首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Twomey C  McCarthy JV 《FEBS letters》2006,580(17):4015-4020
Previously we described presenilin-1 (PS1) as a GSK-3beta substrate [Kirschenbaum, F., Hsu, S.C., Cordell, B. and McCarthy, J.V. (2001) Substitution of a glycogen synthase kinase-3beta phosphorylation site in presenilin 1 separates presenilin function from beta-catenin signalling. J. Biol. Chem. 276, 7366-7375; Kirschenbaum, F., Hsu, S.C., Cordell, B. and McCarthy, J.V. (2001) Glycogen synthase kinase-3beta regulates presenilin 1 C-terminal fragment levels. J. Biol. Chem. 276, 30701-30707], though it has not been determined whether PS1 is a primed or unprimed GSK-3beta substrate. A means of separating GSK-3beta activity toward primed and unprimed substrates was identified in the GSK-3beta-R96A phosphate binding pocket mutant [Frame, S., Cohen, P. and Biondi, R.M. (2001) A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol. Cell 7, 1321-1327], which is unable to phosphorylate primed but retains the ability to phosphorylate unprimed GSK-3beta substrates. By using wild type GSK-3beta, GSK-3beta-R96A, and a pharmacological modulator of GSK-3beta activity, we demonstrate that PS1 is an unprimed GSK-3beta substrate. These findings have important implications for regulation of PS1 function and the pathogenesis of Alzheimer's disease.  相似文献   

2.
It has been suggested that phosphorylation at serine 9 near the N-terminus of glycogen synthase kinase-3β (GSK-3β) mimics the prephosphorylation of its substrate and, therefore, the N-terminus functions as a pseudosubstrate. The molecular basis for the pseudosubstrate's binding to the catalytic core and autoinhibition has not been fully defined. Here, we combined biochemical and computational analyses to identify the potential residues within the N-terminus and the catalytic core engaged in autoinhibition of GSK-3β. Bioinformatic analysis found Arg4, Arg6, and Ser9 in the pseudosubstrate sequence to be extremely conserved through evolution. Mutations at Arg4 and Arg6 to alanine enhanced GSK-3β kinase activity and impaired its ability to autophosphorylate at Ser9. In addition, and unlike wild-type GSK-3β, these mutants were unable to undergo autoinhibition by phosphorylated Ser9. We further show that Gln89 and Asn95, located within the catalytic core, interact with the pseudosubstrate. Mutation at these sites prevented inhibition by phosphorylated Ser9. Furthermore, the respective mutants were not inhibited by a phosphorylated pseudosubstrate peptide inhibitor. Finally, computational docking of the pseudosubstrate into the catalytic active site of the kinase suggested specific interactions between Arg6 and Asn95 and of Arg4 to Asp181 (apart from the interaction of phosphorylated serine 9 with the “phosphate binding pocket”). Altogether, our study supports a model of GSK-3-pseudosubstrate autoregulation that involves phosphorylated Ser9, Arg4, and Arg6 within the N-terminus and identified the specific contact sites within the catalytic core.  相似文献   

3.
Glycogen synthase kinase-3beta (GSK3beta) plays important roles in metabolism, embryonic development, and tumorigenesis. Here we investigated the role of GSK3beta signaling in vascular biology by examining its function in endothelial cells (ECs). In EC, the regulatory phosphorylation of GSK3beta was found to be under the control of phosphoinositide 3-kinase-, MAPK-, and protein kinase A-dependent signaling pathways. The transduction of a nonphosphorylatable constitutively active mutant of GSKbeta promoted apoptosis under the conditions of prolonged serum deprivation or the disruption of cell-matrix attachments. Conversely, the transduction of catalytically inactive GSK3beta promoted EC survival under the conditions of cellular stress. Under normal cell culture conditions, the activation of GSK3beta signaling inhibited the migration of EC to vascular endothelial growth factor or basic fibroblast growth factor. Angiogenesis was inhibited by GSK3beta activation in an in vivo Matrigel plug assay, whereas the inhibition of GSK3beta signaling enhanced capillary formation. These data suggest that GSK3beta functions at the nodal point of converging signaling pathways in EC to regulate vessel growth through its control of vascular cell migration and survival.  相似文献   

4.
Glycogen synthase kinase-3 was isolated from rabbit skeletal muscle by an improved procedure. The purification was estimated to be 67000-fold and 0.2 mg of enzyme was isolated from 5000 g muscle, corresponding to an overall yield of 7%. The preparation was homogeneous by ultracentrifugal and electrophoretic criteria. The enzyme had a relative molecular mass of 47 kDa by sedimentation equilibrium centrifugation and 51 kDa by SDS-polyacrylamide gel electrophoresis. These values demonstrate that glycogen synthase kinase-3 is monomeric. The Stokes radius of 37 nm suggests the molecule to be asymmetric. The activating factor of the Mg-ATP dependent form of protein phosphatase-1 coeluted with glycogen synthase kinase-3 activity at the final step, establishing that these two activities reside in the same protein. Glycogen synthase kinase-3 phosphorylates glycogen synthase at sites-3, while casein kinase-II phosphorylates site-5, just C-terminal to sites-3 (Picton, C., Aitken, A., Bilham, T. and Cohen, P. (1982) Eur. J. Biochem. 124, 37-45). The basis for the substrate specificities of these protein kinases was investigated using chymotryptic peptides that contain the sites phosphorylated by each enzyme. These studies showed that efficient phosphorylation of sites-3, required the presence of phosphate in site-5 and a region of polypeptide more than 20 residues C-terminal to site-5. In contrast, efficient phosphorylation by casein kinase-II does not require this C-terminal region, and the results are consistent with the view that the enzyme recognises acidic residues immediately C-terminal to site-5.  相似文献   

5.
Kenpaullone derivatives with a modified parent ring system were synthesized in order to develop kinase inhibitors with enhanced selectivity. Among the novel structures, 1-azakenpaullone was found to act as a selective GSK-3beta versus CDK1 inhibitor. The charge distribution within the 1-azakenpaullone molecule is discussed as a possible explanation for the enhanced GSK-3beta selectivity of 1-azakenpaullone compared to other paullone derivatives.  相似文献   

6.
Glycogen synthase kinase-3 (GSK3) is a constitutively active protein kinase in brain. Increasing evidence has shown that GSK3 acts as a modulator in the serotonin neurotransmission system, including direct interaction with serotonin 1B (5-HT1B) receptors in a highly selective manner and prominent modulating effect on 5-HT1B receptor activity. In this study, we utilized the serotonin neuron-selective GSK3β knockout (snGSK3β-KO) mice to test if GSK3β in serotonin neurons selectively modulates 5-HT1B autoreceptor activity and function. The snGSK3β-KO mice were generated by crossbreeding GSK3β-floxed mice and ePet1-Cre mice. These mice had normal growth and physiological characteristics, similar numbers of tryptophan hydroxylase-2 (TpH2)-expressing serotonin neurons, and the same brain serotonin content as in littermate wild type mice. However, the expression of GSK3β in snGSK3β-KO mice was diminished in TpH2-expressing serotonin neurons. Compared to littermate wild type mice, snGSK3β-KO mice had a reduced response to the 5-HT1B receptor agonist anpirtoline in the regulation of serotonergic neuron firing, cAMP production, and serotonin release, whereas these animals displayed a normal response to the 5-HT1A receptor agonist 8-OH-DPAT. The effect of anpirtoline on the horizontal, center, and vertical activities in the open field test was differentially affected by GSK3β depletion in serotonin neurons, wherein vertical activity, but not horizontal activity, was significantly altered in snGSK3β-KO mice. In addition, there was an enhanced anti-immobility response to anpirtoline in the tail suspension test in snGSK3β-KO mice. Therefore, results of this study demonstrated a serotonin neuron-targeting function of GSK3β by regulating 5-HT1B autoreceptors, which impacts serotonergic neuron firing, serotonin release, and serotonin-regulated behaviors.  相似文献   

7.
The goal of this study was to determine whether the intracellular distribution of the proapoptotic enzyme glycogen synthase kinase-3 beta (GSK-3 beta) is dynamically regulated by conditions that activate apoptotic signaling cascades. In untreated human neuroblastoma SH-SY5Y cells, GSK-3 beta was predominantly cytosolic, although a low level was also detected in the nucleus. The nuclear level of GSK-3 beta was rapidly increased after exposure of cells to serum-free media, heat shock, or staurosporine. Although each of these conditions caused changes in the serine 9 and/or tyrosine phosphorylation of GSK-3 beta, neither of these modifications was correlated with nuclear accumulation of GSK-3 beta. Heat shock and staurosporine treatments increased nuclear GSK-3 beta prior to activation of caspase-9 and caspase-3, and this nuclear accumulation of GSK-3 beta was unaltered by pretreatment with a general caspase inhibitor. The GSK-3 beta inhibitor lithium did not alter heat shock-induced nuclear accumulation of GSK-3 beta but increased the nuclear level of cyclin D1, indicating that cyclin D1 is a substrate of nuclear GSK-3 beta. Thus, the intracellular distribution of GSK-3 beta is dynamically regulated by signaling cascades, and apoptotic stimuli cause increased nuclear levels of GSK-3 beta, which facilitates interactions with nuclear substrates.  相似文献   

8.
The Drosophila shaggy gene product is a mammalian glycogen synthase kinase-3beta (GSK-3beta) homologue that contributes to the circadian clock of the Drosophila through TIMELESS phosphorylation, and it regulates nuclear translocation of the PERIOD/TIMELESS heterodimer. We found that mammalian GSK-3beta is expressed in the suprachiasmatic nucleus and liver of mice and that GSK-3beta phosphorylation exhibits robust circadian oscillation. Rhythmic GSK-3beta phosphorylation is also observed in serum-shocked NIH3T3 cells. Exposing serum-shocked NIH3T3 cells to lithium chloride, a specific inhibitor of GSK-3beta, increases GSK-3beta phosphorylation and delays the phase of rhythmic clock gene expression. On the other hand, GSK-3beta overexpression advances the phase of clock gene expression. We also found that GSK-3beta interacts with PERIOD2 (PER2) in vitro and in vivo. Recombinant GSK-3beta can phosphorylate PER2 in vitro. GSK-3beta promotes the nuclear translocation of PER2 in COS1 cells. The present data suggest that GSK-3beta plays important roles in mammalian circadian clock.  相似文献   

9.
Phosphorylation of c-Myc on threonine 58 (T58) stimulates its degradation by the Fbw7-SCF ubiquitin ligase. We used a phosphorylation-specific antibody raised against the c-Myc T58 region to attempt to identify other proteins regulated by the Fbw7 pathway. We identified two predominant proteins recognized by this antibody. The first is Ebna1 binding protein 2, a nucleolar protein that, in contrast with a previous report, is likely responsible for the nucleolar staining exhibited by this antibody. The second is Zcchc8, a nuclear protein that is highly phosphorylated in cells treated with nocodazole. We show that Zcchc8 is directly phosphorylated by GSK-3 in vitro and that GSK-3 inhibition prevents Zcchc8 phosphorylation in vivo. Moreover, we found that Zcchc8 interacts with proteins involved in RNA processing/degradation. We suggest that Zcchc8 is a GSK-3 substrate with a role in RNA metabolism.  相似文献   

10.
We examined the role of glycogen synthase kinase-3beta (GSK-3beta) inhibition in airway smooth muscle hypertrophy, a structural change found in patients with severe asthma. LiCl, SB216763, and specific small interfering RNA (siRNA) against GSK-3beta, each of which inhibit GSK-3beta activity or expression, increased human bronchial smooth muscle cell size, protein synthesis, and expression of the contractile proteins alpha-smooth muscle actin, myosin light chain kinase, smooth muscle myosin heavy chain, and SM22. Similar results were obtained following treatment of cells with cardiotrophin (CT)-1, a member of the interleukin-6 superfamily, and transforming growth factor (TGF)-beta, a proasthmatic cytokine. GSK-3beta inhibition increased mRNA expression of alpha-actin and transactivation of nuclear factors of activated T cells and serum response factor. siRNA against eukaryotic translation initiation factor 2Bepsilon (eIF2Bepsilon) attenuated LiCl- and SB216763-induced protein synthesis and expression of alpha-actin and SM22, indicating that eIF2B is required for GSK-3beta-mediated airway smooth muscle hypertrophy. eIF2Bepsilon siRNA also blocked CT-1- but not TGF-beta-induced protein synthesis. Infection of human bronchial smooth muscle cells with pMSCV GSK-3beta-A9, a retroviral vector encoding a constitutively active, nonphosphorylatable GSK-3beta, blocked protein synthesis and alpha-actin expression induced by LiCl, SB216763, and CT-1 but not TGF-beta. Finally, lungs from ovalbumin-sensitized and -challenged mice demonstrated increased alpha-actin and CT-1 mRNA expression, and airway myocytes isolated from ovalbumin-treated mice showed increased cell size and GSK-3beta phosphorylation. These data suggest that inhibition of the GSK-3beta/eIF2Bepsilon translational control pathway contributes to airway smooth muscle hypertrophy in vitro and in vivo. On the other hand, TGF-beta-induced hypertrophy does not depend on GSK-3beta/eIF2B signaling.  相似文献   

11.
Zhang YJ  Xu YF  Liu YH  Yin J  Wang JZ 《FEBS letters》2005,579(27):6230-6236
Nitric oxide is associated with neurofibrillary tangle, which is composed mainly of hyperphosphorylated tau in the brain of Alzheimer's disease (AD). However, the role of nitric oxide in tau hyperphosphorylation is unclear. Here we show that nitric oxide produced by sodium nitroprusside (SNP), a recognized donor of nitric oxide, induces tau hyperphosphorylation at Ser396/404 and Ser262 in HEK293/tau441 cells with a simultaneous activation of glycogen synthase kinase-3beta (GSK-3beta). Pretreatment of the cells with 10 mM lithium chloride (LiCl), an inhibitor of GSK-3, 1 h before SNP administration inhibits GSK-3beta activation and prevents tau from hyperphosphorylation. This is the first direct evidence demonstrating that nitric oxide induces AD-like tau hyperphosphorylation in vitro, and GSK-3beta activation is partially responsible for the nitric oxide-induced tau hyperphosphorylation. It is suggested that nitric oxide may be an upstream element of tau abnormal hyperphosphorylation in AD.  相似文献   

12.
多功能的蛋白:糖原合成酶激酶-3   总被引:8,自引:0,他引:8  
糖原合成酶激酶-3(GSK-3)是一个多功能的丝氨酸/苏氨酸类激酶,在真核生物中普遍存在。在哺乳动物中包括两个亚型,即GSK-3a和GSK-3β。GSK-3至少在三条细胞通路上有作用:Wnt/wingless,P13-kinase以及Hedgehog信号通路,该酶的作用主要包括调节糖原的合成代谢,参与细胞的分化与增殖等。研究发现,GSK-3在某些疾病,如阿尔茨海默病和非胰岛素依赖型糖尿病(NIDDM)中,其活性会异常升高。现已发现了几种针对该酶的抑制剂,如aloisine,paullones和马来酰胺类化合物等。这些抑制剂的确在分子水平特异性地抑制GSK-3的活性,而对其他激酶几乎没有作用。关于这些抑制剂的研究工作也已经在细胞水平和动物模型上开展起来,为开发以GSK-3为靶点的新的治疗药物创造了良好的基础。  相似文献   

13.
Glycogen synthase kinase-3 beta (GSK-3) is a key downstream target of Wnt signaling and is regulated by its interactions with activating and inhibitory proteins. We and others have shown that GSK-3 activity toward non-primed substrates is regulated in part through a competition between its activating (Axin) and inhibitory (GBP/FRAT) binding partners. Here we use a reverse two-hybrid screen to identify mutations in GSK-3 that alter binding to GBP and Axin. We find that these mutations overlap and propose that GBP and Axin compete for binding to the same region of GSK-3. We use these mutations to examine the ability of GSK-3 to block eye development in Xenopus embryos and suggest that GSK-3 regulates eye development through a non-Wnt pathway.  相似文献   

14.
The Rho GTPases are critical regulators of the actin cytoskeleton and are required for cell adhesion, migration, and polarity. Among the key Rho regulatory proteins in the context of cell migration are the p190 RhoGAPs (p190A and p190B), which function to modulate Rho signaling in response to integrin engagement. The p190 RhoGAPs undergo complex regulation, including phosphorylation by several identified kinases, interactions with phospholipids, and association with a variety of cellular proteins. Here, we have identified an additional regulatory mechanism unique to p190A RhoGAP that involves priming-dependent phosphorylation by glycogen synthase-3-beta (GSK-3beta), a kinase previously implicated in establishing cell polarity. We found that p190A-deficient fibroblasts exhibit a defect in directional cell migration reflecting a requirement for GSK-3beta-mediated phosphorylation of amino acids in the C-terminal "tail" of p190A. This phosphorylation leads to inhibition of p190A RhoGAP activity in vitro and in vivo. These studies identify p190A as a novel GSK-3beta substrate and reveal a mechanism by which GSK-3beta contributes to cellular polarization in directionally migrating cells via effects on Rho GTPase activity.  相似文献   

15.
A hydroxy functional group was introduced as the hydrogen bond donor and acceptor at the hinge region of protein kinase in order to develop novel ATP-competitive inhibitors. Several derivatives of 7-hydroxyl-1H-benzoimidazole were designed as inhibitors of glycogen synthase kinase-3beta with the help of ab initio calculations and a docking study. Enzymatic assay and an X-ray complex study showed that these designed compounds were highly potent ATP-competitive inhibitors.  相似文献   

16.
This study examined the role of calcineurin, a major calcium-dependent protein phosphatase, in dephosphorylating Ser-9 and activating glycogen synthase kinase-3β (GSK-3β). Treatment with calcineurin inhibitors increased phosphorylation of GSK-3β at Ser-9 in SH-SY5Y human neuroblastoma cells. The over-expression of a constitutively active calcineurin mutant, calcineurin A beta (1–401), led to a significant decrease in phosphorylation at Ser-9, an increase in the activity of GSK-3β, and an increase in the phosphorylation of tau. Km of calcineurin for a GSK-3β phosphopeptide was 469.3 μM, and specific activity of calcineurin was 15.2 nmol/min/mg. In addition, calcineurin and GSK-3β were co-immunoprecipitated in neuron-derived cells and brain tissues, and calcineurin formed a complex only with dephosphorylated GSK-3β. We conclude that in vitro, calcineurin can dephosphorylate GSK-3β at Ser-9 and form a stable complex with GSK-3β, suggesting the possibility that calcineurin regulates the dephosphorylation and activation of GSK-3β in vivo .  相似文献   

17.
Stress of the endoplasmic reticulum (ER), which is associated with many neurodegenerative conditions, can lead to the elimination of affected cells by apoptosis through only partially understood mechanisms. Thapsigargin, which causes ER stress by inhibiting the ER Ca(2+)-ATPase, was found to not only activate the apoptosis effector caspase-3 but also to cause a large and prolonged increase in the activity of glycogen synthase kinase-3beta (GSK3beta). Activation of GSK3beta was obligatory for thapsigargin-induced activation of caspase-3, because inhibition of GSK3beta by expression of dominant-negative GSK3beta or by the GSK3beta inhibitor lithium blocked caspase-3 activation. Thapsigargin treatment activated GSK3beta by inducing dephosphorylation of phospho-Ser-9 of GSK3beta, a phosphorylation that normally maintains GSK3beta inactivated. Caspase-3 activation induced by thapsigargin was blocked by increasing the phosphorylation of Ser-9-GSK3beta with insulin-like growth factor-1 or with the phosphatase inhibitors okadaic acid and calyculin A, but the calcineurin inhibitors FK506 and cyclosporin A were ineffective. Insulin-like growth factor-1, okadaic acid, calyculin A, and lithium also protected cells from two other inducers of ER stress, tunicamycin and brefeldin A. Thus, ER stress activates GSK3beta through dephosphorylation of phospho-Ser-9, a prerequisite for caspase-3 activation, and this process is amenable to pharmacological intervention.  相似文献   

18.
The dissociation of the neuronal Golgi complex is a classical feature observed in neurodegenerative disorders including Alzheimer's disease. The goal of this study is to determine if the phosphorylation of tau protein is involved in neuronal Golgi disassembly. Primary cortical cultures were exposed to two Golgi toxins, brefeldin A (BFA) or nordihydroguaiaretic acid (NDGA). Immunocytochemical studies using the anti58 k antibody revealed that Golgi disassembly started in exposed neurons a few minutes after treatment. BFA and NDGA induced a rapid and transient increase in tau phosphorylation in a site-specific manner on immunoblots. In addition, the increase in tau phosphorylation directly correlated with a transient dissociation of tau from the cytoskeleton and a decrease of the acetylated tubulin. Furthermore, the activity of glycogen synthase kinase-3beta (GSK-3beta) increased transiently, as demonstrated by the kinase activity assay and by immunoblottings of serine-9 and tyrosine-216 phosphorylated of GSK-3beta. A decrease of the Akt phosphorylated form was also shown. The increase in tau phosphorylation was inhibited by the GSK-3beta inhibitor, lithium. Finally, morphometric studies showed that lithium partially blocked the Golgi disassembly caused by BFA or NDGA. Together these findings indicate that GSK-3beta activity and tau phosphorylation state are involved in the maintenance of the neuronal Golgi organization.  相似文献   

19.
Catecholamines, acting through adrenergic receptors, play an important role in modulating the effects of insulin on glucose metabolism. Insulin activation of glycogen synthesis is mediated in part by the inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3). In this study, catecholamine regulation of GSK-3beta was investigated in Rat-1 fibroblasts stably expressing the alpha1A-adrenergic receptor. Treatment of these cells with either insulin or phenylephrine (PE), an alpha1-adrenergic receptor agonist, induced Ser-9 phosphorylation of GSK-3beta and inhibited GSK-3beta activity. Insulin-induced GSK-3beta phosphorylation is mediated by the phosphatidylinositol 3-kinase/Akt signaling pathway. PE treatment does not activate phosphatidylinositol 3-kinase or Akt (Ballou, L. M., Cross, M. E., Huang, S., McReynolds, E. M., Zhang, B. X., and Lin, R. Z. (2000) J. Biol. Chem. 275, 4803-4809), but instead inhibits insulin-induced Akt activation and GSK-3beta phosphorylation. Experiments using protein kinase C (PKC) inhibitors suggest that phorbol ester-sensitive novel PKC and G? 6983-sensitive atypical PKC isoforms are involved in the PE-induced phosphorylation of GSK-3beta. Indeed, PE treatment of Rat-1 cells increased the activity of atypical PKCzeta, and expression of PKCzeta in COS-7 cells stimulated GSK-3beta Ser-9 phosphorylation. In addition, PE-induced GSK-3beta phosphorylation was reduced in Rat-1 cells treated with a cell-permeable PKCzeta pseudosubstrate peptide inhibitor. These results suggest that the alpha1A-adrenergic receptor regulates GSK-3beta through two signaling pathways. One pathway inhibits insulin-induced GSK-3beta phosphorylation by blocking insulin activation of Akt. The second pathway stimulates Ser-9 phosphorylation of GSK-3beta, probably via PKC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号