首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We invented a simultaneous measuring instrument of fluorescence and chemiluminescence, realizing the analysis of chronological correlation between change in intracellular Ca2+ concentration ([Ca2+]i) and superoxide generation. A human monocytic cell line, THP-1, differentiated to be neutrophil-like cells generated superoxide with increase in intracellular Ca2+ concentration when stimulated with formyl-methionyl-leucyl-phenylalanine (fMLP) whereas PMA, phorbol ester-stimulated superoxide response occurred without change in [Ca2+]i. The cells treated with TMB-8, an intracellular Ca2+ antagonist, generated superoxide rapidly as well as transiently with transient [Ca2+]i elevation after stimulation with fMLP, whereas EGTA-treated cells generated superoxide slowly as well as persistently with transient [Ca2+]i elevation after the stimulation. These results suggest that the rapid and transient contents of superoxide generation are specific for Ca2+ influx from the extracellular domain. Verapamil, voltage-dependent Ca2+ channel blocker, dose-dependently inhibited fMLP-stimulated extracellular Ca2+ influx and superoxide generation without affecting PMA-stimulated superoxide generation. Other channel blockers tested, nifedipine and diltiazem, similarly inhibited these fMLP-stimulated responses. Numerical analysis of the values of the response curves elucidated that TMB-8 or the channel blocker reveals or eliminates the same contents of superoxide generation by the antagonism of intracellular Ca2+ release or extracellular Ca2+ influx, respectively. Taking these results together, the characteristic extracellular Ca2+ influx essential for superoxide generation was first revealed by the simultaneous measurement of superoxide generation and change in [Ca2+]i.  相似文献   

2.
Rat liver mitochondria may be subfractionated in sediment and supernatant fractions by swelling in the presence of EDTA and oxaloacetate. The sediment is largely depleted of the Ca2+-binding glycoprotein and its Ca2+-transporting activity may be as low as 10--20% of the starting value. Both the rate of Ca2+ uptake and the capacity to maintain a high Ca2+ concentration gradient across the membrane are depressed. Addition of an osmotic supernatant to the assay mixture may partially restore the original Ca2+-transporting ability. The active component in the supernatant is the Ca2+-binding glycoprotein. This is shown by the following facts: (a) the effect is enhanced by the addition of the purified glycoprotein to the supernatant; (b) precipitation of the glycoprotein from the supernatant by affinity chromatography-purified antibodies abolishes the stimulatory effect, and (c) in the presence of 130 microM Mg2+, the glycoprotein alone may restore fully the Ca2+-transporting ability of the particles. The maximal velocity is already reached at 0.1 microgram glycoprotein/mg mitochondrial protein.  相似文献   

3.
At pH values >5.5, Clostridium sporogenes MD1 accumulated potassium even though it had little protonmotive force, but an ATPase inhibitor (N, N'- dicyclohexylcarbodiimide) prevented this uptake. The results suggested that potassium transport was ATP-driven, and a protonophore (3, 3', 4', 5 - tetrachlorosalicylanilide) did not eliminate uptake. However, potassium uptake could also be driven by an artificial pH gradient, and in this case the protonophore acted as an inhibitor. These latter results indicated that the cells also had a protonmotive force-driven transporter. When the pH <5.1, the cells could not retain potassium, rapid efflux was observed, and intracellular volume collapsed.  相似文献   

4.
5.
Ethanol stimulates the Na(+)-dependent Ca2+ efflux in brain mitochondria and inhibits the Na(+)-independent Ca(2+)-efflux. Here, we studied the effects of n-alkanols on the various Ca2+ transport processes in brain mitochondria. Only short-chain alcohols (i.e. methanol, ethanol and propanol) stimulated Na+/Ca2+ exchange. The inhibition of H+/Ca2+ exchange was significant only with ethanol. Short-chain alcohols inhibit while long-chain alcohols activate the cyclosporin-sensitive Ca(2+)-efflux. These data suggest that the mechanism of the alkanols' effects on Na+/Ca2+ exchange, H+/Ca2+ exchange and the cyclosporin sensitive pore are entirely different. Alkanols have no effect on the electrogenic Ca2+ uniporter. Ethanol did not affect the apparent K0.5 for Na+ (7.5 mM) of the Na+/Ca2+ exchange. Similarly, the magnitude of the effect of ethanol did not depend on matrix Ca2+ concentration, suggesting that short-chain alkanols do not stimulate the rate of Na+/Ca2+ exchange by increasing the affinity of the carrier to Ca2+in or Na+out. High concentrations of K+, Mg2+ and Ca2+ enhanced the ethanol effect. It is possible that high surface potential attenuates the effect of ethanol. It is suggested that ethanol stimulation of Na+/Ca2+ exchange depends on the modulation of the surface dielectric constant.  相似文献   

6.
A Cuéllar  A Cárabez  E Chávez 《Life sciences》1987,41(17):2047-2054
Ca2+ energy-coupled transport was analized in adrenal cortex mitochondria using the sesquiterpenic drug perezone. Perezone promotes Ca2+ efflux by inducing collapse of the membrane potential and oxidation of pyridine nucleotides. The effect of perezone on mitochondrial Ca2+ release follows a dose-response relationship and is dependent of the reduction of the drug. These data suggest that perezone may produce a cytotoxic effect through an impairment in Ca2+ homeostasis.  相似文献   

7.
Ruthenium red, an inhibitor of Ca2+ binding and transport by mitochondria, promotes the release of Ca2+ by mitochondria only if it is added to the assay medium before the accumulation of Ca2+ has been completed. Once essentially all of the Ca2+ in the medium is taken up by mitochondria, ruthenium red does not induce its release. It is proposed that ruthenium red inhibits Ca2+ transport by competing with Ca2+ for Ca2+ binding sites, possibly Ca2+ carrier molecules, on or within the inner mitochondrial membrane.  相似文献   

8.
The effect of spermine (50-400 microM) on the Ca-transporting system of brain mitochondria was studied. In a medium containing Mg2+ and ATP, spermine facilitates the accumulation of Ca2+ by decreasing Km of the uniporter. Spermine inhibits Na-stimulated Ca2+ efflux; this effect is dependent on the ionic strength of the medium--it is decreased when KCl concentration is increased from 20 to 120 mM. Spermine (200 microM) decreases (by 50%) the steady state concentration of Ca2+ maintained by mitochondria. The importance of spermine as a regulator of Ca2+-transport in brain mitochondria is discussed.  相似文献   

9.
A boron-containing antibiotic, boromycin (BM), was found to influence the Ca2+ homeostasis in both excitable and non-excitable cells. In non-excitable cells (human erythrocytes and leucocytes) it inhibited the resting passive45Ca2+ transport in 10–6–10–5 mol/L concentrations. In human erythrocytes, the passive 45Ca2+ transport induced by the presence of 1 mmol/L NaVO3 was inhibited by boromycin (90% inhibition) as well. The inhibitory effect of BM on the NaVO3-induced passive 45Ca2+ transport was diminished in the presence of inhibitory concentrations of nifedipine (10 mol/L – 60% inhibition) or of those of K+ o (75 mmol/L – 20% inhibition). On the other hand, in rat brain synaptosomes, and rat cardiomyocytes, BM stimulated the passive 45Ca2+ transport in resting cells at similar concentrations. In rat cardiomyocytes the stimulation was transient. The stimulatory effect on the passive 45Ca2+ transport in rat brain synaptosomes was accompanied with the increase of cytoplasmic Ca2+ concentration measured by means of the entrapped fluorescent Ca2+ chelator fura-2. The stimulatory effect of BM was diminished when synaptosomes were pre-treated with veratridine (10 mol/L) which itself stimulated the passive 45Ca2+ transport. At saturating concentrations of veratridine, no stimulatory effect of BM was observed. These results could be explained by the indirect interaction of BM with both Ca2+ and Na+ transport systems via transmembrane ionic gradients of monovalent cations and could be useful in determining whether the cells belong to excitable, or non-excitable cells.  相似文献   

10.
11.
Superoxide radicals in high concentrations were generated from alkaline H2O2 without using catalysts or irradiation. The dependence of the intensity and parameters of the superoxide radical EPR spectrum on pH, temperature, viscosity and H2O2 concentration were studied. The observed changes are explained on the base of matrix effects. The addition of superoxide dismutase to alkaline H2O2 led initially to a drop in the EPR spectrum intensity, followed by an increase in the concentration of superoxide radicals.  相似文献   

12.
13.
The effect of thioredoxin peroxidases on the protection of Ca(2+)-induced inner mitochondrial membrane permeabilization was studied in the yeast Saccharomyces cerevisiae using null mutants for these genes. Since deletion of a gene can promote several other effects besides the absence of the respective protein, characterizations of the redox state of the mutant strains were performed. Whole cellular extracts from all the mutants presented lower capacity to decompose H(2)O(2) and lower GSH/GSSG ratios, as expected for strains deficient for peroxide-removing enzymes. Interestingly, when glutathione contents in mitochondrial pools were analyzed, all mutants presented lower GSH/GSSG ratios than wild-type cells, with the exception of DeltacTPxI strain (cells in which cytosolic thioredoxin peroxidase I gene was disrupted) that presented higher GSH/GSSG ratio. Low GSH/GSSG ratios in mitochondria increased the susceptibility of yeast to damage induced by Ca(2+) as determined by membrane potential and oxygen consumption experiments. However, H(2)O(2) removal activity appears also to be important for mitochondria protection against permeabilization because exogenously added catalase strongly inhibited loss of mitochondrial potential. Moreover, exogenously added recombinant peroxiredoxins prevented inner mitochondrial membrane permeabilization. GSH/GSSG ratios decreased after Ca(2+) addition, suggesting that reactive oxygen species (ROS) probably mediate this process. Taken together our results indicate that both mitochondrial glutathione pools and peroxide-removing enzymes are key components for the protection of yeast mitochondria against Ca(2+)-induced damage.  相似文献   

14.
The respiratory rate of rat liver mitochondria in the presence of NADH as exogenous substrate is enhanced by the addition of CaCl2 (> 50 μM) when inorganic phosphate is present in the medium. The Ca-induced oxidation of NADH is inhibited by rotenone but is not affected by uncoupling agents. EDTA, which does not reverse the swelling of mitochondria which occurs in the presence of Ca2+ and phosphate, is able to inhibit reversibly the Ca-stimulated NADH oxidation. A stimulation of the rate of oxidation of NADH by Ca2+ is also observed in mitochondria partially swollen in a hypotonic medium.  相似文献   

15.
Single-channel models of intracellular Ca(2+) channels such as the inositol 1,4,5-trisphosphate receptor and ryanodine receptor often assume that Ca(2+)-dependent transitions are mediated by a constant background [Ca(2+)] as opposed to a dynamic [Ca(2+)] representing the formation and collapse of a localized Ca(2+) domain. This assumption neglects the fact that Ca(2+) released by open intracellular Ca(2+) channels may influence subsequent gating through the processes of Ca(2+)-activation or -inactivation. We study the effect of such "residual Ca(2+)" from previous channel opening on the stochastic gating of minimal and realistic single-channel models coupled to a restricted cytoplasmic compartment. Using Monte Carlo simulation as well as analytical and numerical solution of a system of advection-reaction equations for the probability density of the domain [Ca(2+)] conditioned on the state of the channel, we determine how the steady-state open probability (p(open)) of single-channel models of Ca(2+)-regulated Ca(2+) channels depends on the time constant for Ca(2+) domain formation and collapse. As expected, p(open) for a minimal model including Ca(2+) activation increases as the domain time constant becomes large compared to the open and closed dwell times of the channel, that is, on average the channel is activated by residual Ca(2+) from previous openings. Interestingly, p(open) for a channel model that is inactivated by Ca(2+) also increases as a function of the domain time constant when the maximum domain [Ca(2+)] is fixed, because slow formation of the Ca(2+) domain attenuates Ca(2+)-mediated inactivation. Conversely, when the source amplitude of the channel is fixed, increasing the domain time constant leads to elevated domain [Ca(2+)] and decreased open probability. Consistent with these observations, a realistic De Young-Keizer-like IP(3)R model responds to residual Ca(2+) with a steady-state open probability that is a monotonic function of the domain time constant, though minimal models that include both Ca(2+)-activation and -inactivation show more complex behavior. We show how the probability density approach described here can be generalized for arbitrarily complex channel models and for any value of the domain time constant. In addition, we present a comparatively simple numerical procedure for estimating p(open) for models of Ca(2+)-regulated Ca(2+) channels in the limit of a very fast or very slow Ca(2+) domain. When the ordinary differential equation for the [Ca(2+)] in a restricted cytoplasmic compartment is replaced by a partial differential equation for the buffered diffusion of intracellular Ca(2+) in a homogeneous isotropic cytosol, we find the dependence of p(open) on the buffer time constant is qualitatively similar to the above-mentioned results.  相似文献   

16.
Abstract The acute effects of endotoxins and lipid A on two intracellular responses, inositol phosphate generation and superoxide production were analysed in the DMSO differentiated premyelocytic leukamic HL-60 cell line. Short-term incubation (1–10 min) with Escheria coli -type LPS, Salmonella -type LPS and Lipid A caused significant increases in cellular InsP1 and InsP3, compared with control cells ( P < 0.5 − P < 0.001). The Escheria coli -type B LPS released approximately twice the quantity of InsP3 compared with Salmonella -type LPS ( P < 0.001). Lipid A-dependent stimulation of InsP3 production was also detected. The rate of superoxide production increased 1–10 min after addition of both Escheria coli - and Salmonella -type LPS and Lipid A. Endotoxins and Lipid A caused a dose-dependent increase in intracellular oxidative activity. The superoxide response showed less species dependence and a higher response to particulate lipid A compared with the inositol phosphate response.  相似文献   

17.
Respiring rat liver mitochondria are known to spontaneously release the Ca2+ taken up when they have accumulated Ca2+ over a certain threshold, while Sr2+ and Mn2+ are well tolerated and retained. We have studied the interaction of Sr2+ with Ca2+ release. When Sr2+ was added to respiring mitochondria simultaneously with or soon after the addition of Ca2+, the release was potently inhibited or reversed. On the other hand, when Sr2+ was added before Ca2+, the release was stimulated. Ca2+-induced mitochondrial damage and release of accumulated Ca2+ is generally believed to be due to activation of mitochondrial phospholipase A (EC 3.1.1.4.) by Ca2+. However, isolated mitochondrial phospholipase A activity was little if at all inhibited by Sr2+. The Ca2+ -release may thus be triggered by some Ca2+ -dependent function other than phospholipase.  相似文献   

18.
The in vitro effects of iron (III)-gluconate complex on the production of malondialdehyde and on the Ca2+ transport in isolated rat liver mitochondria were studied. A correlation between the concentration of iron added and the formation of malondialdehyde was found. The enhancement by iron of lipid peroxidative process in the mitochondrial membrane brought about the induction of Ca2+ release from mitochondria. Experimental evidence based on the membrane potential pattern of mitochondria pre-loaded with a low pulse of Ca2+ suggested that Ca2+ efflux was not due to a nonspecific increase in the inner membrane permeability, i.e. to a collapse of membrane potential, but rather to the activation of an apparently selective pathway for Ca2+ release.  相似文献   

19.
The effects of superoxide dismutase on H2O2 formation   总被引:1,自引:1,他引:1  
Numerous reports of the effects of overproduction of SODs have been explained on the basis of increased H2O2 production by the catalyzed dismutation of O2-. In this review we consider the effects of increasing [SOD] on H2O2 formation and question this explanation.  相似文献   

20.
Cellular ornithine biosynthesis could be expected to play a significant role in putrescine formation and hence in growth. Two enzymes are involved in ornithine biosynthesis: arginase and transamidinase. These enzyme activities were studied in two human melanoma cell lines differing in their Km of diamine oxidase for putrescine and in their tumorigenicity in nude mice. Arginase activity accounts for the majority of ornithine formed in the highly tumorigenic cell line, while the majority of ornithine is derived from transamidinase action in the poorly tumorigenic cell line, with concomitant formation of methyl guanidine, a potent inhibitor of diamine oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号