSII pigment-proteins. This minireview concludes by briefly highlighting primary areas of future research interest regarding the NPQ mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号