首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K Zinn  L McAllister  C S Goodman 《Cell》1988,53(4):577-587
The fasciclin I, II, and III glycoproteins are expressed on different subsets of axon bundles (fascicles) in insect embryos and are thus candidates for surface recognition molecules involved in growth cone guidance. Here we present the sequence of grasshopper fasciclin I and the identification and sequence of the Drosophila fasciclin I homolog. In both species, fasciclin I appears to be an extrinsic membrane protein with a signal sequence but no transmembrane region; the protein comprises four homologous domains of approximately 150 amino acids each. Antibodies against Drosophila fasciclin I reveal that it is expressed on the surface of a subset of commissural axon pathways in the embryonic central nervous system and on all sensory axon pathways in the peripheral nervous system. This pattern of expression is similar to that in grasshopper.  相似文献   

2.
The identification of surface proteins restricted to subsets of embryonic axons and growth cones may provide information on the mechanisms underlying axon fasciculation and pathway selection in the vertebrate nervous system. We describe here the characterization of a 135 kd cell surface glycoprotein, TAG-1, that is expressed transiently on subsets of embryonic spinal cord axons and growth cones. TAG-1 is immunochemically distinct from the cell adhesion molecules N-CAM and L1 (NILE) and is expressed on commissural and motor neurons over the period of initial axon extension. Moreover, TAG-1 and L1 appear to be segregated on different segments of the same embryonic spinal axons. These observations provide evidence that axonal guidance and pathway selection in vertebrates may be regulated in part by the transient and selective expression of distinct surface glycoproteins on subsets of developing neurons.  相似文献   

3.
N H Patel  P M Snow  C S Goodman 《Cell》1987,48(6):975-988
To identify candidates for neuronal recognition molecules in Drosophila, we used monoclonal antibodies to search for surface glycoproteins expressed on subsets of axon bundles (or fascicles) during development. Here we report on the characterization and cloning of fasciclin III, which is expressed on a subset of neurons and axon pathways in the Drosophila embryo. Fasciclin III is also expressed at other times and places including transient segmentally repeated patches in the neuroepithelium and segmentally repeated stripes in the body epidermis. Antisera generated against each of four highly related forms of the protein were used for cDNA expression cloning to identify a single gene, which was confirmed to encode fasciclin III by tissue in situ hybridization and genetic deficiency analysis.  相似文献   

4.
Retinal axon pathfinding from the retina into the optic nerve involves the growth promoting axon guidance molecules L1, laminin and netrin 1, each of which governs axon behavior at specific regions along the retinal pathway. In identifying additional molecules regulating this process during embryonic mouse development, we found that transmembrane Semaphorin5A mRNA and protein was specifically expressed in neuroepithelial cells surrounding retinal axons at the optic disc and along the optic nerve. Given that growth cone responses to a specific guidance molecule can be altered by co-exposure to a second guidance cue, we examined whether retinal axon responses to Sema5A were modulated by other guidance signals axons encountered along the retinal pathway. In growth cone collapse, substratum choice and neurite outgrowth assays, Sema5A triggered an invariant inhibitory response in the context of L1, laminin, or netrin 1 signaling, suggesting that Sema5A inhibited retinal axons throughout their course at the optic disc and nerve. Antibody-perturbation studies in living embryo preparations showed that blocking of Sema5A function led to retinal axons straying out of the optic nerve bundle, indicating that Sema5A normally helped ensheath the retinal pathway. Thus, development of some CNS nerves requires inhibitory sheaths to maintain integrity. Furthermore, this function is accomplished using molecules such as Sema5A that exhibit conserved inhibitory responses in the presence of co-impinging signals from multiple families of guidance molecules.  相似文献   

5.
The establishment of neuronal connections during embryonic development requires the precise guidance and targeting of the neuronal growth cone, an expanded cellular structure at the leading tip of a growing axon. The growth cone contains sophisticated signaling systems that allow the rapid communication between guidance receptors and the actin cytoskeleton in generating directed motility. Previous studies demonstrated a specific role for the Nck/Dock SH2/SH3 adapter protein in photoreceptor (R cell) axon guidance and target recognition in the Drosophila visual system, suggesting strongly that Nck/Dock is one of the long-sought missing links between cell surface receptors and the actin cytoskeleton. In this review, I discuss the recent progress on dissecting the Nck/Dock signaling pathways in R-cell growth cones. These studies have identified additional key components of the Nck/Dock signaling pathways for linking the receptor signaling to the remodeling of the actin cytoskeleton in controlling growth-cone motility.  相似文献   

6.
In leech, the central projections of peripheral sensory neurons segregate into specific axonal tracts, which are distinguished by differential expression of surface antigens recognized by the monoclonal antibodies Lan3-2 and Lan4-2. Lan3-2 recognizes an epitope expressed on axons that segregate into three distinct axon fascicles. In contrast, the Lan4-2-positive axons selectively project into only one of the Lan3-2-positive axon tracts. These observations provide evidence for a hierarchy of guidance cues mediating specific pathway formation in this system. Since the Lan3-2 antibody has been shown to perturb this process and since, as shown here, the Lan3-2 and Lan4-2 antigens are closely molecularly interrelated, these antibodies may help define molecules and epitopes mediating neuronal recognition and axonal guidance.  相似文献   

7.
Genetic analysis has finally come of age in the study of neural cell adhesion molecules and their function during growth cone guidance in Drosophila. Recent studies have shown that fasciclin II, a neural cell adhesion molecule of the immunoglobulin superfamily, functions as a recognition molecule for the MP1 axon pathway, thus serving as the first molecular confirmation for the existence of functional labels on specific axon pathways in the developing organism.  相似文献   

8.
A scaffold of axons consisting of a pair of longitudinal tracts and several commissures is established during early development of the vertebrate brain. We report here that NOC-2, a cell surface carbohydrate, is selectively expressed by a subpopulation of growing axons in this scaffold in Xenopus. NOC-2 is present on two glycoproteins, one of which is a novel glycoform of the neural cell adhesion molecule N-CAM. When the function of NOC-2 was perturbed using either soluble carbohydrates or anti-NOC-2 antibodies, axons expressing NOC-2 exhibited aberrant growth at specific points in their pathway. NOC-2 is the first-identified axon guidance molecule essential for development of the axon scaffold in the embryonic vertebrate brain.  相似文献   

9.
The mechanisms linking guidance receptors to cytoskeletal dynamics in the growth cone during axon extension remain mysterious. The Rho-family GTPases Rac and CDC-42 are key regulators of growth cone lamellipodia and filopodia formation, yet little is understood about how these molecules interact in growth cone outgrowth or how the activities of these molecules are regulated in distinct contexts. UNC-73/Trio is a well-characterized Rac GTP exchange factor in Caenorhabditis elegans axon pathfinding, yet UNC-73 does not control CED-10/Rac downstream of UNC-6/Netrin in attractive axon guidance. Here we show that C. elegans TIAM-1 is a Rac-specific GEF that links CDC-42 and Rac signaling in lamellipodia and filopodia formation downstream of UNC-40/DCC. We also show that TIAM-1 acts with UNC-40/DCC in axon guidance. Our results indicate that a CDC-42/TIAM-1/Rac GTPase signaling pathway drives lamellipodia and filopodia formation downstream of the UNC-40/DCC guidance receptor, a novel set of interactions between these molecules. Furthermore, we show that TIAM-1 acts with UNC-40/DCC in axon guidance, suggesting that TIAM-1 might regulate growth cone protrusion via Rac GTPases in response to UNC-40/DCC. Our results also suggest that Rac GTPase activity is controlled by different GEFs in distinct axon guidance contexts, explaining how Rac GTPases can specifically control multiple cellular functions.  相似文献   

10.
The intraaxonal distribution of labeled glycoproteins in the regenerating hypoglossal nerve of the rabbit was studied by use of quantitative electron microscope autoradiography. 9 d after nerve crush, glycoproteins were labeled by the administration of [3H]fucose to the medulla. The distribution of transported 3H-labeled glycoproteins was determined 18 h later in segments of the regenerating nerve and in the contralateral, intact nerve. At the regenerating tip, the distribution was determined both in growth cones and in non-growth cone axons, 6 and 18 h after labeling. The distribution within the non-growth cone axons of the tips was quite different at 6 and 18 h. At 6 h, the axolemma region contained < 10% of the radioactivity; at 18 h, it contained virtually all the radioactivity. In contrast, the distribution within the growth cones was similar at both time intervals, with 30% of the radioactivity over the axolemmal region. Additional segments of the regenerating nerve also showed a preferential labeling of the axolemmal region. In the intact nerve, 3H-labeled glycoproteins were uniformly distributed. These results suggest that: (a) in this system the labeled glycoproteins reaching the tip of the regenerating axons are inserted into the axolemma between 6 and 18 h after leaving the neuronal perikaryon; (b) at the times studied, there is a fairly constant ratio between glycoproteins reaching the growth cone through axoplasmic transport and glycoproteins inserted into the growth cone axolemma; (c) the axolemma elongates by continuous insertion of membrane precursors at the growth cone; the growth cone then advances, leaving behind an immature axon with a newly formed axolemma; and (d) glycoproteins are preferentially inserted into the axolemma along the entire regenerating axon.  相似文献   

11.
Directional guidance of nerve growth cones   总被引:4,自引:0,他引:4  
The intricate connections of the nervous system are established, in part, by elongating axonal fibers that are directed by complex guidance systems to home in on their specific targets. The growth cone, the major motile apparatus at the tip of axons, explores its surroundings and steers the axon along a defined path to its appropriate target. Significant progress has been made in identifying the guidance molecules and receptors that regulate growth cone pathfinding, the signaling cascades underlying distinct growth cone behaviors, and the cytoskeletal components that give rise to the directional motility of the growth cone. Recent studies have also shed light on the sophisticated mechanisms and new players utilized by the growth cone during pathfinding. It is clear that axon pathfinding requires a growth cone to sample and integrate various signals both in space and in time, and subsequently to coordinate the dynamics of its membrane, cytoskeleton and adhesion to generate specific responses.  相似文献   

12.
Growth cones are highly motile structures at the end of neuronal processes, capable of receiving multiple types of guidance cues and transducing them into directed axonal growth. Thus, to guide the axon toward the appropriate target cell, the growth cone carries out different functions: it acts as a sensor, signal transducer, and motility device. An increasing number of molecular components that mediate axon guidance have been characterized over the past years. The vast majority of these molecules include proteins that act as guidance cues and their respective receptors. In addition, more and more signaling and cytoskeleton-associated proteins have been localized to the growth cone. Furthermore, it has become evident that growth cone motility and guidance depends on a dynamic cytoskeleton that is regulated by incoming guidance information. Current and future research in the growth cone field will be focussed on how different guidance cues transmit their signals to the cytoskeleton and change its dynamic properties to affect the rate and direction of growth cone movement. In this review, we discuss recent evidence that cell adhesion molecules can regulate growth cone motility and guidance by a mechanism of substrate-cytoskeletal coupling.  相似文献   

13.
The formation of axon tracts in nervous system histogenesis is the result of selective axon fasciculation and specific growth cone guidance in embryonic development. One group of proteins implicated in neurite outgrowth, fasciculation, and guidance is the neural members of the Ig superfamily (IgSF). In an attempt to identify and characterize new proteins of this superfamily in the developing nervous system, we used a PCR-based strategy with degenerated primers that represent conserved sequences around the characteristic cysteine residues of Ig-like domains. Using this approach, we identified a novel neural IgSF member, termed neurotractin. This GPI-linked cell surface glycoprotein is composed of three Ig-like domains and belongs to the IgLON subgroup of neural IgSF members. It is expressed in two isoforms with apparent molecular masses of 50 and 37 kD, termed L-form and S-form, respectively. Monoclonal antibodies were used to analyze its biochemical features and histological distribution. Neurotractin is restricted to subsets of developing commissural and longitudinal axon tracts in the chick central nervous system. Recombinant neurotractin promotes neurite outgrowth of telencephalic neurons and interacts with the IgSF members CEPU-1 (KD = 3 x 10(-8) M) and LAMP. Our data suggest that neurotractin participates in the regulation of neurite outgrowth in the developing brain.  相似文献   

14.
Molecular basis of semaphorin-mediated axon guidance   总被引:10,自引:0,他引:10  
The semaphorin family of proteins constitute one of the major cues for axonal guidance. The prototypic member of this family is Sema3A, previously designated semD/III or collapsin-1. Sema3A acts as a diffusible, repulsive guidance cue in vivo for the peripheral projections of embryonic dorsal root ganglion neurons. Sema3A binds with high affinity to neuropilin-1 on growth cone filopodial tips. Although neuropilin-1 is required for Sema3A action, it is incapable of transmitting a Sema3A signal to the growth cone interior. Instead, the Sema3A/neuropilin-1 complex interacts with another transmembrane protein, plexin, on the surface of growth cones. Certain semaphorins, other than Sema3A, can bind directly to plexins. The intracellular domain of plexin is responsible for initiating the signal transduction cascade leading to growth cone collapse, axon repulsion, or growth cone turning. This intracellular cascade involves the monomeric G-protein, Rac1, and a family of neuronal proteins, the CRMPs. Rac1 is likely to be involved in semaphorin-induced rearrangements of the actin cytoskeleton, but how plexin controls Rac1 activity is not known. Vertebrate CRMPs are homologous to the Caenorhabditis elegans unc-33 protein, which is required for proper axon morphology in worms. CRMPs are essential for Sema3A-induced, neuropilin-plexin-mediated growth cone collapse, but the molecular interactions of growth cone CRMPs are not well defined. Mechanistic aspects of plexin-based signaling for semaphorin guidance cues may have implications for other axon guidance events and for the basis of growth cone motility.  相似文献   

15.
16.
17.
Axon pathfinding in the neuroepithelium of embryonic brain is dependent on a variety of short and long range guidance cues. Heparan sulfate proteoglycans such as syndecans act as modulators of these cues and their importance in neural development is highlighted by their phylogenetic conservation. In Drosophilia, a single syndecan is present on the surface of axon growth cones and is required for chemorepulsive signalling during midline crossing. Understanding the role of syndecans in the vertebrate nervous system is challenging given that there are four homologous genes, syndecans 1–4. We show here that syndecans 2–4 are expressed in the zebrafish embryonic brain during the major period of axon growth. These genes show differing expression patterns in the brain which provides putative insights into their functional specificity.  相似文献   

18.
The wiring of neuronal circuits requires complex mechanisms to guide axon subsets to their specific target with high precision. To overcome the limited number of guidance cues, modulation of axon responsiveness is crucial for specifying accurate trajectories. We report here a novel mechanism by which ligand/receptor co-expression in neurons modulates the integration of other guidance cues by the growth cone. Class 3 semaphorins (Sema3 semaphorins) are chemotropic guidance cues for various neuronal projections, among which are spinal motor axons navigating towards their peripheral target muscles. Intriguingly, Sema3 proteins are dynamically expressed, forming a code in motoneuron subpopulations, whereas their receptors, the neuropilins, are expressed in most of them. Targeted gain- and loss-of-function approaches in the chick neural tube were performed to enable selective manipulation of Sema3C expression in motoneurons. We show that motoneuronal Sema3C regulates the shared Sema3 neuropilin receptors Nrp1 and Nrp2 levels in opposite ways at the growth cone surface. This sets the respective responsiveness to exogenous Nrp1- and Nrp2-dependent Sema3A, Sema3F and Sema3C repellents. Moreover, in vivo analysis revealed a context where this modulation is essential. Motor axons innervating the forelimb muscles are exposed to combined expressions of semaphorins. We show first that the positioning of spinal nerves is highly stereotyped and second that it is compromised by alteration of motoneuronal Sema3C. Thus, the role of the motoneuronal Sema3 code could be to set population-specific axon sensitivity to limb-derived chemotropic Sema3 proteins, therefore specifying stereotyped motor nerve trajectories in their target field.  相似文献   

19.
Pathfinding of axons in the developing nervous system is thought to be mediated by glycoproteins expressed on the surface of embryonic axons and growth cones. One molecule suggested to play a role in axonal growth is TAG-1, a 135 kd glycoprotein expressed transiently on the surface of subsets of neurons in the developing mammalian nervous system. We isolated a full-length cDNA clone encoding rat TAG-1. TAG-1 has six immunoglobulin-like domains and four fibronectin type III-like repeats and is structurally similar to other immunoglobulin-like proteins expressed on developing axons. Neurons maintained in vitro on a substrate of TAG-1 extend long neurites, suggesting that this protein plays a role in the initial growth and guidance of axons in vivo. TAG-1 is anchored to the neuronal membrane via a glycosyl phosphatidylinositol linkage and is also released from neurons, suggesting that TAG-1 also functions as a substrate adhesion molecule when released into the extracellular environment.  相似文献   

20.
Owing to the continual turnover of afferent input, the olfactory system offers a unique opportunity to study development and reorganization of neuronal networks in adults. To explore substrates that may underlie these processes in the adult olfactory system, we examined the expression and distribution of extracellular matrix and cell adhesion molecules (CAM) thought to be involved in axon guidance/extension. N-CAM, laminin, and tenascin were all detected by immunocytochemistry in the nerve and glomerular layers of the adult rat olfactory bulb, although the intensity and laminar distribution were varied. Antisera for N-CAMtotal, N-CAM180, and tenascin bound to fascicles within the olfactory nerve layer and the glomerular neuropil. However, binding was nonuniform in that only subsets of axon fascicles and restricted glomeruli showed evidence of immunoreactivity. Antilaminin and a polyclonal antitenascin similarly exhibited heterogeneous intralaminar immunoreactivity. Tenascin colocalized with glial processes at the borders of glomeruli and subcompartments of the glomerular neuropil. Laminin immunoreactivity was evident in subsets of olfactory nerve fascicles and, to a lesser extent, the glomeruli. The data are consistent with the notion that ongoing axon extension and glomerular targeting in the olfactory system is subserved in part by a heterogeneous expression of the same extracellular matrix and CAMs present at higher levels during perinatal development. © 1998 John Wiley & Sons, Inc. J Neurobiol 34: 271–282, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号