首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A variety of manifestations of Candida albicans infections are associated with the formation of biofilms on the surface of biomaterials. Cells in biofilms display phenotypic traits that are dramatically different from their free-floating planktonic counterparts, such as increased resistance to anti-microbial agents and protection form host defenses. Here, we describe the characteristics of C. albicans biofilm development using a 96 well microtitre plate model, microscopic observations and a colorimetric method based on the use of a modified tetrazolium salt (2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide, XTT) to monitor metabolic activities of cells within the biofilm. C. albicans biofilm formation was characterized by initial adherence of yeast cells (0-2 h), followed by germination and micro-colony formation (2-4 h), filamentation (4-6 h), monolayer development (6-8 h), proliferation (8-24 h) and maturation (24-48 h). The XTT-reduction assay showed a linear relationship between cellular density of the biofilm and metabolic activity. Serum and saliva pre-conditioning films increased the initial attachment of C. albicans, but had minimal effect on subsequent biofilm formation. Scanning electron microscopy and confocal scanning laser microscopy were used to visualize C. albicans biofilms. Mature C. albicans biofilms consisted of a dense network of yeasts cells and hyphal elements embedded within exopolymeric material. C. albicans biofilms displayed a complex three dimensional structure which demonstrated spatial heterogeneity and a typical architecture showing microcolonies with ramifying water channels. Antifungal susceptibility testing demonstrated the increased resistance of sessile C. albicans cells against clinically used fluconazole and amphotericin B as compared to their planktonic counterparts.  相似文献   

2.
白念珠菌是人体重要的条件性致病真菌。形态的多样性和可塑性是白念珠菌典型的生物学特征,这与它的致病性、宿主适应能力以及有性生殖过程密切相关。白念珠菌生物被膜(Biofilm)是由不同形态细胞(包括酵母型、菌丝和假菌丝)以及胞外基质组成的致密结构,也是毒性和耐药性形成的重要因子。生物被膜对抗真菌药物、宿主免疫系统和环境胁迫因子等都表现出较强的抵抗力和耐受性,是临床上病原真菌感染防治的重大挑战。随着基因表达谱和遗传操作技术的发展,白念珠菌生物被膜的形成及其耐药性的获得所依赖的遗传调控通路和分子调控机制越来越清楚。主要包括MAPK和cAMP介导的信号途径以及Bcr1和Tec1等因子介导的转录调控。此外,白念珠菌生物被膜的形成与形态转换和有性生殖之间存在密切的联系。文中综述了白念珠菌生物被膜形成的遗传调控机制,重点介绍了细胞壁相关蛋白、转录因子和交配型对该过程的调控以及生物被膜的耐药机制。  相似文献   

3.
Genetics and genomics of Candida albicans biofilm formation   总被引:1,自引:0,他引:1  
Biofilm formation by the opportunistic fungal pathogen Candida albicans is a complex process with significant consequences for human health: it contributes to implanted medical device-associated infections. Recent advances in gene expression profiling and genetic analysis have begun to clarify the mechanisms that govern C. albicans biofilm development and acquisition of unique biofilm phenotypes. Such studies have identified candidate adhesin genes, and have revealed that biofilm drug resistance is multifactorial. Newly defined cell-cell communication pathways also have profound effects on biofilm formation. Future challenges include the elucidation of the structure and function of the extracellular exopolymeric substance that surrounds biofilm cells, and the extension of in vitro biofilm observations to newly developed in vivo biofilm models.  相似文献   

4.
In order to prevent biofilm formation by Candida albicans, several cationic peptides were covalently bound to polydimethylsiloxane (PDMS). The salivary peptide histatin 5 and two synthetic variants (Dhvar 4 and Dhvar 5) were used to prepare peptide functionalized PDMS using 4-azido-2,3,5,6-tetrafluoro-benzoic acid (AFB) as an interlinkage molecule. In addition, polylysine-, polyarginine-, and polyhistidine-PDMS surfaces were prepared. Dhvar 4 functionalized PDMS yielded the highest reduction of the number of C. albicans biofilm cells in the Modified Robbins Device. Amino acid analysis demonstrated that the amount of peptide immobilized on the modified disks was in the nanomole range. Poly-d-lysine PDMS, in particular the homopeptides with low molecular weight (2500 and 9600) showed the highest activity against C. albicans biofilms, with reductions of 93% and 91%, respectively. The results indicate that the reductions are peptide dependent.  相似文献   

5.
熊延靖  吴艳红 《菌物学报》2020,39(2):343-351
生物被膜的形成是白色念珠菌产生耐药性的重要原因之一。本研究首先构建白色念珠菌体外生物被膜模型,通过倒置显微镜和甲基四氮盐(XTT)法检测大蒜素对白色念珠菌生物被膜形成的影响,同时采用实时荧光定量PCR法(qRT-PCR)对白色念珠菌生物被膜相关基因ALS1ALS3HWP1MP65SUN41的表达水平进行检测。结果显示,当大蒜素浓度≥12.5μg/mL时,白色念珠菌生物被膜的生长被抑制,并且在生物被膜形成的早期,大蒜素干预能有效抑制其形成;大蒜素能下调白色念珠菌生物被膜相关基因ALS1ALS3HWP1MP65SUN41的表达水平。研究结果提示,大蒜素可有效抑制体外白色念珠菌生物被膜的形成,可能与其下调生物被膜相关基因的表达有关。  相似文献   

6.
Most cases of candidosis have been attributed to Candida albicans, but recently non-C. albicans Candida species have been identified as frequent human pathogens. Candida pathogenicity has been attributed to several factors, including adhesion to medical devices and/or host cells, biofilm formation, and secretion of hydrolytic enzymes (proteases, phospholipases and haemolysins). Although 'new'Candida species are emerging, there is still a lack of information about their pathogenicity. This review discusses recent advances in our knowledge of Candida glabrata, Candida parapsilosis and Candida tropicalis virulence factors, specifically those of adhesion and biofilm formation, which are key components in Candida pathogenicity.  相似文献   

7.
Hwp1 is a well-characterized Candida albicans cell surface protein, expressed only on hyphae, that mediates tight binding to oral epithelial cells. Prior studies indicate that HWP1 expression is dependent upon Bcr1, a key regulator of biofilm formation. Here we test the hypothesis that Hwp1 is required for biofilm formation. In an in vitro model, the hwp1/hwp1 mutant produces a thin biofilm that lacks much of the hyphal mass found in the hwp1/HWP1 reconstituted strain. In a biofilm cell retention assay, we find that the hwp1/hwp1 mutant is defective in retention of nonadherent bcr1/bcr1 mutant cells. In an in vivo rat venous catheter model, the hwp1/hwp1 mutant has a severe biofilm defect, yielding only yeast microcolonies in the catheter lumen. These properties of the hwp1/hwp1 mutant are consistent with its role as a hypha-specific adhesin and indicate that it is required for normal biofilm formation. Overexpression of HWP1 in a bcr1/bcr1 mutant background improves adherence in the in vivo catheter model. This finding provides additional support for the model that Hwp1 is critical for biofilm adhesion. Hwp1 is the first cell surface protein known to be required for C. albicans biofilm formation in vivo and is thus an excellent therapeutic target.  相似文献   

8.
9.
Candida albicans is a common, opportunistic, human fungal pathogen that causes a variety of mucosal and systemic afflictions. It exists in nature both in the biofilm or the sessile phase, as well as in the free-floating or the planktonic phase. Candida biofilms, in particular, display unique characteristics that confer survival advantages over their planktonic counterparts, such as their recalcitrance to common antifungals. The mechanisms underlying Candida biofilm formation and their attributes are poorly understood. In this study, we used a 2-DE-based approach to characterize the protein markers that are differentially expressed in Candida biofilms in comparison to their planktonic counterparts. Using tandem mass spectrometric analysis, we have identified a significant number of proteins including alkyl hydroperoxide reductase, thioredoxin peroxidase, and thioredoxin involved in oxidative stress defenses that are upregulated in the biofilm phase. These proteomic findings were further confirmed by real-time PCR and lucigenin-based chemiluminescence assays. In addition, we demonstrate that a drug target for the new antifungal agent echinocandin, is abundantly expressed and significantly upregulated in Candida biofilms. Taken together, these data imply that the biofilm mode, Candida, compared with their planktonic counterparts, exhibits traits that can sustain oxidative stress (anti-oxidants), and thereby exert resistance to commonly used antifungals.  相似文献   

10.
Candida albicans biofilms are composed of highly adherent and densely arranged cells with properties distinct from those of free‐floating (planktonic) cells. These biofilms are a significant medical problem because they commonly form on implanted medical devices, are drug resistant and are difficult to remove. C. albicans biofilms are not static structures; rather they are dynamic and develop over time. Here we characterize gene expression in biofilms during their development, and by comparing them to multiple planktonic reference states, we identify patterns of gene expression relevant to biofilm formation. In particular, we document time‐dependent changes in genes involved in adhesion and metabolism, both of which are at the core of biofilm development. Additionally, we identify three new regulators of biofilm formation, Flo8, Gal4, and Rfx2, which play distinct roles during biofilm development over time. Flo8 is required for biofilm formation at all time points, and Gal4 and Rfx2 are needed for proper biofilm formation at intermediate time points.  相似文献   

11.
The cell wall of Candida albicans lies at the crossroads of pathogenicity and therapeutics. It contributes to pathogenicity through adherence and invasion; it is the target of both chemical and immunological antifungal strategies. We have initiated a dissection of cell wall function through targeted insertional mutagenesis of cell wall-related genes. Among 25 such genes, we were unable to generate homozygous mutations in 4, and they may be essential for viability. We created homozygous mutations in the remaining 21 genes. Insertion mutations in SUN41, Orf19.5412, Orf19.1277, MSB2, Orf19.3869, and WSC1 caused hypersensitivity to the cell wall inhibitor caspofungin, while two different ecm33 insertions caused mild caspofungin resistance. Insertion mutations in SUN41 and Orf19.5412 caused biofilm defects. Through analysis of homozygous sun41Delta/sun41Delta deletion mutants and sun41Delta/sun41Delta+pSUN41-complemented strains, we verified that Sun41 is required for biofilm formation and normal caspofungin tolerance. The sun41Delta/sun41Delta mutant had altered expression of four cell wall damage response genes, thus suggesting that it suffers a cell wall structural defect. Sun41 is required for inducing disease, because the mutant was severely attenuated in mouse models of disseminated and oropharyngeal candidiasis. Although the mutant produced aberrant hyphae, it had no defect in damaging endothelial or epithelial cells, unlike many other hypha-defective mutants. We suggest that the sun41Delta/sun41Delta cell wall defect is the primary cause of its attenuated virulence. As a small fungal surface protein with predicted glucosidase activity, Sun41 represents a promising therapeutic target.  相似文献   

12.
Abstract

Candida species are fungal opportunistic pathogens capable of colonizing and infecting various human anatomical sites, where they have to adapt to distinct niche-specific pH conditions. The aim of this study was to analyse the features of Candida albicans and Candida glabrata biofilms developed under neutral and vaginal acidic (pH 4) conditions. C. albicans produced thicker and more filamentous biofilms under neutral than under acidic conditions. On the other hand, the formation of biofilms by C. glabrata was potentiated by the acidic conditions suggesting the high adaptability of this species to the vaginal environment. In general, both species developed biofilms containing higher amounts of matrix components (protein and carbohydrate) under neutral than acidic conditions, although the opposite result was found for one C. glabrata strain. Overall, this study contributes to a better understanding of the modulation of C. albicans and C. glabrata virulence by specific pH conditions.  相似文献   

13.
Candida albicans possesses an ability to grow under different host-driven stress conditions by developing robust protective mechanisms. In this investigation the focus was on the impact of osmotic (2M NaCl) and oxidative (5 mM H2O2) stress conditions during C. albicans biofilm formation. Oxidative stress enhanced extracellular DNA secretion into the biofilm matrix, increased the chitin level, and reduced virulence factors, namely phospholipase and proteinase activity, while osmotic stress mainly increased extracellular proteinase and decreased phospholipase activity. Fourier transform infrared and nuclear magnetic resonance spectroscopy analysis of mannan isolated from the C. albicans biofilm cell wall revealed a decrease in mannan content and reduced β-linked mannose moieties under stress conditions. The results demonstrate that C. albicans adapts to oxidative and osmotic stress conditions by inducing biofilm formation with a rich exopolymeric matrix, modulating virulence factors as well as the cell wall composition for its survival in different host niches.  相似文献   

14.
15.
白念珠菌是临床最常见的一种能产生生物被膜的致病真菌,所产生的生物被膜是导致高度耐药性和临床白念珠菌反复感染的直接原因.近年来,科学家们开始关注天然产物的抗生物被膜活性,以及不同药物联合应用的抗生物被膜效果,该文对抗白念珠菌生物被膜药物的研究进展作一综述.  相似文献   

16.
Ferrocene-substituted porphyrin RL-91 exhibits antifungal activity against opportune human pathogen Candida albicans. RL-91 efficiently inhibits growth of both planktonic C. albicans cells and cells within biofilms without photoactivation. The minimal inhibitory concentration for plankton form (PMIC) was established to be 100 μg/mL and the same concentration killed 80% of sessile cells in the mature biofilm (SMIC80). Furthermore PMIC of RL-91 efficiently prevents C. albicans biofilm formation. RL-91 is cytotoxic for human fibroblasts in vitro in concentration of 10 μg/mL, however it does not cause hemolysis in concentrations of up to 50 μg/mL. These findings open possibility for application of RL-91 as an antifungal agent for external antibiofilm treatment of medical devices as well as a scaffold for further development of porphyrin based systemic antifungals.  相似文献   

17.
随着医疗水平的不断发展,越来越多的医疗操作、医疗设备和药物可能导致人体正常的微生物平衡被打破,使得机会致病菌白假丝酵母菌的感染呈现逐年上升的趋势。白假丝酵母菌在宿主或医疗器械表面形成生物膜的能力是一个十分关键的毒力因素。生物膜可以帮助白假丝酵母菌成功逃避宿主免疫并产生较强的耐药性,从而导致难治性真菌感染。本文从白假丝酵母菌生物膜的形成过程、生物膜相关的主要基因和影响生物膜毒力的因素3个方面介绍近年来的研究进展,为进一步研究白假丝酵母菌生物膜的形成机制提供参考。  相似文献   

18.
This report details the efficacy of nitric oxide (NO)-releasing xerogel surfaces composed of N-(6-aminohexyl)aminopropyl trimethoxysilane (AHAP3) and isobutyltrimethoxysilane (BTMOS) against Candida albicans adhesion, viability, and biofilm formation. A parallel plate flow cell assay was used to examine the effect of NO on planktonic fungal cells. Nitric oxide fluxes as low as 14 pmol cm?2 s?1 were sufficient to reduce fungal adhesion by ~49% over the controls after 90 min. By utilizing a fluorescence live/dead assay and replicate plating, NO flux was determined to reduce fungal viability in a dose-dependent manner. The formation of C. albicans biofilms on NO-releasing xerogel-coated silicon rubber (SiR) coupons was impeded when compared to control (non-NO-releasing) and bare SiR surfaces. The synergistic efficacy of NO and silver sulfadiazine against adhered fungal cells and biofilms is reported with increased killing and biofilm inhibition over NO alone.  相似文献   

19.
Farnesol is a quorum-sensing molecule that inhibits filamentation in Candida albicans. Both filamentation and quorum sensing are deemed to be important factors in C. albicans biofilm development. Here we examined the effect of farnesol on C. albicans biofilm formation. C. albicans adherent cell populations (after 0, 1, 2, and 4 h of adherence) and preformed biofilms (24 h) were treated with various concentrations of farnesol (0, 3, 30, and 300 micro M) and incubated at 37 degrees C for 24 h. The extent and characteristics of biofilm formation were then assessed microscopically and with a semiquantitative colorimetric technique based on the use of 2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide. The results indicated that the effect of farnesol was dependent on the concentration of this compound and the initial adherence time, and preincubation with 300 micro M farnesol completely inhibited biofilm formation. Supernatant media recovered from mature biofilms inhibited the ability of planktonic C. albicans to form filaments, indicating that a morphogenetic autoregulatory compound is produced in situ in biofilms. Northern blot analysis of RNA extracted from cells in biofilms indicated that the levels of expression of HWP1, encoding a hypha-specific wall protein, were decreased in farnesol-treated biofilms compared to the levels in controls. Our results indicate that farnesol acts as a naturally occurring quorum-sensing molecule which inhibits biofilm formation, and we discuss its potential for further development and use as a novel therapeutic agent.  相似文献   

20.
Rhamnolipids are biodegradable low toxic biosurfactants which exert antimicrobial and anti-biofilm properties. They have attracted much attention recently due to potential applications in areas of bioremediation, therapeutics, cosmetics and agriculture, however, the full potential of these versatile molecules is yet to be explored. Based on the facts that many naturally occurring lipopeptides are potent antimicrobials, our study aimed to explore the potential of replacing rhamnose in rhamnolipids with amino acids thus creating lipopeptides that would mimic or enhance properties of the parent molecule. This would allow not only for more economical and greener production but also, due to the availability of structurally different amino acids, facile manipulation of physico-chemical and biological properties.Our synthetic efforts produced a library of 43 lipopeptides revealing biologically more potent molecules. The structural changes significantly increased, in particular, anti-biofilm properties against Candida albicans, although surface activity of the parent molecule was almost completely abolished. Our findings show that the most active compounds are leucine derivatives of 3-hydroxy acids containing benzylic ester functionality. The SAR study demonstrated a further increase in activity with aliphatic chain elongation. The most promising lipopeptides 15, 23 and 36 at 12.5 µg/mL concentration allowed only 14.3%, 5.1% and 11.2% of biofilm formation, respectively after 24 h. These compounds inhibit biofilm formation by preventing adhesion of C. albicans to abiotic and biotic surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号