首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mycobacterium kansasii (Mk) is an emerging pathogen that causes a pulmonary disease similar to tuberculosis. Macrophage apoptosis contributes to innate host defense against mycobacterial infection. Recent studies have suggested that lithium significantly enhances the cytotoxic activity of death stimuli in many cell types. We examined the effect of lithium on the viability of host cells and intracellular Mk in infected macrophages. Lithium treatment resulted in a substantial reduction in the viability of intracellular Mk in macrophages. Macrophage cell death was significantly enhanced after adding lithium to Mk-infected cells but not after adding to uninfected macrophages. Lithium-enhanced cell death was due to an apoptotic response, as evidenced by augmented DNA fragmentation and caspase activation. Reactive oxygen species were essential for lithium-induced apoptosis. Intracellular scavenging by N-acetylcysteine abrogated the lithium-mediated decrease in intracellular Mk growth as well as apoptosis. These data suggest that lithium is associated with control of intracellular Mk growth through modulation of the apoptotic response in infected macrophages.  相似文献   

2.
持续性细胞皱缩在人上皮细胞凋亡过程中的必要性   总被引:2,自引:0,他引:2  
Shimizu T  Maeno E  Okada Y 《生理学报》2007,59(4):512-516
持续性细胞皱缩是凋亡发生的一个主要标志。近期研究发现细胞皱缩在细胞凋亡过程中并不是一个被动的次要事件。在各种细胞中,包括人上皮细胞,凋亡因子(apoptogen)刺激后马上发生全细胞皱缩,又称为凋亡性容积减小(apoptotic volumede crease,AVD),继而发生caspase激活、DNA片段化、细胞破裂死亡。K^+和Cl^-通道的激活导致KCl外流,诱导AVD发生。抑制AVD发生可以抑制细胞凋亡。AVD与调节性容积增加(regulatory volume increase,RVI)异常相伴发生时,人上皮性HeLa细胞发生持续性细胞皱缩。RVI功能受损时,高渗本身就能诱导HeLa细胞持续性细胞皱缩,继而凋亡。即使在正常渗透压、无凋亡因子刺激的情况下,将HeLa细胞置于缺乏Na^+或Cl。的溶液也会导致细胞持续性皱缩,继而凋亡。因此,AVD诱导和RVI异常所导致的持续性细胞皱缩是人上皮细胞发生凋亡的首要条件。  相似文献   

3.
The gastrointestinal (GI) epithelium is a rapidly renewing tissue in which apoptosis represents part of the overall homeostatic process. Regulation of apoptosis in the GI epithelium is complex with a precise relationship between cell position and apoptosis. Apoptosis occurs spontaneously and in response to radiation and cytotoxic drugs at the base of the crypts. By contrast, the villus epithelial cells are extremely resistant to apoptosis. The molecular mechanism underlying this loss of function of villus epithelial cells to undergo apoptosis shortly after their exit from the crypt is unknown. In this study we demonstrate for the first time, that deletion of two homologous actin-binding proteins, villin and gelsolin renders villus epithelial cells extremely sensitive to apoptosis. Ultrastructural analysis of the villin-gelsolin(-/-) double-knockout mice shows an abnormal accumulation of damaged mitochondria demonstrating that villin and gelsolin function on an early step in the apoptotic signaling at the level of the mitochondria. A characterization of functional and ligand-binding mutants demonstrate that regulated changes in actin dynamics determined by the actin severing activities of villin and gelsolin are required to maintain cellular homeostasis. Our study provides a molecular basis for the regulation of apoptosis in the GI epithelium and identifies cell biological mechanisms that couple changes in actin dynamics to apoptotic cell death.  相似文献   

4.
One of the requisite of cancer chemopreventive agent is elimination of damaged or malignant cells through cell cycle inhibition or induction of apoptosis without affecting normal cells. In this study, employing normal human prostate epithelial cells (PrEC), virally transformed normal human prostate epithelial cells (PZ-HPV-7), and human prostate cancer cells (LNCaP, DU145, and PC-3), we evaluated the growth-inhibitory and apoptotic effects of tocotrienol-rich fraction (TRF) extracted from palm oil. TRF treatment to PrEC and PZ-HPV-7 resulted in almost identical growth-inhibitory responses of low magnitude. In sharp contrast, TRF treatment resulted in significant decreases in cell viability and colony formation in all three prostate cancer cell lines. The IC(50) values after 24h TRF treatment in LNCaP, PC-3, and DU145 cells were in the order 16.5, 17.5, and 22.0 microg/ml. TRF treatment resulted in significant apoptosis in all the cell lines as evident from (i) DNA fragmentation, (ii) fluorescence microscopy, and (iii) cell death detection ELISA, whereas the PrEC and PZ-HPV-7 cells did not undergo apoptosis, but showed modestly decreased cell viability only at a high dose of 80 microg/ml. In cell cycle analysis, TRF (10-40 microg/ml) resulted in a dose-dependent G0/G1 phase arrest and sub G1 accumulation in all three cancer cell lines but not in PZ-HPV-7 cells. These results suggest that the palm oil derivative TRF is capable of selectively inhibiting cellular proliferation and accelerating apoptotic events in prostate cancer cells. TRF offers significant promise as a chemopreventive and/or therapeutic agent against prostate cancer.  相似文献   

5.
Mycobacterium tuberculosis interacts with macrophages and epithelial cells in the alveolar space of the lung, where it is able to invade and replicate in both cell types. M. tuberculosis-associated cytotoxicity to these cells has been well documented, but the mechanisms of host cell death are not well understood. We examined the induction of apoptosis and necrosis of human macrophages (U937) and type II alveolar epithelial cells (A549) by virulent (H37Rv) and attenuated (H37Ra) M. tuberculosis strains. Apoptosis was determined by both enzyme-linked immunosorbent assay (ELISA) and TdT-mediated dUTP nick end labelling (TUNEL) assay, whereas necrosis was evaluated by the release of lactate dehydrogenase (LDH). Both virulent and attenuated M. tuberculosis induced apoptosis in macrophages; however, the attenuated strain resulted in significantly more apoptosis than the virulent strain after 5 days of infection. In contrast, cytotoxicity of alveolar cells was the result of necrosis, but not apoptosis. Although infection with M. tuberculosis strains resulted in apoptosis of 14% of the cells on the monolayer, cell death associated with necrosis was observed in 59% of alveolar epithelial cells after 5 days of infection. Infection with M. tuberculosis suppressed apoptosis of alveolar epithelial cells induced by the kinase inhibitor, staurosporine. Because our findings suggest that M. tuberculosis can modulate the apoptotic response of macrophages and epithelial cells, we carried out an apoptosis pathway-specific cDNA microarray analysis of human macrophages and alveolar epithelial cells. Whereas the inhibitors of apoptosis, bcl-2 and Rb, were upregulated over 2.5-fold in infected (48 h) alveolar epithelial cells, the proapoptotic genes, bad and bax, were downregulated. The opposite was observed when U937 macrophages were infected with M. tuberculosis. Upon infection of alveolar epithelial cells with M. tuberculosis, the generation of apoptosis, as determined by the expression of caspase-1, caspase-3 and caspase-10, was inhibited. Inhibition of replication of intracellular bacteria resulted in an increase in apoptosis in both cell types. Our results showed that the differential induction of apoptosis between macrophages and alveolar epithelial cells represents specific strategies of M. tuberculosis for survival in the host.  相似文献   

6.
Age-associated loss of tissue function and several chronic diseases may derive in part from the cumulative effects of subtle changes in the level of apoptotic cell death. Because apoptosis is rapid and undetectable once complete, small changes in its incidence are difficult to detect, even in well-controlled cell cultures. We describe a new apoptosis assay that provides greater sensitivity than conventional assays because it measures the accumulation of apoptotic cells. Human and mouse fibroblasts and human mammary epithelial cells that initiated apoptosis were preserved for 3 days by inhibiting caspase activity using the chemical inhibitor Q-VD-OPH (QVD). Cells suspended in the process of apoptosis were scored by immunostaining for cytochrome c, which redistributed from mitochondria in healthy cells to the cytoplasm in dying cells. This caspase-independent cytochrome c release (CICR) assay was more sensitive than several conventional assays when apoptosis was induced by actinomycin D, and detected cumulative background levels of apoptosis over a 3-day interval. Using this assay, we show that normal fibroblasts undergo very little apoptosis upon X-irradiation, indicating dominance of the senescence response in this cell type. Further, apoptosis increased subtly but measurably when human mammary epithelial and skin fibroblast cells entered crisis, indicating that cell death during crisis is largely non-apoptotic.  相似文献   

7.
We investigated interactions of human isolates of Acinetobacter calcoaceticus-baumannii complex strains with epithelial cells. The results showed that bacterial contact with the cells as well as adhesion and invasion were required for induction of cytotoxicity. The infected cells revealed hallmarks of apoptosis characterized by cell shrinking, condensed chromatin, and internucleosomal fragmentation of nuclear DNA. The highest apoptotic index was observed for 4 of 10 A. calcoaceticus and 4 of 7 A. baumannii strains. Moreover, we observed oncotic changes: cellular swelling and blebbing, noncondensed chromatin, and the absence of DNA fragmentation. The highest oncotic index was observed in cells infected with 6 A. calcoaceticus isolates. Cell-contact cytotoxicity and cell death were not inhibited by the pan-caspase inhibitor z-VAD-fmk. Induction of oncosis was correlated with increased invasive ability of the strains. We demonstrated that the mitochondria of infected cells undergo structural and functional alterations which can lead to cell death. Infected apoptotic and oncotic cells exhibited loss of mitochondrial transmembrane potential (ΔΨ(m)). Bacterial infection caused generation of nitric oxide and reactive oxygen species. This study indicated that Acinetobacter spp. induced strain-dependent distinct types of epithelial cell death that may contribute to the pathogenesis of bacterial infection.  相似文献   

8.
Tocotrienols, a subclass in the vitamin E family of compounds, have been shown to induce apoptosis by activating caspase-8 and caspase-3 in neoplastic mammary epithelial cells. Since caspase-8 activation is associated with death receptor apoptotic signaling, studies were conducted to determine the exact death receptor/ligand involved in tocotrienol-induced apoptosis. Highly malignant +SA mouse mammary epithelial cells were grown in culture and maintained in serum-free media. Treatment with 20 microM gamma-tocotrienol decreased+SA cell viability by inducing apoptosis, as determined by positive terminal dUTP nick end labeling (TUNEL) immunocytochemical staining. Western blot analysis showed that gamma-tocotrienol treatment increased the levels of cleaved (active) caspase-8 and caspase-3. Combined treatment with caspase inhibitors completely blocked tocotrienol-induced apoptosis. Additional studies showed that treatment with 100 ng/ml tumor necrosis factor-alpha (TNF-alpha), 100 ng/ml FasL, 100 ng/ml TNF-related apoptosis-inducing ligand (TRAIL), or 1 microg/ml apoptosis-inducing Fas antibody failed to induce death in +SA cells, indicating that this mammary tumor cell line is resistant to death receptor-induced apoptosis. Furthermore, treatment with 20 microM gamma-tocotrienol had no effect on total, membrane, or cytosolic levels of Fas, Fas ligand (FasL), or Fas-associated via death domain (FADD) and did not induce translocation of Fas, FasL, or FADD from the cytosolic to the membrane fraction, providing additional evidence that tocotrienol-induced caspase-8 activation is not associated with death receptor apoptotic signaling. Other studies showed that treatment with 20 microM gamma-tocotrienol induced a large decrease in the relative intracellular levels of phospho-phosphatidylinositol 3-kinase (PI3K)-dependent kinase 1 (phospho-PDK-1 active), phospho-Akt (active), and phospho-glycogen synthase kinase3, as well as decreasing intracellular levels of FLICE-inhibitory protein (FLIP), an antiapoptotic protein that inhibits caspase-8 activation, in these cells. Since stimulation of the PI3K/PDK/Akt mitogenic pathway is associated with increased FLIP expression, enhanced cellular proliferation, and survival, these results indicate that tocotrienol-induced caspase-8 activation and apoptosis in malignant +SA mammary epithelial cells is associated with a suppression in PI3K/PDK-1/Akt mitogenic signaling and subsequent reduction in intracellular FLIP levels.  相似文献   

9.
Rat vaginal epithelial cells (VEC) undergo division and differentiation under the influence of oestradiol in a programmed manner. The differentiation process of VEC leads to keratinization, cornification and subsequent desquamation of the dead cells. This process of programmed cell death, referred to as terminal differentiation may share some common pathways with cell death by apoptosis but differ substantially in many aspects. Terminal differentiation of VEC is accompanied by the loss of majority of the organelles including the nucleus. To understand the mechanisms that underlie this process we have analysed the regulation of DNase I (a key effector of apoptotic cell death) in rat VEC under the influence of oestradiol. The present study demonstrates that under physiological conditions, cell death in the VEC is mainly through terminal differentiation although a few cells may undergo apoptotic death involving DNA fragmentation. Unaltered levels of bcl-2 message upon oestradiol administration suggest an important role played by this molecule in preventing death of the VEC by apoptosis.  相似文献   

10.
Previous in vivo and in vitro analyses have shown that both necrosis and apoptosis are involved in neuronal cell death induced by energy impairment caused by mitochondrial dysfunction. However, little is known about the key factors that determine whether the cells undergo necrosis or apoptosis. In the present study, we analyzed neuronal cell death induced by 3-nitropropionic acid (3-NP), an irreversible inhibitor of mitochondrial complex II, in a primary culture system of rat cortical neurons. The neurons were maintained for a week in coculture with astroglial cells, and then they were treated with 3-NP in the presence or absence of astroglial cells. As judged from morphological (Hoechst 33258 staining) and biochemical (DNA fragmentation and caspase activation) analyses, the cortical neurons appeared to die through an apoptotic process after 3-NP treatment in the presence of astroglial cells. However, caspase inhibitors did not suppress the 3-NP-induced cell death, suggesting the involvement of a caspase-independent pathway of 3-NP-induced neuronal cell death in the presence of astroglial cells. On the other hand, 3-NP induced necrotic cell death within 1 day in the absence of astroglial cells, following a rapid decrease in intracellular ATP level. These changes were attenuated by the presence of astroglial cells or the addition of astroglial conditioned medium. These results suggest that astroglial trophic support influences the alteration of the intracellular energy state in 3-NP-treated neurons and consequently determines the type of neuronal cell death, apoptosis or necrosis.  相似文献   

11.
Jurkat cells undergo apoptosis in response to anti-Fas antibody through a caspase-dependent death cascade in which calcium signaling has been implicated. We have now evaluated the role of calcium during this death cascade at the single cell level in real time utilizing flow cytometric analysis and confocal microscopy. Fluo-3 and propidium iodide were employed to evaluate calcium fluxes and to discriminate between viable and non-viable cells, respectively. Anti-Fas treatment of Jurkat cells resulted in a sustained increase in intracellular calcium commencing between 1 and 2 h after treatment and persisting until subsequent loss of cell membrane integrity. The significance of this rise in calcium was evaluated by buffering intracellular calcium with BAPTA and/or removing calcium from the extracellular medium and monitoring the effects of these manipulations on calcium signaling and components of the apoptotic process. Complete inhibition of the anti-Fas induced rise in intracellular calcium required both chelation of [Ca(2+)](i) and removal of extracellular calcium. Interestingly, this condition did not abrogate several events in Fas-induced apoptosis including cell shrinkage, mitochondrial depolarization, annexin binding, caspase activation, and nuclear poly(A)DP-ribose polymerase cleavage. Furthermore, calcium-free conditions in the absence of anti-Fas antibody weakly induced these apoptotic components. In marked contrast, calcium depletion did not induce DNA degradation in control cells, and inhibited apoptotic DNA degradation in response to anti-Fas. These data support the concept that the rise in intracellular calcium is not a necessary component for the early signal transduction pathways in anti-Fas-induced apoptosis in Jurkat cells, but rather is necessary for the final degradation of chromatin via nuclease activation.  相似文献   

12.
Taurine is an abundant free amino acid that interacts with the potent oxidant hypochlorous acid to form the less toxic and more stable oxidant taurine monochloramine (TauNHCl). TauNHCl has diverse cellular effects ranging from inhibiting the production of proinflammatory mediators to inhibiting cell proliferation and inducing cell death. We hypothesized that TauNHCl could activate a cell death pathway involving Bcl-2 members and the activation of caspase proteases. FL5.12 cells are lymphocytic cells that undergo apoptosis following interleukin-3 (IL-3) withdrawal. Therefore, cell death following TauNHCl treatment of FL5.12 cells was compared and contrasted with IL-3 withdrawal. We found that TauNHCl treatment activates a cell death pathway with kinetics very similar to IL-3 withdrawal. TauNHCl-treated cells undergo an annexin V-positive/propidium iodide-negative phase of death consistent with apoptosis. TauNHCl treatment results in a conformational change in BAX that is associated with its activation. Both Bcl-2 and, to a lesser degree, the dominant negative form of caspase-9 inhibit cell death following TauNHCl treatment. In contrast with IL-3 withdrawal, TauNHCl treatment of FL5.12 cells results in a rapid cell cycle arrest that is cell cycle phase-independent. These results demonstrate that TauNHCl treatment induces a rapid, cell cycle-independent proliferative arrest followed by the activation of a cell death pathway involving Bcl-2 family members and caspase activation.  相似文献   

13.
Infection by a number of Chlamydia species leads to resistance of the host cell to apoptosis, followed by induction of host-cell death. In a population of infected cells that displays protection against staurosporine-induced apoptosis among the adherent cells, we find that cells that had been recovered from the supernatant share characteristics of both apoptosis and necrosis, as assayed by the propidium iodide (PI)-annexin V double-labeling technique. Cell death was observed in both an epithelial cell line and primary fibroblasts, although the primary cells had a higher propensity to die through apoptosis than the immortalized cell line. Staurosporine-mediated activation of the pro-apoptotic BCL-2 family member, BAX, was inhibited in the epithelial cell line infected for 32 h with the lymphogranuloma venereum (LGV/L2) but not the murine pneumonitis (MoPn) strain of C. trachomatis, but inhibition of staurosporine-mediated BAX activation disappeared after 48 h of infection with the LGV/L2 strain. Conversely, infection with MoPn (C. muridarum) but not LGV/L2 led to BAX activation after 72 h, as previously reported for shorter (48 h) infection with the guinea pig inclusion conjunctivitis (GPIC) serovar of C. psittaci (C. caviae). These results suggest that the ability to inhibit staurosporine-mediated BAX activation or to activate BAX due to the infection itself may vary as a function of the chlamydial strain. Interestingly, both the epithelial cells and the fibroblasts also released high mobility group box 1 protein (HMGB1) during infection, although much less HMGB1 was released from fibroblasts, consistent with the higher level of apoptosis observed in the primary cells. HMGB1 is released preferentially by necrotic or permeabilized viable cells, but not apoptotic cells. In the extracellular space, HMGB1 promotes inflammation through interaction with specific cell-surface receptors. Higher levels of HMGB1 were also measured in the genital-tract secretions of mice infected vaginally with C. trachomatis, compared to uninfected controls. These results suggest that cells infected with Chlamydia release intracellular factors that may contribute to the inflammatory response observed in vivo.  相似文献   

14.
Pancreatic beta-cell death induced by oxidative stress plays an important role in the pathogenesis of diabetes mellitus. We studied the relation between rapid intracellular acidification and cell death of pancreatic beta-cell line NIT-1 cells exposed to H2O2 or alloxan. Intracellular pH was measured by a pH-sensitive dye, and cell damage by double staining with Annexin-V and propidium iodide using flow cytometry. H2O2 and alloxan caused a rapid fall in intracellular pH and suppressed Na+/H+ exchanger activity in the NH4Cl prepulse method. H2O2 induced necrotic cell death, which shifted to apoptotic cell death when initial acidification was prevented by pH clamping to 7.4 using nigericin (unclamped cells vs clamped cells, necrosis 43.8 +/- 5.8% vs 21.1 +/- 10.6%, P < 0.05; apoptosis 8.0 +/- 1.9% vs 44.5 +/- 5.0%, P < 0.01). pH-clamped cells showed enhanced caspase 3 activity and proapoptotic Bax expression. On the other hand, NIT-1 cells were resistant to alloxan toxicity, but treatment with alloxan and nigericin strikingly enhanced the cytotoxicity. Antioxidants partly prevented cell death, although intracellular pH remained similarly acidic. The rapid intracellular acidification was not the cause of cell death but a significant determinant of the mode of death of H2O2 -treated beta cells, whereas no link between cell death and acidification was demonstrated in alloxan toxicity.  相似文献   

15.
An ultrastructural study of mouse and rat embryo implantation sites was undertaken to determine whether the uterine luminal epithelial cells surrounding the blastocyst exhibited the morphologic characteristics of apoptotic or necrotic cell death. In both species the epithelial cells exhibited all of the characteristics of apoptosis, including surface blebbing, shrinkage and fragmentation of the cells, condensation of chromatin, and indentation and fragmentation of nuclei. Cytoplasmic organelles remained morphologically intact, and the cytoplasm maintained normal or increased staining density. Also, the epithelial cells and cell fragments were phagocytosed by the adjacent trophoblast cells. The epithelial cells did not exhibit the characteristics of necrotic cell death, such as swollen cells and mitochondria, damaged surface membranes, and disintegrated cytoplasmic organelles. We conclude that uterine epithelial cells surrounding mouse and rat embryos during implantation undergo apoptotic cell death leading to their phagocytosis by trophoblast cells.  相似文献   

16.
Maeno E  Takahashi N  Okada Y 《FEBS letters》2006,580(27):6513-6517
Sustained cell shrinkage is a major hallmark of apoptotic cell death. In apoptotic cells, whole cell volume reduction, called apoptotic volume decrease (AVD), proceeds until fragmentation of cells. Under non-apoptotic conditions, human epithelial HeLa cells exhibited a slow regulatory volume increase (RVI) after osmotic shrinkage induced by exposure to hypertonic solution. When AVD was induced by treatment with a Fas ligand, TNF-alpha or staurosporine, however, it was found that HeLa cells failed to undergo RVI. When RVI was inhibited by combined application of Na+/H+ exchanger (NHE) and anion exchanger blockers, hypertonic stress induced prolonged shrinkage followed by caspase-3 activation in HeLa cells. Hypertonicity also induced apoptosis in NHE1-deficient PS120 fibroblasts, which lack the RVI response. When RVI was restored by transfection of these cells with NHE1, hypertonicity-induced apoptosis was completely prevented. Thus, it is concluded that RVI dysfunction is indispensable for the persistence of AVD and induction of apoptosis.  相似文献   

17.
Many viruses induce cell death and lysis as part of their replication and dissemination strategy, and in many cases features of apoptosis are observed. Attempts have been made to further increase productivity by prolonging cell survival via the over‐expression of anti‐apoptotic genes. Here, we extend the study to investigate the association between virus replication and apoptosis, pertinent to large‐scale vector production for gene therapy. Infection of an HEK293 cell line with a replication defective type‐5‐adenovirus expressing a GFP reporter (Ad5GFP) resulted in rapid decline in viability associated with increased virus titer. The over‐expression of bcl‐2 resulted in improved cell resistance to apoptosis and prolonged culture duration, but reduced virus specific and total productivity. In contrast, the over‐expression of pro‐caspase‐3 (Yama/CPP32/apopain) resulted in reduced cell survival but increased virus productivity. The treatment of infected cells with caspase inhibitors support the preposition that caspase‐3 dependent apoptosis, and to a lesser degree caspase‐9 dependent apoptosis, represent important steps in virus production, thus implicating the intrinsic apoptosis pathway in the production of adenovirus from HEK293 cells. The suppression of apoptosis by the over‐expression of XIAP (inhibitors of caspase family cell death proteases) further shows that caspase‐mediated activation plays an important role in virus infection and maturation. Biotechnol. Bioeng. 2009; 104: 752–765 © 2009 Wiley Periodicals, Inc.  相似文献   

18.
Li M  Beg AA 《Journal of virology》2000,74(16):7470-7477
Induction of apoptotic cell death generally requires the participation of cysteine proteases belonging to the caspase family. However, and similar to most cell types, mouse fibroblasts are normally resistant to tumor necrosis factor alpha (TNF-alpha)-induced apoptosis. Surprisingly, TNF-alpha treatment of vaccinia virus-infected mouse fibroblasts resulted in necrotic-like cell death, which was significantly reduced in cells infected with a vaccinia virus mutant lacking the caspase inhibitor B13R. Furthermore, TNF-alpha also induced necrotic-like cell death of fibroblasts in the presence of peptidyl caspase inhibitors. In both cases, necrosis was accompanied by generation of superoxide species. Caspase inhibitors also sensitized fibroblasts to killing by double-stranded RNA and gamma interferon. In all cases, cell death was efficiently blocked by antioxidants or mitochondrial respiratory chain inhibitors. These results define a new mitochondrion-dependent mechanism which may be important in the killing of cells infected with viruses encoding caspase inhibitors.  相似文献   

19.
The obligate intracellular parasite Toxoplasma gondii chronically infects up to one-third of the global population, can result in severe disease in immunocompromised individuals, and can be teratogenic. In this study, we demonstrate that death receptor ligation in T. gondii-infected cells leads to rapid egress of infectious parasites and lytic necrosis of the host cell, an active process mediated through the release of intracellular calcium as a consequence of caspase activation early in the apoptotic cascade. Upon acting on infected cells via death receptor- or perforin-dependent pathways, T cells induce rapid egress of infectious parasites able to infect surrounding cells, including the Ag-specific effector cells.  相似文献   

20.
Activation of p53 by cellular stress may lead to either cell cycle arrest or apoptotic cell death. Restrictions in a cell's ability to halt the cell cycle might, in turn, cause mitotic catastrophe, a delayed type of cell death with distinct morphological features. Here, we have investigated the contribution of p53 and caspase-2 to apoptotic cell death and mitotic catastrophe in cisplatin-treated ovarian carcinoma cell lines. We report that both functional p53 and caspase-2 were required for the apoptotic response, which was preceded by translocation of nuclear caspase-2 to the cytoplasm. In the absence of functional p53, cisplatin treatment resulted in caspase-2-independent mitotic catastrophe followed by necrosis. In these cells, apoptotic functions could be restored by transient expression of wt p53. Hence, p53 appeared to act as a switch between apoptosis and mitotic catastrophe followed by necrosis-like lysis in this experimental model. Further, we show that inhibition of Chk2, and/or 14-3-3sigma deficiency, sensitized cells to undergo mitotic catastrophe upon treatment with DNA-damaging agents. However, apoptotic cell death seemed to be the final outcome of this process. Thus, we hypothesize that the final mode of cell death triggered by DNA damage in ovarian carcinoma cells is determined by the profile of proteins involved in the regulation of the cell cycle, such as p53- and Chk2-related proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号