首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract Lipopolysaccharides of Acidiphilium cryptum and Acidiphilium symbioticum , the acidophilic heterotrophs of sulfidic mine environments, contain rhamnose, glucose, galactose and mannose. Molar ratios of the neutral sugars differ in these two lipopolysaccharide preparations. 3-Deoxy-d-manno-2-octulosonic acid is present in both the lipopolysaccharides, and galactosamine was the only amino sugar detected. 3-Hydroxytetradecanoic acid was found to be the major fatty acid component along with minute amounts of decanoic and dodecanoic acids. Deoxycholate-PAGE electrophoresis revealed the presence of short sugar chains and unsubstituted cores. The implications of these findings are discussed in relation to acidiphilicity and systematics of Acidiphilium species.  相似文献   

2.
Production of zoogloea gum by Zoogloea ramigerawith glucose analogs   总被引:1,自引:0,他引:1  
Zooglans with altered sugar composition were synthesized by Zoogloea ramigera by varying the glucose concentration and initial medium pH. The relative mol % of the sugar components, glucose and galactose, in the exopolymer made with 2% (w/v) glucose as the carbon source was 66 and 34%, respectively. By varying the glucose concentration and initial medium pH, the mol % ratios of glucose to galactose in zooglan ranged from 70 : 30 to 58 : 42. Also, glucose analogs, 3- O-methyl-D-glucose, 2-amino-2-deoxy-D-glucose, and 2-acetamido-2-deoxy-D-glucose, were used as a co-substrate with glucose to produce modified zooglans. The mol % ratios of glucose to galactose in exopolymers produced by co-feeding glucose analogs ranged from 70 : 30 to 9 : 91.  相似文献   

3.
Distribution and composition of lipopolysaccharides from mycoplasmas.   总被引:16,自引:5,他引:11       下载免费PDF全文
Polymeric carbohydrates containing glycerol and fatty acids were isolated from whole cells and membranes of mycoplasmas by hot aqueous phenol extraction and gel filtration. Lipopolysaccharides were found to occur in four species of Acholeplasma, two of Anaeroplasma, and in Mycoplasma neurolyticum. None were detected in Spiroplasma citri or in five species of Mycoplasma. All lipopolysaccharides contained both neutral and N-acylated amino sugars in ratios varying from 1:1 to 3:1. The neutral sugars found in varying distribution were glucose, galactose, and mannose. The amino sugars included fucosamine, an unidentified deoxyhexosamine, galactosamine, and glucosamine. Fucosamine and glucose were the only sugars common to all lipopolysaccharides. The fatty acids were similar to those found in the lipids of each organism.  相似文献   

4.
Membrane-defective mutants of Escherichia coli J5 were isolated on the basis of supersensitivity to the antibiotic novobiocin. These mutants display an increased sensitivity to a wide range of antibiotics and to several dyes and detergents. In addition, several mutants leak the periplasmic enzymes, alkyline phosphatase and ribonuclease. This evidence indicates an outer membrane defect in these mutants. The inner and outer membranes of one mutant were separated and subjected to compositional analysis. A deficiency in galactose containing lipopolysaccharide in the outer membrane of the mutant was observed. Two possible causes of this deficiency were examined and discounted: defective galactose uptake into the cell, and defective translocation of lipopolysaccharide from the inner membrane. Extraction and chemical analysis of mutant and wild type lipopolysaccharides suggests that the mutant is defective in the enzyme which transfers glucose to the growing lipopolysaccharide core, UDPglucose transferase. Thus, the mutant's deficiency in galactose-containing lipopolysaccharide can be ascribed to the fact that addition of glucose to the lipopolysaccharide core is a prerequisite for galactose addition. The physiological implications of this alteration are discussed.  相似文献   

5.
Summary The nodulatingRhizobium trifolii strain 24 and its non-nodulating mutant 24 nod3 have been examined. The exopolysaccharides of both cultures studied contained mannose, galactose and glucose at similar molar ratios. On the other hand some quantitative differences have been found between the lipopolysaccharides in respect of the composition of neutral sugars. Glucose and rhamnose were the main constituents of the nodulating strain 24, whereas rhamnose and galactose in non-nodulating mutant 24 nod3 deprived of the plasmid pWZ2.  相似文献   

6.
R E Huber  G Kurz  K Wallenfels 《Biochemistry》1976,15(9):1994-2001
A study was implemented to quantitate the hydrolase and transgalactosylase activities of beta-galactosidase (E. coli) with lactose as the substrate and to investigate various factors which affect these activities. At low lactose concentrations the rate of galactose production was equal to the rate of glucose production. The rate of galactose production relative to glucose, however, dropped dramatically at lactose concentrations higher than 0.05 M and production of trisaccharides and tetrasaccharides began (galactose/glucose ratios of about 2:1 and 3:1, respectively, were found for these two types of oligosaccharides). At least five different trissacharides were formed and their patterns of formation showed that they probably utilized both lactose and allolactose as galactosyl acceptors. Allolactose was produced in amounts proportional to glucose at all lactose concentrations (ratios of allolactose/glucose were about 0.88). Analyses of various data, including a reaction analyzed at very early times, showed that the major means of production of allolactose (and the only means initially) was the direct enzymatic transfer of galactose from the 4 position to the 6 position of the glucose moiety of lactose without prior release of glucose from the enzyme. It was shown, however, that allolactose could also be formed in significant quantities by the transfer of galactose to the 6 position of free glucose, and also by hydrolysis of preformed trisaccharide. A mechanism which fits the initial velocity data was proposed in which the steps involving the formation of an enzyme-gallactose-glucose complex, the formation and breakage of allolactose on the enzyme, and the release of glucose all seem to be of roughly equal magnitude and rate determining. Various factors affected the amounts of transgalactosylase and hydrolase activities occurring. At high pH values (greater than 7.8) the transgalactosylase/hydrolyase activity ratio increased dramatically while it decreased at low pH values (less than 6.0). At mid pH values the ratio was essentially constant. The absence of Mg2+ caused a large decrease in the transgalactosylase/hydrolase activity ratio while the absence of all but traces of Na+ or K+ had no effect. The anomeric configuration of lactose altered the transgalactosylase/hydrolase activity ratios, alpha-Lactose resulted in a decrease of allolactose production (transgalactosylase activity) relative to hydrolase activities (glucose production) while beta-lactose had the opposite effect.  相似文献   

7.
8.

Background

Noninvasive prenatal diagnosis of fetal aneuploidy by maternal plasma analysis is challenging owing to the low fractional and absolute concentrations of fetal DNA in maternal plasma. Previously, we demonstrated for the first time that fetal DNA in maternal plasma could be specifically targeted by epigenetic (DNA methylation) signatures in the placenta. By comparing one such methylated fetal epigenetic marker located on chromosome 21 with another fetal genetic marker located on a reference chromosome in maternal plasma, we could infer the relative dosage of fetal chromosome 21 and noninvasively detect fetal trisomy 21. Here we apply this epigenetic-genetic (EGG) chromosome dosage approach to detect Edwards syndrome (trisomy 18) in the fetus noninvasively.

Principal Findings

We have systematically identified methylated fetal epigenetic markers on chromosome 18 by methylated DNA immunoprecipitation (MeDIP) and tiling array analysis with confirmation using quantitative DNA methylation assays. Methylated DNA sequences from an intergenic region between the VAPA and APCDD1 genes (the VAPA-APCDD1 DNA) were detected in pre-delivery, but not post-delivery, maternal plasma samples. The concentrations correlated positively with those of an established fetal genetic marker, ZFY, in pre-delivery maternal plasma. The ratios of methylated VAPA-APCDD1(chr18) to ZFY(chrY) were higher in maternal plasma samples of 9 male trisomy 18 fetuses than those of 27 male euploid fetuses (Mann-Whitney test, P = 0.029). We defined the cutoff value for detecting trisomy 18 fetuses as mean+1.96 SD of the EGG ratios of the euploid cases. Eight of 9 trisomy 18 and 1 of 27 euploid cases showed EGG ratios higher than the cutoff value, giving a sensitivity of 88.9% and a specificity of 96.3%.

Conclusions

Our data have shown that the methylated VAPA-APCDD1 DNA in maternal plasma is predominantly derived from the fetus. We have demonstrated that this novel fetal epigenetic marker in maternal plasma is useful for the noninvasive detection of fetal trisomy 18.  相似文献   

9.
Lipopolysaccharides have been isolated from eight strains of the unicellular cyanobacterium Synechococcus. Fucose, mannose, galactose, glucose and glucosamine were found in all of the lipopolysaccharides investigated. Additionally, strain-specific sugars are present and permit the chemotyping of lipopolysaccharide. Chemotype I, comprising three strains with a high G+C content of DNA (71-66 mol%), is characterized by a high rhamnose portion and by 3,6-dideoxy-d-arabino-hexose (tyvelose). Chemotype III, represented by three strains with a low G+C content of DNA (55-48 mol%), contains a mannose-polymer with small amounts of 3-O-methyl-mannose, 4-O-methyl-mannose, 2-keto-3-deoxyoctonate and mannosamine. Lipopolysaccharides of the two strains of chemotype II contain 2,3,4-tri-O-methyl-arabinose.Lipid A is difficult to split off from the polysaccharide moiety, but is present in all lipopolysaccharides from the Synechococcus strains. The presence of Lipid A is supported by the finding of -hydroxy fatty acids, predominantly -hydroxypalmitic acid. The distribution of branched -hydroxy fatty acids, detected in small amounts, parallels chemotyping of lipopolysaccharide based on the sugar composition. The phosphorus content of the lipopolysaccharides is low.The pyrogenicity of lipopolysaccharides from two strains is low. Synechococcus lipopolysaccharides have little reactivity in antisera raised in rabbits against homologous cells. As far as tested they do not migrate in immunoelectrophoresis. This confirms the neutral character or low negative charge of Synechococcus lipopolysaccharides.Dedicated to Professor Otto Kandler on occasion of his 60th birthday  相似文献   

10.
11.
Lipopolysaccharide composition of three strains of Haemophilus influenzae   总被引:6,自引:0,他引:6  
The lipopolysaccharides of three strains of Haemophilus influenzae with varying beta-lactam susceptibility were examined. All three strains contained galactose, glucose, galactosamine, glucosamine, heptose, phosphate, and a trace of mannose. None contained fucose, rhamnose, or mannosamine. Levels of 2-keto-3-deoxy-octulosonic acid were consistently detected in all three strains at levels similar to that of Salmonella typhimurium LT2, but only following hydrolysis with 4 N hydrochloric acid.  相似文献   

12.
Lipopolysaccharides of Salmonella T mutants   总被引:3,自引:1,他引:2       下载免费PDF全文
The composition of lipopolysaccharides derived from various Salmonella T forms was studied. All T1-form lipopolysaccharides examined contained 14 to 22% each of both d-galactose and pentose in addition to 4 to 9% each of ketodeoxyoctonic acid, heptose, d-glucosamine, and d-glucose. The pentose was identified as d-ribose. The T2-form lipopolysaccharide examined did not contain a significant amount of pentose, nor more than the usual amounts of d-galactose. Periodate oxidation of T1 (lipo) polysaccharides followed by NaBH(4) reduction revealed that ribose was almost quantitatively protected, galactose was destroyed, and threitol and mannose were newly formed. The latter two products probably originated from 4-linked galactose and heptose, respectively. Ribose and galactose were found in specific precipitates of T1 lipopolysaccharide with anti-T1 antiserum but were not found in specific precipitates of alkali-treated T1 lipopolysaccharide and of Freeman degraded polysaccharide with anti-T1 serum Ribose and galactose are present in these degraded preparations in the form of nondialyzable polymers. The T1-form mutant lipopolysaccharides lacked the O-specific sugars constituting the side-chains in the wild-type antigens. They did not produce the soluble O-specific haptenic polysaccharide known to be accumulated in RI strains. With these properties, T1 lipopolysaccharides resemble RII lipopolysaccharides. Like RII degraded polysaccharides, T1-degraded polysaccharides also contained glucosamine. Furthermore, strong cross-reactions were found to exist between T1 and RII lipopolysaccharides in both hemagglutination inhibition assays and in precipitation tests. It is proposed that T1 lipopolysaccharides represent RII lipopolysaccharides to which polymers consisting of ribose and galactose are attached.  相似文献   

13.
A fucolipid that carried human blood group Lea activity was isolated from human small intestine. It contianed fucose, galactose, N-acetyl glucosamine, glucose, and ceramide in a molar ratio of 1:2:1:1:1. After periodate oxidation only 1 molecule of galactose and the N-acetylglucosamine remained. Permethylation of the lipid gave derivatives of a terminal fucose and galactose residue together with 2,4,6-tri-O-methylgalactose and 2,3,6-tri-O-methylglucose. After removal of fucose the lipid could be converted to a ceramide trihexoside with beta-galactosidase, and this, in turn, to ceramide lactoside by the action of beta-N-acetylhexosaminidase. Both enzymes converted the defucosylated derivative to a ceramide monohexoside. The methylated and the methylated and reduced derivatives of the intact lipid gave ions in mass spectrometry for a terminal hexose and deoxyhexose, a terminal trisaccharide of hexose, deoxyhexose and N-acetylhexosamine, and terminal tetra-and pentasaccharides. Ceramide fragments characteristic of hydroxy fatty acids with 16, 22, 23, and 24 carbons were found together with those of phytospingosine as the major long chain base. On the basis of these results and the immunologic activity of the fucolipid, the following structure is proposed: betaGal (1 leads to 3)betaGlcNAc (1 leads to 3)betaGal (1 leads to 4)Glc-ceramide alphaFuc (1 leads to 4).  相似文献   

14.
Lipopolysaccharides were isolated from dehydratedHelicobacter pylori cells by the phenol-chloroform-petroleum ether and hot phenol/water extraction techniques. Biochemical characterization of the crude extracts indicated the following: The primary fatty acids and approximate molar ratios were 3-hydroxyoctadecanoic (2), 3-hydroxyhexadecanoic (1), and octadecanoic (1) acids. Lesser amounts of tetradecanoic, hexadecanoic, and octadecenoic acids were noted. 3-Hydroxytetradecanoic acid was not deteted in either extract. Neutral sugar analyses detected glucose, galactose, two heptose isomers, and an unidentified deoxy-hexose. Glucosamine and glucosamine phosphate were the only amino sugars found in significant quantities. Analyses of other components included ethanolamine, phosphate, and protein. 3-Deoxy-d-manno-octulosonic acid (KDO) was detected, but in lower concentrations than would be expected in comparable enterobacterial lipopolysaccharides.  相似文献   

15.
Membrane-defective mutants of Escherichia coli J5 were isolated on the basis of supersensitivity to the antibiotic novobiocin. These mutants display an increased sensitivity to a wide range of antibiotics and to several dyes and detergents. In addition, several mutants leak the periplasmic enzymes, alkaline phosphatase and ribonuclease. This evidence indicates an outer membrane defect in these mutants. The inner and outer membranes of one mutant were separated and subjected to compositional analysis. A deficiency in galactose-containing lipopolysaccharide in the outer membrane of the mutant was observed. Two possible causes of this deficiency were examined and discounted: defective galactose uptake into the cell, and defective translocation of lipopolysaccharide from the inner membrane. Extraction and chemical analysis of mutant and wild type lipopolysaccharides suggests that the mutant is defective in the enzyme which transfers glucose to the growing lipopolysaccharide core, UDPglucose transferase. Thus, the mutant's deficiency in galactose-containing lipopolysaccharide can be ascribed to the fact that addition of glucose to the lipopolysaccharide core is a prerequisite for galactose addition. The physiological implications of this alteration are discussed.  相似文献   

16.
Volk, Wesley A. (University of Virginia, Charlottesville). Cell wall lipopolysaccharides from Xanthomonas species. J. Bacteriol. 91:39-42. 1966.-The lipopolysaccharides from 20 species of Xanthomonas were extracted and purified. Biological studies suggest that these lipopolysaccharides are analogous to the endotoxins extracted from enteric organisms, as judged by their mouse lethality and their ability to provoke the local Shwartzman reaction in rabbits. Studies on the composition of the polysaccharides revealed that all contained uronic acid, glucose, mannose, and a compound apparently identical to the 2-keto-3-deoxyoctonate previously described in enteric organisms. The polysaccharide also contains organic phosphate, and additional carbohydrates such as rhamnose, xylose, fucose, and galactose are found in some, but not all, species. In contrast to the composition of the enteric lipopolysaccharides, heptose was not found in any of the lipopolysaccharides of the Xanthomonas species studied.  相似文献   

17.
1. The composition of the lipopolysaccharides and the corresponding lipid-free polysaccharides from four R-mutants of Salmonella has been studied. All the lipopolysaccharides, from RI and RII serotypes contained d-glucose, d-galactose, heptose, N-acetylglucosamine and 3-deoxy-2-oxo-octonate. The polysaccharide obtained from the RII lipopolysaccharides also contained all these sugars. The polysaccharides from RI lipopolysaccharides lacked N-acetylglucosamine. 2. From partial hydrolysates of the lipopolysaccharides, a number of oligosaccharides have been isolated and partially characterized. Oligosaccharides containing N-acetylglucosamine or glucosamine were obtained only from RII lipopolysaccharides. Several oligosaccharides composed of glucose and galactose were common to RI and RII preparations. 3. A structural unit, based on the oligosaccharides found, is proposed for the RII lipopolysaccharide. It contains the sequence: alpha-N-acetylglucosaminyl- alpha-glucosyl-alpha-galactosyl-glucosyl.... A second alpha-galactosyl residue is bound to position 6 of the last glucosyl group. The complete unit is believed to to be attached to a polyheptose phosphate backbone in the RII antigen. 4. The RI lipopolysaccharide of Salmonella minnesota contains an analogous structure lacking the terminal N-acetylglucosamine residue. 5. A basal structure common to the lipopolysaccharides of several Salmonella species is proposed.  相似文献   

18.
A modified methylation analysis is described which allows the elucidation of the structure of the inner core region [heptose/3-deoxy-D-manno-2-octulosonic acid (KDO)] of enterobacterial lipopolysaccharides (LPS) of Salmonella minnesota rough mutants (Re, strain R595; and Rd2P-, strain R4). Methylation, carboxyl-reduction, remethylation, hydrolysis, carbonyl-reduction, and acetylation of the Re-mutant LPS yielded the 2,6-di-O-acetyl and 2,4,6-tri-O-acetyl derivatives of partially methylated 3-deoxyoctitol in equimolar amounts, indicating the presence of a terminal and a 4-linked pyranosidic KDO residue. For Rd2P- LPS, the hydrolysis step involved 0.1M trifluoroacetic acid at 100 degrees for 1 h which cleaved ketosidic linkages, and the final products included the foregoing acetyl derivatives in the molar ratio of 1:02 and a partially methylated and acetylated 3-deoxyoctitol derivative which was substituted at O-5 by a methylated heptopyranosyl residue. Trideuteriomethylation of the latter product followed by methanolysis and acetylation gave 5-O-acetyl-3-deoxy-1,7,8-tri-O-methyl-2,4,6-tri-O-trideuteriomethyl++ +-D- glycero-D-talo/galacto-octitol and 1,5-di-O-acetyl-2,3,4,6,7-penta-O-methyl-L-glycero-D-manno-heptitol++ +. These results prove the presence of a (2----4)-linked KDO disaccharide in Re LPS and show that the core region of Rd2P- LPS contains a terminal alpha-L-glycero-D-manno-heptopyranosyl group and a non-substituted, a 4-O-, and a 4,5-di-O-substituted pyranosidic KDO residue in the molar ratios 1:1:0.2:1.  相似文献   

19.
The CDC25 gene is transcribed at a very low level in S. cerevisiae cells. We have studied the effects of an overexpression of this regulatory gene by cloning either the whole CDC25 open reading frame (pIND25-2 plasmid) or its 3' terminal portion (pIND25-1 plasmid) under the control of the inducible strong GAL promoter. The strain transformed with pIND25-2 produced high levels of CDC25 specific mRNA, induced by galactose. This strain does not show any apparent alteration of growth, both in glucose and in galactose. Instead the yeast cells transformed with pIND25-1, that overexpress the 3' terminal part of CDC25 gene, grow very slowly in galactose medium, while they grow normally in glucose medium. The nucleotides were extracted from transformed cells, separated by HPLC and quantitated. The ATP/ADP and GTP/GDP ratios were almost identical in control and in pIND25-2 transformed strains growing in glucose and in galactose, while the strain that overexpresses the 3' terminal portion of CDC25 gene showed a decrease of ATP/ADP ratio and a partial depletion of the GTP pool. The disruption of RAS genes was only partially able to 'cure' this phenotype. A ras2-ts1, ras1::URA3 strain, transformed with pIND25-1 plasmid, was able to grow in galactose at 36 degrees C. These results suggest that the carboxy-terminal domain of the CDC25 protein could stimulate an highly unregulated GTPase activity in yeast cells by interacting not only with RAS gene products but also with some other yeast G-proteins.  相似文献   

20.
Glucose dehydrogenase from rat liver microsomes was found to react not only with glucose as a substrate but also with glucose 6-phosphate, 2-deoxyglucose 6-phosphate and galactose 6-phosphate. The relative maximum activity of this enzyme was 29% for glucose 6-phosphate, 99% for 2-deoxyglucose 6-phosphate, and 25% for galactose 6-phosphate, compared with 100% for glucose with NADP. The enzyme could utilize either NAD or NADP as a coenzyme. Using polyacrylamide gradient gel electrophoresis, we were able to detect several enzymatically active bands by incubation of the gels in a tetrazolium assay mixture. Each band had different Km values for the substrates (3.0 x 10(-5)M glucose 6-phosphate with NADP to 2.4M glucose with NAD) and for coenzymes (1.3 x 10(-6)M NAD with galactose 6-phosphate to 5.9 x 10(-5)M NAD with glucose). Though glucose 6-phosphate and galactose 6-phosphate reacted with glucose dehydrogenase, they inhibited the reaction of this enzyme only when either glucose or 2-deoxyglucose 6-phosphate was used as a substrate. The Ki values for glucose 6-phosphate with glucose as substrate were 4.0 x 10(-6)M with NAD, and 8.4 x 10(-6)M with NADP; for galactose 6-phosphate they were 6.7 x10(-6)M with NAD and 6.0 x 10(-6)M with NADP. The Ki values for glucose 6-phosphate with 2-deoxyglucose 6-phosphate as substrate were 6.3 x 10(-6)M with NAD and 8.9 x 10(-6)M with NADP; and for galactose 6-phosphate, 8.0 x 10(-6)M with NAD and 3.5 x 10(-6)M with NADP. Both NADH and NADPH inhibited glucose dehydrogenase when the corresponding oxidized coenzymes were used (Ki values: 8.0 x 10(-5)M by NADH and 9.1 x 10(-5)M by NADPH), while only NADPH inhibited cytoplasmic glucose 6-phosphate dehydrogenase (Ki: 2.4 x 10(-5)M). The results indicate that glucose dehydrogenase cannot directly oxidize glucose in vivo, but it might play a similar role to glucose 6-phosphate dehydrogenase. The differences in the kinetics of glucose dehydrogenase and glucose 6-phosphate dehydrogenase show that glucose 6-phosphate and galactose 6-phosphate could be metabolized in quite different ways in the microsomes and cytoplasm of rat liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号