首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pollen beetle Meligethes aeneus Fabricius (Coleoptera, Nitidulidae), a pest of oilseed rape (Brassica napus), is known to respond to coloured stimuli; however, current understanding of the underlying mechanisms of colour choice in this species is limited. In the present study, physiological and behavioural experiments are conducted to determine the response of the pollen beetle to colours in the field. Spectral sensitivity is measured in 10 animals using the electroretinogram technique. Light flashes (100 ms) at varied wavelengths (340–650 nm, 10‐nm steps) and at different light intensities are applied to the eye after dark adaptation. In behavioural experiments in the field, 100 water traps of varying colours (from yellow to green to blue with varying amounts of white and black added, and with known spectral reflectance) are set out on a bare soil field in May 2008. The mean spectral sensitivity curve of M. aeneus peaks at 520 nm; however, a model template fitted to the long wavelength tail of the observed curve reveals a peak at approximately 540 nm (green). A secondary sensitivity peak is observed in the ultraviolet (UV) range (370 nm). A total of 2482 pollen beetles are captured in the coloured traps. The results show that the pollen beetles' preference for yellow over other colours can be modelled as a colour opponent mechanism (green versus blue); however, further experiments are needed to specify responses to colours with higher UV reflectance. These findings may be used to optimize trap colours for monitoring to help develop integrated pest management strategies for pollen beetle control.  相似文献   

2.
Although the role of colour in mate choice is well known, few tests of colour vision have been based on mating behaviour. Females of the fiddler crab Uca mjoebergi have recently been shown to use claw coloration to recognize conspecific males. In this study I demonstrate that the females use colour vision for this task; preferentially approaching yellow claws over grey claws regardless of their intensity while failing to discriminate between yellow claws differing in intensity. This is one of only a handful of studies confirming the involvement of colour vision in mate choice and the first conclusive evidence in fiddler crabs.  相似文献   

3.
The marine snail, Littoraria filosa, is polymorphic for shell colour, with yellow, brown, and pink morphs that correspond in both appearance and frequency to the predominant background colours of its habitat. Previous research on this polymorphism has found indirect evidence of apostatic selection and selection for crypsis by unknown agents, probably crabs, and direct evidence of selection for crypsis by the parasitoid fly Sarcophaga megafilosia. In the present study, we report on field experiments to investigate whether S. megafilosia and shell‐crushing predators exert apostatic selection on L. filosa. For S. megafilosia, seven experimental treatments containing yellow and brown snails in the proportions of 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, and 0.9 of each colour were established on mangrove trees and used to separately quantify the proportions of each colour attacked on grey/brown trunks and yellow/green leaves. The results obtained confirmed an earlier finding of selection for crypsis, but only showed slight, but significant, anti‐apostatic selection by S. megafilosia. For shell‐crushing predators, seven experimental treatments containing yellow and brown snails in the proportions of 0.08, 0.17, 0.33, 0.50, 0.66, 0.83, and 0.92 were established on two types of trees that differed in their background proportions of brown and green: (1) trees which had been pruned of approximately 90% of their foliage and (2) unpruned trees. The results obtained showed both selection for crypsis and apostatic selection. Furthermore, a selectively neutral frequency for yellow L. filosa was found for each background, and was less on pruned trees than unpruned ones (and vice versa for brown L. filosa), which can therefore account for the maintenance of a colour polymorphism where the proportions of each morph tend to resemble and correspond in frequency to the colours of the background. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 62–71.  相似文献   

4.
Summary In crabs, there is behavioural evidence for colour discrimination from the portunidCarcinus and severalUca species, but in the same and related species only a single visual pigment has been found in the rhabdoms by microspectrophotometry. Micro-electrode recordings of the spectral sensitivity of single portunid photoreceptors may throw some light on this apparent inconsistency. Large changes in spectral sensitivity occur with light adaptation in the crabScylla serrata. Selective adaptation experiments rule out the possibility that the changes may be caused by the presence of a number of visual pigments or of antenna pigments. The results suggest that inScylla the absorption of a single visual pigment type is modified by different coloured filters in different photoreceptors and that this makes colour discrimination possible.  相似文献   

5.
Visual orientation in the greenhouse whitefly (Trialeurodes vaporariorum Westwood, Hemiptera: Aleyrodidae) is the result of “wavelength‐specific behaviours.” Green–yellow elicits “settling behaviour” while ultraviolet (UV) radiation initiates “migratory behaviour.” The only available physiological study of the photoreceptors' spectral efficiency showed peaks in the green and the UV range and whitefly vision was said to be dichromatic so far. In order to study the visual behaviour of T. vaporariorum, 19 narrow‐bandwidth light emitting diodes (LEDs) covering the UV‐A and visible range were used in combination with light scattering acrylic glass screens in a small‐scale choice arena under greenhouse conditions. Multiple‐choice and dual‐choice assays were performed, resulting in LED‐based behavioural action spectra of settling (green) and migratory behaviour (UV). A potential inhibitory blue–green chromatic mechanism was studied by combining yellow with different bluish LEDs. Intensity dependencies were illustrated by changing LED intensities. Regarding the “settling response,” highest attraction was achieved by a green LED with a centroid wavelength of 550 nm, while a blue LED with 469 nm proved to be most inhibitory. Besides this inhibitory interaction, an intensity dependence was observed within the action spectrum in the green–yellow range. “Migratory behaviour” was elicited the most by the UV LED with the shortest available wavelength of 373 nm. The results provide compelling behavioural evidence for the presence of a green and a yet undescribed blue sensitive photoreceptor and a blue–green opponent mechanism. Furthermore, empirical colour choice models were built and receptor peaks were estimated around 510–520 nm (green), 480–490 nm (blue) and 340–370 nm (UV). Consequently, a trichromatic receptor setup is suggested for T. vaporariorum.  相似文献   

6.
The bumblebee Bombus impatiens is increasingly used as a model in comparative studies of colour vision, or in behavioural studies relying on perceptual discrimination of colour. However, full spectral sensitivity data on the photoreceptor inputs underlying colour vision are not available for B. impatiens. Since most known bee species are trichromatic, with photoreceptor spectral sensitivity peaks in the UV, blue and green regions of the spectrum, data from a related species, where spectral sensitivity measurements have been made, are often applied to B impatiens. Nevertheless, species differences in spectral tuning of equivalent photoreceptor classes may result in peaks that differ by several nm, which may have small but significant effects on colour discrimination ability. We therefore used intracellular recording to measure photoreceptor spectral sensitivity in B. impatiens. Spectral peaks were estimated at 347, 424 and 539 nm for UV, blue and green receptors, respectively, suggesting that this species is a UV-blue-green trichromat. Photoreceptor spectral sensitivity peaks are similar to previous measurements from Bombus terrestris, although there is a significant difference in the peak sensitivity of the blue receptor, which is shifted in the short wave direction by 12–13 nm in B. impatiens compared to B. terrestris.  相似文献   

7.
The economically important grain aphid, Sitobion avenae (F.) shows colour polymorphism, with brown and green forms predominating. Colour is determined both genetically and in response to environmental factors, including nutrition. The biological significance of the colour polymorphism is unknown, although seasonal changes occur in the frequency of colour morphs in the field, whilst the brown morph may have adaptive significance in terms of hymenopterous endoparasitism. The ground colour of aphids is produced by haemolymph pigments, aphins (glucosides) and carotenoids. The latter may be under the synthetic control of intracellular endosymbiotic bacteria. In this study, the major carotenoid pigments of a brown and a green clone of S. avenae were examined using thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC), and their absorbance spectra recorded. Using TLC, the brown clone produced five bands of different Rf, ranging from yellow, to orange-pink to pink in colour. In contrast, the green clone gave only a single yellow band of higher Rf than any of the bands of brown aphids. Following separation of carotenoids by HPLC, brown aphids gave seven peaks and green aphids five. Comparison of absorbance maxima with known published values for carotenoids provides strong evidence for the identification of four of the carotenoid pigments from brown aphids (RB-4, 3,4-didehydrolycopene; RB-5, torulene; RB-6; lycopene; RB-7, γ-carotene) and one from green aphids (RG-2, α-carotene). The other carotenoids remain unidentified. The biosynthesis and possible biological relevance of the various pigments of S. avenae are briefly discussed.  相似文献   

8.
Spectral sensitivities of cells in principal eyes of the jumping spider Phidippus reqius were measured using techniques of intracellular recording. Three types of cells were found. UV cells had peak sensitivities at 370 nm and were over 4 log units less sensitive at wavelengths longer than 460 nm. Green-sensitive cells had spectral sensitivities which were well fit by nomogram curves peaking at 532 nm. UV-green cells had dual peaks of sensitivity at about 370 and 525 nm, but the ratios of UV-to-green sensitivities varied over a 40: 1 range from cell to cell. Moreover, responses of UV-green cells to flashes of UV light were slower than to flashes of green light. Segregation of receptor types into the known layers of receptors in these eyes could not be shown. It is concluded that jumping spiders have the potential for dichromatic color vision.  相似文献   

9.
Summary Retinula cells in the compound eye of the cricket (Gryllus bimaculatus) were recorded intracellularly and stained with Lucifer yellow. Two different methods were used to determine the spectral sensitivity of these cells: a) the spectral scanning method, and b) the conventional flash method. Three spectral types, with S()-curves close to the rhodopsin-absorption functions, were found with max at 332 nm (UV), 445 nm (blue) and 515 nm (green), respectively.Blue receptors were only recorded in the anatomically specialized dorsal rim area (DRA), and UV and green receptors in the dorsal region of the pigmented part of the eye, whereby green receptors were only found in the ventral eye. On the basis of these results, model calculations are presented for di- and trichromatic colour vision in the cricket.The fluorescence markings revealed green receptors whose axons project with short visual fibres to the lamina, and a UV receptor with a long visual fibre which projects through the lamina to the medulla. The blue receptors send their axons either to the lamina and medulla (long visual fibres) or only to the lamina (short visual fibres).The temporal dynamics of the three receptor types were examined. The blue receptors lack a phasic component of the receptor potential, and the time from stimulus on-set to peak potential is strongly increased compared to the UV and green receptors. Light adaptation reduces the latency to less than half of the dark adapted state.Spectral adaptation experiments revealed an unidirectional coupling between UV and green receptors, and it was found that polarization sensitivity (PS) in blue cells was much higher (PS= 6.5±1.5) than that of UV (PS=1.76±0.05) and green (2.26±0.57) receptors. The functional aspects of the three receptor types are discussed with respect to the presented physiological and morphological data.Abbreviations DA dorsal area - DRA dorsal rim area - PS polarization sensitivity  相似文献   

10.
Intraocular recordings were made from the eyestalks of dark-adapted fiddler crabs (Uca thayeri) during presentation of monochromatic light flashes of different wavelengths and intensities. Two types of signals were recorded in different experiments: slow potentials (electroretinogram) and fast potentials (spikes). The latter were also recorded in the presence of a continuous green or red adapting light. The resulting visual spectral-sensitivity curves, when fitted to rhodopsin-based visual pigment absorption spectra (from Dartnall nomograms), indicated the presence of two visual pigments, one with an absorption maximum near 430 nm, and the other with a peak absorption between 500 nm and 540 nm. The data also provided evidence for some differential bleaching of the pigments in the presence of a colored adapting light, but most of the adaptation effect was probably due to changes in screening pigment and neural desensitization or inhibition. These two observations suggest that an adequate substrate for color vision may exist in this and other species of fiddler crabs. The electroretinogram and spike-recording methods produced similar visual-sensitivity data, suggesting that latter technique, a much more efficient way of collecting data that is physiologically relevant, may be the method of choice for determining spectral sensitivity in crustaceans.  相似文献   

11.
Box jellyfish, or cubomedusae, possess an impressive total of 24 eyes of four morphologically different types. Compared to other cnidarians they also have an elaborate behavioral repertoire, which for a large part seems to be visually guided. Two of the four types of cubomedusean eyes, called the upper and the lower lens eye, are camera type eyes with spherical fish-like lenses. Here we explore the electroretinograms of the lens eyes of the Caribbean species, Tripedalia cystophora, and the Australian species, Chiropsalmus sp. using suction electrodes. We show that the photoreceptors of the lens eyes of both species have dynamic ranges of about 3 log units and slow responses. The spectral sensitivity curves for all eyes peak in the blue-green region, but the lower lens eye of T. cystophora has a small additional peak in the near UV range. All spectral sensitivity curves agree well with the theoretical absorbance curve of a single opsin, strongly suggesting color-blind vision in box jellyfish with a single receptor type. A single opsin is supported by selective adaptation experiments.  相似文献   

12.
The colouration of some traits in nestlings of altricial birds may influence parental food allocation as it may reflect physical condition or hunger. There is increasing evidence of the relationship between colouration of begging traits and nestling performance. However, evidence of the influence of hunger level on nestling colouration is scarce, mainly because of difficulty of distinguishing between the effects of physical condition and hunger levels. Here, we used the appetite stimulant cyproheptadine hydrochloride to increase the sensation of hunger of magpie Pica pica nestlings for eight days and assessed the effect on the colouration of rictal flanges, mouth and body skin. We found that nestlings administered with cyproheptadine had flanges more conspicuous (chromatic visual contrast), more UV coloured and less yellow coloured than their control nestmates. Conversely, mouths of experimental nestlings were more yellow coloured and less UV coloured than controls. Our pharmacological experiment affected the strength of the relationship between body mass and some colour components of body skin (chromatic and achromatic visual contrasts, UV–chroma and yellow–chroma) and of rictal flanges (chromatic visual contrasts, UV–chroma and yellow–chroma), but not for mouth colouration. These results taken together suggest that the effect of the cyproheptadine on nestling colourations is probably mediated by an increase in hunger levels of nestlings for rictal flanges and body skin colourations, and by an increase in physical condition in the case of mouth coloration.  相似文献   

13.
Visual traps like yellow sticky card traps are used for monitoring and control of the greenhouse whitefly (Trialeurodes vaporariorum). However, reflected intensity (brightness) and hence, attractiveness depend on the ambient light conditions, and the colour (wavelength) might not fit with the sensitivity of whitefly photoreceptors. The use of light emitting diodes (LEDs) is a promising approach to increase the attractiveness, specificity and adaptability of visual traps. We constructed LED‐based visual traps equipped with blue and green high‐power LEDs and ultraviolet (UV) standard LEDs according to the putative spectral sensitivities of the insects' photoreceptors. In a series of small‐scale choice and no‐choice recapture experiments, the factors time of day as well as light intensity and light quality (colour) of LED traps were studied in terms of attractiveness compared to yellow traps without LEDs. Green LED traps (517 nm peak wavelength) were comparably attractive in no‐choice experiments but clearly preferred over yellow traps in all choice experiments. The time of day had a clear effect on the flight activity of the whiteflies and thereby on the trapping success. Blue LEDs (474 nm) suppressed the attractiveness of the light traps when combined with green LEDs suggesting that a yet undetected photoreceptor, sensitive for blue light, and an inhibiting interaction with the green receptor, might exist in T. vaporariorum. In choice experiments between LED traps emitting green light only or in combination with UV (368 nm), the green‐UV combination was preferred. In no‐choice night‐time experiments, UV LEDs considerably increased whitefly flight activity and efficacy of trapping. Most likely, the reason for the modifying effect of UV is the stimulating influence on flight activity. In conclusion, it seems that the use of green LEDs alone or in combination with UV LEDs could be an innovative option for improving attractiveness of visual traps.  相似文献   

14.
Most species of flower-visiting Hymenoptera are trichromatic, with photoreceptor spectral sensitivity peaks in the UV, blue and green regions of the spectrum. Red flowers, therefore, should be relatively difficult to detect for such insects. Nevertheless, in population biological studies in the bumblebee, Bombus terrestris, the Sardinian island population (B. t. sassaricus) displayed significantly higher responses to red artificial flowers (in tests of innate colour choice and detectability) than several mainland populations of the same species (Chittka et al. in Cognitive ecology of pollination, pp 106–126, 2001; Popul Ecol 46:243–251, 2004). Since there is relatively little physiological data on population differences in sensory systems, we used intracellular recording to compare photoreceptor spectral sensitivity in B. t. sassaricus and the southern European and Mediterranean population, B. t. dalmatinus. The results show both populations to be UV–blue–green trichromats, but with a small but significant increase in long-wave sensitivity in island bees. Spectral peaks were estimated at 348, 435 and 533 nm (B. t. dalmatinus) and 347, 436 and 538 nm (B. t. sassaricus) for UV, blue and green receptors, respectively. There were no significant differences in UV and blue receptor sensitivities. We found no photoreceptors maximally sensitive to red spectral light in the Sardinian population and model calculations indicate that the behavioural population differences in colour responses cannot be directly explained by receptor population differences. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Coconut crabs (Birgus latro) are strikingly variable in coloration, but the significance of this colour diversity has never been investigated. We studied coloration, morphology, behaviour and background matching of adult coconut crabs, the world’s largest terrestrial invertebrate, at the western edge of its distribution on Pemba Island, Tanzania. Adults are evidently polymorphic; they come in red and blue types (3:1 ratio on Pemba). The best predictor of colour morph was ventral hue, which, using a discriminant function analysis, correctly classified 96% of the crabs assigned into a predefined colour group. In contrast, principal component analyses suggested a degree of overlapping colour variation. We found no evidence that coloration was sex or size-linked. Males were larger than females and the Pemba adult population appeared male-biased (3:1). We also report that red adults may match the background better than do blue adults on land, whereas blue match better near shore than do red. We postulate that although colour diversity in coconut crabs may be genetically determined, potentially through a crustacyanin gene polymorphism influencing the stability of integument pigmentation, its maintenance may involve several ecological drivers.  相似文献   

16.
Spectral sensitivity functions of a passeriform bird, the Red-billed Leiothrix Leiothrix lutea (Timalidae) were determined in a behavioural test under different background illuminations.
1.  With photopic illumination the spectral sensitivity of Leiothrix lutea covered the measured range from 320 nm to 680 nm. Four peaks of spectral sensitivity were found: a UV (370 nm), a blue (460 nm), a green (530 nm) and a red (620 nm) sensitivity peak. The spectral sensitivity was highest in the UV and decreased (over the blue and the green peak) towards the red sensitivity peak. The 4 peaks of spectral sensitivity point to 4 underlying cone mechanisms under photopic illumination and thus to a probably tetrachromatic colour vision of Leiothrix lutea.
2.  With mesopic illumination the bird's spectral sensitivity covered the measured range from 320 nm to 680 nm. Neural interactions between cone and rod sensitivities are likely to determine this function. The increased overall sensitivity and a dominant sensitivity peak at 500 nm point to a typical rhodopsin as the likely rod photopigment.
3.  Different aspects of the biological significance of the high UV sensitivity are discussed.
  相似文献   

17.
Lizards display structural and pigment‐based colorations, and their visual system is sensitive to wavelengths of 300–700 nm. However, few studies in squamate reptiles have quantified interindividual colour variation that includes the structural ultraviolet (UV) component (300–400 nm). In the present study, we investigated variability of a ventral UV/yellow–red ornamentation in the common lizard Zootoca vivipara, including an analysis of spatial distribution, as well as sex and age differences. We also investigated whether the expression of coloration is related to body size and condition. Our analyses revealed two distinct patches: a gular patch with a strong UV reflectance and a belly patch with a dominant yellow–red reflectance. Males displayed a less saturated throat coloration with higher UV chroma and UV hue, and had a redder but duller belly coloration than females. Yearlings had less elaborate ornaments than adults, although they already displayed a yellow–red sexual dichromatism on the belly. UV sexual dichromatism was only apparent in adults as a result of a weaker UV reflectance in females, suggesting potential fitness costs of a bright UV coloration in that sex. Different colour traits were related to body size in both sexes, as well as to body condition in males. We discuss the potential evolutionary scenarios leading to the maintenance of this ornament in common lizards. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 128–141.  相似文献   

18.
Summary This study reports photopic spectral sensitivity curves (351–709 nm) for four individual roach,Rutilus rutilus, determined by two choice appetitive training. All four curves show four sensitivity maxima at 361–398 nm, 421–448 nm, 501–544 nm and 634–666 nm which are related to the four known roach photopic visual pigments (Avery et al. 1982). The overall shape of the curves at long wavelengths indicates inhibitory interactions between the red and green cone mechanisms. That the high behavioural sensitivity in the UV is caused by a specific ultraviolet visual pigment and is not due to aberrant stimulation of the other cone types is shown by the redetermination of spectral sensitivity at short wavelengths (351–501 nm) following the selective bleaching of the three longer wavelength visual pigments. This depresses the blue sensitivity to a greater degree than the relatively unaffected UV sensitivity maximum. Spectral transmission data from two corneas and four lenses show that they transmit considerable amounts of light in the near UV.  相似文献   

19.
We investigated the spectral sensitivity and response to light intensity of Pachyneuron aphidis (Hymenoptera: Pteromalidae), which is a common hyperparasitoid of Aphidius gifuensis (Hymenoptera: Braconidae), a key natural enemy of the green peach aphid, Myzus persicae (Hemiptera: Aphididae). To do so, we used 15 monochromatic lights (emitting various specific wavelengths from 340 to 649 nm) and white light. P. aphidis adults are diurnal insects that show a positive phototaxis to a broad spectrum of light. Significant differences were found between sexes in the phototactic responses of P. aphidis to different monochromatic lights. Female P. aphidis showed four peaks of sensitivity at 380, 450, 504 and 589 nm. Male P. aphidis show two peaks of sensitivity, one at 450 nm and second at 628 nm. P. aphidis adults showed an increased phototactic response at low intensities and a decreased phototactic response at high intensities for both UV light and blue light. This experiment will help provide a scientific basis for the development of colour traps for insect pest management.  相似文献   

20.
Colour is one of several stimuli used by herbivorous insects in host choice. Insects have between 2 and 5 different types of photoreceptors to catch quanta of different wavelengths of the spectrum. Many insects have been shown to possess opponent neural interactions between the receptors that enable them to see colour. I present simple models to describe colour choices as functions of the receptor quantum catches and linear interactions of the receptor types. Models are applied to data sets obtained from own experiments and from the literature, on Pieris brassicae and P. rapae (Lepidoptera, Pieridae), Papilio aegeus (Papilionidae), Dacus oleae (Diptera, Tephritidae) and Eristalis tenax (Syrphidae). In fruit flies, detection of green fruit is based on an inhibitory interaction between a green-sensitive receptor type and a blue-sensitive receptor type. This might explain the preference many herbivorous insects have for yellow over green stimuli. Pollen feeding in hoverflies might have evolved from yellow pollen being a super-normal stimulus for herbivorous insects. In butterflies, an additional red-receptor is involved in the colour choice for an oviposition substratum and leads to them choosing green and not yellow. The models introduced in this study open new perspective for a physiological understanding of the design of visual stimuli for monitoring and trapping pest insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号